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Computing generating functions of ordered
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An ordered partition of [n] := {1, 2, . . . , n} is a sequence of disjoint and nonempty subsets, called blocks, whose
union is [n]. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix
method. In particular, we prove several conjectures of Steingrı́msson, which assert that the generating function of some
statistics of ordered partitions give rise to a natural q-analogue of k!S(n, k), where S(n, k) is the Stirling number of
the second kind.

Keywords: Ordered partitions, Euler-Mahonian statistics, q-Stirling numbers of second kind, transfer-matrix method,
determinants.

Contents
1 Introduction 193

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
1.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

2 Ordered partitions and walks in digraphs 197
2.1 Encoding ordered partitions by walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2.2 Generating functions of walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3 Determinantal computations 200
3.1 Proof of Theorem 2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
3.2 Proof of Theorem 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

1 Introduction
1.1 Background
Definition 1.1 A partition π0 of [n] = {1, 2, . . . , n} is a collection of disjoint and nonempty subsets, called
blocks, whose union is [n]. By convention, we write π0 = B1 − B2 − · · · − Bk, where the blocks Bi are
arranged in increasing order of their minimal elements and within each block the elements are arranged in
increasing order.

For instance, π0 = 1− 2 4 6− 3 5− 7 8 is a partition of [8] with 4 blocks.
Let Pk

n be the set of partitions of [n] with k blocks. In the present paper we study statistics on ordered
partitions, that is, partitions where the blocks are ordered arbitrarily.

Definition 1.2 An ordered partition π of [n] with k blocks is just a rearrangement of blocks of a partition
in Pk

n , that is there exist π0 = B1 − B2 − · · · − Bk ∈ Pk
n and σ a permutation of [k] such that π =

Bσ(1) −Bσ(2) − · · · −Bσ(k). We will say that σ is the permutation induced by π and set σ = perm(π).

For instance, π = 35− 2 4 6− 1− 7 8 is an ordered partition of [8] with 4 blocks and we have perm(π) =
3214.Let OPk

n be the set of ordered partitions of [n] into k blocks. It is well known that the cardinality of
Pk

n is the Stirling number of the second kind S(n, k). It follows that k!S(n, k) counts the ordered partitions
of [n] with k blocks.
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Let σ = σ(1)σ(2) . . . σ(n) be a permutation of [n], the integer i ∈ [n − 1] is called a descent of σ if
σ(i) > σ(i+1). The Eulerian number A(n, k) counts permutations of [n] with k descents. There is a basic
identity relating the S(n, k)’s and the A(n, k)’s, namely

k!S(n, k) =
k∑

m=1

(
n−m

n− k

) 〈
n

m− 1

〉
, (1)

which is easily proved combinatorially (for instance, see [10] ).
In the present paper we will study some statistics originated from a q-analogue of (1) by means of the

q-Eulerian numbers and q-Stirling numbers of the second kind, which were introduced by Carlitz [1, 2]. We
need more definitions and notations.

Define the p, q-integer [n]p,q = pn−qn

p−q , the p, q-factorial [n]p,q! = [1]p,q[2]p,q · · · [n]p,q and the p, q-
binomial coefficients [

n

k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
n ≥ k ≥ 0.

If p = 1, we shall write [n]q, [n]q! and
[
n
k

]
q

for [n]1,q , [n]1,q! and
[
n
k

]
1,q

respectively.
The q-Eulerian numbers Aq(n, k) (n ≥ k ≥ 0) are defined by

Aq(n, k) = qk[n− k]q

〈
n− 1
k − 1

〉
q

+ [k + 1]q

〈
n− 1
k

〉
q

.

Let σ be a permutation of [n], define the statistic majσ =
∑

i i where the summation is over all descents
of σ. Then

Aq(n, k) =
∑

σ

qmaj σ,

where the summation is over all permutations of [n] with k descents.
The q-Stirling numbers Sq(n, k) of the second kind are defined by:

Sq(n, k) = qk−1Sq(n− 1, k − 1) + [k]qSq(n− 1, k) (n ≥ k ≥ 0), (2)

where Sq(n, k) = δn k if n = 0 or k = 0.
A q-analogue of (1) has been found in [15] as follows:

[k]q!Sq(n, k) =
k∑

m=1

qk(k−m)

[
n−m

n− k

]
q

〈
n

m− 1

〉
q

. (3)

There has been a considerable amount of recent interest in properties and combinatorial interpretations of
the q-Stirling numbers and related numbers (see e.g. [1, 2, 4, 5, 6, 7, 8, 10, 11, 12, 13]). In the aim to give
a combinatorial proof of (3), Steingrı́msson [10] introduced the following definition.

Definition 1.3 A statistic Stat on OPk
n is called Euler-Mahonian if its generating function is equal to

[k]q!Sq(n, k), i.e., ∑
π∈OPk

n

qStat π = [k]q!Sq(n, k).

Steingrı́msson [10] has found a few of Euler-Mahonian statistics and has introduced new statistics on or-
dered partitions. Moreover, he has conjectured that all these new statistics are Euler-Mahonian. Wachs [11]
has also obtained some Euler-Mahonian statistics on ordered partitions.

1.2 Definitions
Given a partition π in OPk

n, the elements of [n] are divided into four classes:

• singletons: elements of the singleton blocks;

• openers: smallest elements of the non singleton blocks;

• closers: largest elements of the non singleton blocks;

• transients: all other elements, i.e., non extremal elements of non singleton blocks.
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The sets of openers, closers, singletons and transients of π will be denoted by O(π), C(π), S(π) and
T (π), respectively. The 4-tuple (O(π), C(π),S(π), T (π)) is called the type of π. For instance, if π =
3 5− 2 4 6− 1− 7 8, then

O(π) = {2, 3, 7}, C(π) = {5, 6, 8}, S(π) = {1} and T (π) = {4}.

Definition 1.4 Let σ be a permutation of [n]; the pair (i, j) is an inversion if 1 ≤ i < j ≤ n and σ(i) >
σ(j). Let inv σ be the number of inversions in σ. We also define the number of inversions of an ordered
partition π, inv π, by inv π = inv(perm(π)). For a partition π in OPk, we also set cinv π =

(
k
2

)
− inv π.

Let π = B1−B2−· · ·−Bk be a partition in OPk
n. We define a partial order on blocks Bi’s as follows :

Bi > Bj if all the letters of Bi are greater than those of Bj ; in other words, if the opener of Bi is greater
than the closer of Bj .

Definition 1.5 A block inversion in π is a pair (i, j) such that i < j and Bi > Bj . We denote by bInvπ
the number of block inversions in π. We also set cbInv =

(
k
2

)
− bInv.

Let wi be the index of the block (counting from the left) containing i, namely the integer j such that
i ∈ Bj . Following Steingrı́msson [10], we define for 1 ≤ i ≤ n ten coordinate statistics on π ∈ OPk

n:

rosi(π) = #{j ∈ (O ∪ S)(π) | j < i, wj > wi},
robi(π) = #{j ∈ (O ∪ S)(π) | j > i, wj > wi},
rcsi(π) = #{j ∈ (C ∪ S)(π) | j < i, wj > wi},
rcbi(π) = #{j ∈ (C ∪ S)(π) | j > i, wj > wi},
losi(π) = #{j ∈ (O ∪ S)(π) | j < i, wj < wi},
lobi(π) = #{j ∈ (O ∪ S)(π) | j > i, wj < wi},
lcsi(π) = #{j ∈ (C ∪ S)(π) | j < i, wj < wi},
lcbi(π) = #{j ∈ (C ∪ S)(π) | j > i, wj < wi},

where (O∪S)(π) = O(π)∪S(π), and let rsbi(π) (resp. lsbi(π)) be the number of blocks in π to the right
(resp. left) of the block containing i such that the opener of B is smaller than i and the closer of B is greater
than i. Then define ros, rob, rcs, rcb, lob, los, lcs, lcb, lsb and rsb as the sum of their coordinate statistics,
e.g.

ros =
∑

i

rosi.

Remark 1.6 Note that ros is the abbreviation of ”right, opener, smaller”, while lsb is the abbreviation of
”left, closer, bigger”, etc.

More generally, if stat is one of the above ten statistics, we define stat(O ∪ S) by

stat(O ∪ S)(π) =
∑

i∈(O∪S)(π)

stati(π).

In the same way, we define stat(T ∪C), stat(C ∪S), etc. The following results illustrate the above notions.

Proposition 1.7 The following functional identities hold on OPk:

bInv = rcs(O ∪ S), inv = ros(O ∪ S) and cinv = los(O ∪ S). (4)



196 Masao Ishikawa, Anisse Kasraoui and Jiang Zeng

For instance, we give the values of the coordinate statistics computed on the partition π = 6 8 − 5 −
1 4 7− 3 9− 2:

π = 6 8 − 5 − 1 4 7 − 3 9 − 2

losi : 0 0 − 0 − 0 0 2 − 1 3 − 1
rosi : 4 4 − 3 − 0 2 2 − 1 1 − 0
lobi : 0 0 − 1 − 2 2 0 − 2 0 − 3
robi : 0 0 − 0 − 2 0 0 − 0 0 − 0
lcsi : 0 0 − 0 − 0 0 1 − 0 3 − 0
rcsi : 2 3 − 1 − 0 1 1 − 1 1 − 0
lcbi : 0 0 − 1 − 2 2 1 − 3 0 − 4
rcbi : 2 1 − 2 − 2 1 1 − 0 0 − 0
lsbi : 0 0 − 0 − 0 0 1 − 1 0 − 1
rsbi : 2 1 − 2 − 0 1 1 − 0 0 − 0

Since {6, 8} > {5}, {6, 8} > {2}, {5} > {2} and {3, 9} > {2}, we have bInv π = 4 and cbInv π =(
5
2

)
− 4 = 6. Moreover, perm(π) = 54132, thus inv(π) = 8 and cinv(π) =

(
5
2

)
− 8 = 2.

Inspired by the statistic mak on the permutations due to Foata & Zeilberger [3] , Steingrı́msson intro-
duced its analogous on OPk

n as follows:

mak = ros + lcs,
lmak = n(k − 1)− [los + rcs],
mak′ = lob + rcb,
lmak′ = n(k − 1)− [lcb + rob].

The following proposition permits to reduce the conjecture 12 in [10] almost by half. This result was first
proved in [4].

Proposition 1.8 On OPk
n the following functional identities hold:

mak = lmak′ and mak′ = lmak.

Define also the statistic cinvLSB on OPk by

cinvLSB := lsb + cbInv +
(

k
2

)
. (5)

1.3 Main results
Consider the following two generating functions of ordered partitions with k ≥ 0 blocks:

φk(a;x, y, t, u) : =
∑

π ∈OPk

x(mak+bInv)π ycinvLSB π tinv π ucinv πa|π|, (6)

ϕk(a; z, t, u) : =
∑

π ∈OPk

z(lmak+bInv)π tinv π ucinv π a|π|, (7)

where |π| = n if π is a partition of [n]. The following Theorem is the main result of this paper.

Theorem 1.9 We have

φk(a;x, y, t, u) =
ak (xy)(

k
2)[k]tx,uy!∏k

i=1(1− a[i]x,y)
, (8)

ϕk(a; z, t, u) =
akz(

k
2) [k]tz,u!∏k

i=1(1− a[i]z)
. (9)

The above theorem infers results on Euler-Mahonian statistics on ordered partitions. Indeed, it follows
directly from (2) that ∑

n≥k

[k]q!Sq(n, k) an =
ak q(

k
2)[k]q!∏k

i=1(1− a[i]q)
. (10)

Then, by appropriate specializations in (6) and (7), we obtain the following result conjectured by Ste-
ingrı́msson [10, conj.12 and 13].
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Theorem 1.10 The following statistics are Euler-Mahonian on OPk
n:

mak + bInv, lmak + bInv, cinvLSB.

In other words, the generating functions of the above statistics over OPk
n are all equal to [k]q!Sq(n, k).

Others specializations give rise to new Euler-Mahonian statistics.

Theorem 1.11 The following statistics are Euler-Mahonian on OPk
n:

mak + bInv − (inv−cinv), lmak + bInv + (inv−cinv), cinvLSB + (inv−cinv).

Theorem 1.9 provides also an alternative proof of the following combinatorial interpretations for q-
Stirling numbers of the second kind, where the first two interpretations were proved by Ksavrelof and
Zeng [4] and the third interpretation was first proved by Stanton (see [12]).

Corollary 1.12
Sq(n, k) =

∑
π∈Pk

n

qmak π =
∑

π∈Pk
n

qlmak π =
∑

π∈Pk
n

qlsb π+(k
2).

Indeed, an (unordered) partition can be identified with an ordered partition without inversion, i.e.,

Pk
n = {π ∈ OPk

n | inv π = 0}.

Since the statistic bInv vanishes on (unordered) partitions and the identity cinvLSB = lsb + 2
(
k
2

)
holds on

Pk, it is then trivial to obtain Corollary 1.12.
There are three main ingredients in the proof of Theorem 1.9: a bijection which maps ordered partitions

to walks on some digraphs, the transfer-matrix method which permits to compute the generating function
of walks using determinants, and the evaluation of determinants.

2 Ordered partitions and walks in digraphs
2.1 Encoding ordered partitions by walks
Let π = B1 − B2 − · · · − Bk in OPk

n and i an integer in [n]. The restriction Bj(≤ i) := Bj ∩ [i] of the
block Bj is said to be active if Bj 6⊆ [i] and Bj ∩ [i] 6= ∅, complete if Bj ⊆ [i]. We define the restriction of
π on [i], called the i-th trace of π, by

Ti(π) = B1(≤ i)−B2(≤ i)− · · · −Bk(≤ i),

with the empty restrictions being omitted. The sequence (Ti(π))1≤i≤n is called the trace of the partition π.
We denote by acti π and comi π the numbers of active blocks and complete blocks, respectively, in Ti(π)
and set

ωi(π) = (comiπ, actiπ) for 1 ≤ i ≤ n,

with ω0(π) = (0, 0). The sequence (ωi(π))0≤i≤n is called the walk of the partition π.
For instance, if π = {6}−{3, 5, 7}−{1, 4, 10}−{9}−{2, 8}, then T6(π) = {6}−{3, 5, · · · }−{1, 4, · · · }−

{2, · · · }, where each active block ends with an ellipsis, and we get ω6(π) = (1, 3).

Definition 2.1 Let D = (V,E) be the digraph on V = N2 with edges set E defined by

E = {(u, v) ∈ V 2 | u = v = (x, y) with y > 0 or u− v = (0, 1), (1, 0), (1,−1)}.

Clearly there are four types of edges. An edge (u, v) of D is called:

• North if v = u+ (0, 1);

• East if v = u+ (1, 0);

• South-East if v = u+ (1,−1);

• Null if v = u.

For any integer k ≥ 0, let Vk = {(i, j) ∈ V | i + j ≤ k} and Dk be the restriction of the digraph D on
Vk . An illustration of Dk is given in Figure 1.



198 Masao Ishikawa, Anisse Kasraoui and Jiang Zeng

r r r r
r r r
r r
r

r
r r

r r

rr
rr

rr

- - -

-

6

6

6

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

- -

-

-

-

-

-

6

6

6

6

6 6

6

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

�

�

�

�

�

�

�

�

�

�

�

� �

� �

0 1 2 3 k − 1 k

0

1

2

3

k − 1

k

Fig. 1: The digraph Dk

Definition 2.2 A walk of depth k and length n in D is a sequence ω = (v0, v1, . . . , vn) of points in V such
that v0 = (0, 0), vn = (k, 0) and (vi, vi+1) is an edge of D for i = 0, . . . , n − 1. Moreover, the abscissa
and height of the step (vi, vi+1) are the abscissa and ordinate of vi respectively. Let Ωk

n be the set of walks
of depth k and length n and Ωk be the set of walks of depth k in D.

The following result characterizes the walks of ordered partitions.

Proposition 2.3 For n ≥ k ≥ 0, the walks of the partitions in OPk
n are exactly the walks in Ωk

n.

We need a refinement of the notion of walk.

Definition 2.4 A walk diagram of depth k and length n is a pair (ω, ξ), where ω = (v0 v1 · · · vn) is a
walk in Ωk

n and ξ = (ξi)1≤i≤n is a sequence of integers such that 1 ≤ ξi ≤ q if the i-th step is (Null or
South-East) of height q, and 1 ≤ ξi ≤ p+ q + 1 if the i-th step is (North or East) of abscissa p and height
q.

Denote by ∆k
n the set of path diagrams of depth k and length n. The main ingredient of our proof is a

mapping from ∆k
n to OPk

n which keeps track of several statistics of Steingrı́msson.

Theorem 2.5 There exists a bijection ψ : ∆k
n → OPk

n such that if h = (ω, ξ) is in ∆k
n and if the i-th step

of w is of abscissa p and height q, and of type:

(i) North or East : then, i ∈ (O ∪ S)(ψ(h)),
(lcs + rcs)i(ψ(h)) = q and (lsb + rsb)i(ψ(h)) = p,
losi(ψ(h)) = ξi − 1 and rosi(ψ(h)) = p + q + 1− ξi.

(ii) South-East or Null : then, i ∈ (T ∪ C)(ψ(h)),
(lcs + rcs)i(ψ(h)) = p and (lsb + rsb)i(ψ(h)) = q− 1,
lsbi(ψ(h)) = ξi − 1 and rsbi(ψ(h)) = q− ξi

2.2 Generating functions of walks
For 0 ≤ k ≤ n, let t = (t1, t2, t3, t4, t5, t6, t7) and

Qn,k(t) : =
∑

π∈OPk
n

t
(lcs+rcs)(O∪S)π
1 t

(lcs+rcs)(T ∪C)π
2 t

rsb(T ∪C)π
3 (11)

× t
lsb(T ∪C)π
4 t

ros(O∪S)π
5 t

los(O∪S)π
6 t

(lsb+rsb)(O∪S)π
7 .
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Given a walk ω, define the weight v(ω) of ω to be the product of the weights of all its steps, where the
weight of a step of abscissa i and height j is:{

ti1 t
j
7 [i+ j + 1]t5,t6 if the step is North or East;

ti2 [j]t3,t4 if the step is Null or South-East.
(12)

It follows easily from Theorem 2.5 that ∑
ω∈Ωk

n

v(ω) = Qn,k(t) .

Denote by |ω| the length of the walk ω. Then, using the above identity, we get

Qk(a; t) :=
∑
n≥0

Qn,k(t) an =
∑

w∈Ωk

v(w) a|ω| . (13)

It is obvious that the number of vertices of Dk is equal to

k̂ := 1 + 2 + · · ·+ (k + 1) =
(k + 1)(k + 2)

2
.

Let v1, · · · , vbk be the vertices of Dk arranged according to the following order: (i, j) ≤ (i′, j′) if and only
if i + j < i′ + j′ or (i + j = i′ + j′ and j ≥ j′). For instance, we get v1 = (0, 0), v2 = (0, 1), v3 =
(1, 0), v4 = (0, 2), v5 = (1, 1), v6 = (2, 0), · · · , vbk = (k, 0).

The adjacency matrix Ak of Dk relative to the valuation v is the k̂ × k̂ matrix defined by

Ak(i, j) =
{

v(vi, vj) if (vi, vj) is an edge of Dk;
0 otherwise.

Applying the transfer-matrix method (see e.g. [9, Theorem 4.7.2]), we obtain

Qk(a; t) =
(−1)1+bk det(I − aAk; k̂, 1)

det(I − aAk)
, (14)

where (B; i, j) denotes the matrix obtained by removing the i-th row and j-th column of B and I is the
k̂ × k̂ identity matrix.

In order to prove Theorem 1.9 it suffices to evaluate the following specializations of (14):

fk(a;x, y, t, u) = Qk(a;x, x, x, y, t, u, y), (15)
gk(a; z, t, u) = Qk(a; 1, z, 1, z, t, u, 1). (16)

Let A′k and A′′k be the adjacency matrix of Dk relative to the weight function v′ and v′′ obtained from
the weight function v by making the substitution (15) and (16), respectively. Namely, the weights v′(e) and
v′′(e) of an edge e = ((i, j), (i′, j′)) of Dk with initial vertex (i, j) are :

v′(e) =
{
xi yj [i+ j + 1]t,u if (i′, j′) = (i, j + 1) or (i+ 1, j) ;
xi [j]x,y if (i′, j′) = (i, j) or (i+ 1, j − 1),

and

v′′(e) =
{

[i+ j + 1]t,u if (i′, j′) = (i, j + 1) or (i+ 1, j) ;
zi[j]z if (i′, j′) = (i, j) or (i+ 1, j − 1).

Now, for each k ≥ 0 let
Mk = I − aA′k and Nk = I − aA′′k .

Then by (14), (15) and (16) we have

fk(a;x, y, t, u) =
(−1)1+bk det(Mk; k̂, 1)

detMk
, (17)

gk(a; z, t, u) =
(−1)1+bk det(Nk; k̂, 1)

detNk
(18)
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for each k ≥ 1.
Since Mn and Nn are upper triangular matrices it is easy to see that for each n ≥ 1

detMn =
n∏

m=1

m∏
i=0

(1− axi[m− i]x,y), (19)

detNn =
n∏

m=1

n−m∏
k=0

(1− azk[m]q). (20)

The evaluation of det(Mn; n̂, 1) and det(Nn; n̂, 1) is highly non trivial.

Theorem 2.6 Let n ≥ 1 be a positive integer. Then

det(Mn; n̂, 1) = (−1)(
n
2)anx(

n
2)[n]t,u!

n−1∏
m=1

m∏
i=1

(1− axi[m− i+ 1]x,y), (21)

Theorem 2.7 Let n ≥ 1 be a positive integer. Then

det(Nn; n̂, 1) = (−1)(
n
2)an [n]t,u!

n−1∏
m=1

n−m∏
k=1

(1− azk−1[m]z). (22)

It is now trivial to obtain the following result.

Corollary 2.8 For k ≥ 0, we have

fk(a;x, y, t, u) =
akx(

k
2)[k]t,u!∏k

i=1(1− a[i]x,y)
, (23)

gk(a; z, t, u) =
ak [k]t,u!∏k

i=1(1− azk−i[i]z)
. (24)

Finally Theorem 1.9 follows immediately from Corollary 2.8 and the following lemma.

Lemma 2.9 The following identities hold:

φk(a;x, y, t, u) = fk(a;x, y, xyt, uy2), (25)

ϕk(a; z, t, u) = gk(azk−1; 1/z, t, u/z). (26)

Therefore in order to prove Theorem 1.9 it remains to prove Theorems 2.6 and 2.7.

3 Determinantal computations
3.1 Proof of Theorem 2.6
The matrix Mn can be defined recursively by

M0 = (1) and Mn =

 Mn−1 Mn−1

O
n+1,n̂−1

M̂n−1

 for n ≥ 1, (27)

where M̂n−1 is the (n+ 1)× (n+ 1) matrix

M̂n−1 =
(
δij − axi−1[n+ 1− i]x,y(δij + δi+1,j)

)
1≤i,j≤n+1

(28)

and Mn−1 is the n̂− 1× (n+ 1) matrix

Mn−1 =

 O
n̂−2,n+1

M̌n−1


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with the n× (n+ 1) matrix

M̌n−1 =
(
−axi−1yn−i[n]t,u(δij + δi+1,j)

)
1≤i≤n, 1≤j≤n+1

. (29)

Here δij stands for the Kronecker delta and Om,n denotes the m× n zero matrix. Let

Kn = n̂− 1 =
n(n+ 3)

2
,

and let Pn = (Mn; n̂, 1), i.e the Kn × Kn matrix obtained from Mn by deleting the n̂th row and the first
column. The problem is to compute detPn for n ≥ 1. The matrix Pn can also be defined recursively:

Pn =

 Pn−1 Pn−1

Xn−1 P̂n−1


Here Pn−1 is a Kn−1× (n+1) matrix, Xn−1 is a (n+1)×Kn−1 matrix, and P̂n−1 is a (n+1)× (n+1)
matrix. The idea here is to use the following well-known formula for any block matrix with an invertible
square matrix A,

det

 A B

C D

 = detA · det
(
D − CA−1B

)
.

Since the entries of CA−1B are also written by minors, we guess these entries and prove it by induction.

3.2 Proof of Theorem 2.7
Let F = {Fn}∞n=1 be a sequence of non-zero functions in finitely many variables v1, v2, . . . . We use the
convention that Fn! =

∏n
k=1 Fk and

[n
k

]
F

=

{
Fn!

Fk!Fn−k! , if 0 ≤ k ≤ n,

0, otherwise.

We prove Theorem 2.7 (22) by considering the following matrix Nn(x, a), which generalize the matrix Nn

(set x = 1 and Fn = [n]t,u to obtain Nn). Let Nn(x, a) be the matrix defined inductively by:

N0(x, a) = (x)

and

Nn(x, a) =

 Nn−1(x, a) Nn−1(x, a)

O
n+1,n̂−1

N̂n−1(x, a)

 (30)

where N̂n−1(x, a) is the (n+ 1)× (n+ 1) matrix defined by

N̂n−1(x, a) =
(
xδij − aqi−1[n+ 1− i]q(δij + δi+1,j)

)
1≤i,j≤n+1

(31)

and Nn−1(x, a) is the n̂− 1× (n+ 1) matrix O
n̂−2,n+1

Ňn−1


with the n× (n+ 1) matrix

Ňn−1 = (−aFn · (δij + δi+1,j))1≤i≤n, 1≤j≤n+1 . (32)

Let Ṅn(x, a) denote the matrix obtained from Nn(x, a) by deleting the n̂th row and the first column.
Then the following theorem is sufficient to prove our result.
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Theorem 3.1 We have

det Ṅn(x, a) = (−1)
n(n−1)

2 an Fn!xn
n−1∏
m=1

n−m∏
k=1

(
x− aqk−1[m]q

)
. (33)

Setting x = 1 and Fn = [n]t,u we obtain Theorem 2.7.

Here our strategy is as follows. We regard detNn(x, a) as a polynomial in x and find all linear factors.
Finally we check the leading coefficient in the both sides.
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