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An ordered partition of [n] := {1,2,...,n} is a sequence of disjoint and nonempty subsets, called blocks, whose
union is [n]. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix
method. In particular, we prove several conjectures of Steingrimsson, which assert that the generating function of some
statistics of ordered partitions give rise to a natural g-analogue of k!S(n, k), where S(n, k) is the Stirling number of
the second kind.
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1 Introduction
1.1 Background

Definition 1.1 A partition 7 of [n] = {1,2,...,n} is a collection of disjoint and nonempty subsets, called
blocks, whose union is [n). By convention, we write Ty = By — By — - -+ — By, where the blocks B; are
arranged in increasing order of their minimal elements and within each block the elements are arranged in
increasing order.

For instance, mp = 1 — 246 — 35 — 78 is a partition of [8] with 4 blocks.
Let PF be the set of partitions of [n] with k blocks. In the present paper we study statistics on ordered
partitions, that is, partitions where the blocks are ordered arbitrarily.

Definition 1.2 An ordered partition 7 of [n] with k blocks is just a rearrangement of blocks of a partition
in PX, that is there exist 1y = By — By — --- — By, € P¥ and o a permutation of [k] such that 7 =
By1) = By(2) — -+ — Bo(k). We will say that o is the permutation induced by 7 and set o = perm/(r).

For instance, 7 = 35 — 246 — 1 — 78 is an ordered partition of [8] with 4 blocks and we have perm(w) =
3214.Let (97351 be the set of ordered partitions of [n] into k blocks. It is well known that the cardinality of
PF is the Stirling number of the second kind S(n, k). It follows that k!S(n, k) counts the ordered partitions
of [n] with & blocks.
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Let 0 = 0(1)0(2)...0(n) be a permutation of [n], the integer ¢ € [n — 1] is called a descent of o if
o (i) > o(i+1). The Eulerian number A(n, k) counts permutations of [n] with k descents. There is a basic
identity relating the S(n, k)’s and the A(n, k)’s, namely

kIS (n, k) = Xk: (’;_7:) <m”_ 1>, )

m=1

which is easily proved combinatorially (for instance, see [10] ).
In the present paper we will study some statistics originated from a g-analogue of (I) by means of the
g-Eulerian numbers and ¢-Stirling numbers of the second kind, which were introduced by Carlitz [1} 2]. We

need more definitions and notations.
o gn

Define the p, g-integer [n],, = E=1-, the p, g-factorial [n], ;! = [1]54[2]p,¢ - - [7]p,q and the p,g-
binomial coefficients ], !
n Nip,q-
= n>k>0.
[k} p,q [Klp,q!ln — Klp,q!

If p = 1, we shall write [n],, [n],! and [}] , for [n]1,4, [n]1,q! and [}] 1.4 Tespectively.
The g-Eulerian numbers A,(n, k) (n > k > 0) are defined by /

Aq(nJc):qk[n—k‘}q<2_i>q+[k+1]q<n;1>q.

Let o be a permutation of [r], define the statistic maj o = ), ¢ where the summation is over all descents

of 0. Then .
Aq(n, k) _ quaj 07

where the summation is over all permutations of [r] with k descents.
The ¢-Stirling numbers .S, (n, k) of the second kind are defined by:

Sy(n, k) =¢"1S,(n—1,k—1) + [k];S;(n—1,k)  (n>k>0), )

where Sy(n, k) = 0ppif n =0o0rk = 0.
A g-analogue of @) has been found in [[15] as follows:

k —my | —m n

m=1

There has been a considerable amount of recent interest in properties and combinatorial interpretations of
the ¢-Stirling numbers and related numbers (see e.g. [[1, 12} 14} 1516, [7, 18 110, [11} 12} [13]]). In the aim to give
a combinatorial proof of (3)), Steingrimsson [[10] introduced the following definition.

Definition 1.3 A statistic Stat on (9772 is called Euler-Mahonian if its generating function is equal to
[k]41Sq(n, k), i.e.,

Z qStat‘n' = [klg! Sq(n, k).

TEOPE

Steingrimsson [[L0] has found a few of Euler-Mahonian statistics and has introduced new statistics on or-
dered partitions. Moreover, he has conjectured that all these new statistics are Euler-Mahonian. Wachs [[11]]
has also obtained some Euler-Mahonian statistics on ordered partitions.

1.2 Definitions

Given a partition 7 in OPﬁ, the elements of [n] are divided into four classes:
e singletons: elements of the singleton blocks;
e openers: smallest elements of the non singleton blocks;
e closers: largest elements of the non singleton blocks;

e transients: all other elements, i.e., non extremal elements of non singleton blocks.
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The sets of openers, closers, singletons and transients of 7 will be denoted by O(x), C(w), S(w) and
T (), respectively. The 4-tuple (O(r),C(w),S(w), T (m)) is called the type of m. For instance, if 7 =
35—246 —1— 78, then

O(n) ={2,3,7}, C(m)=1{5,6,8}, S(m)={1} and 7 (7)={4}.

Definition 1.4 Let o be a permutation of [n); the pair (i, j) is an inversion if 1 < i < j < n and (i) >
o(j). Let inv o be the number of inversions in 0. We also define the number of inversions of an ordered
partition m, inv 7, by inv m = inv(perm(n)). For a partition 7 in OP*, we also set cinv 7 = (;) —invm.

Letm™ = By — By — - - - — By, be a partition in OPfL. We define a partial order on blocks B;’s as follows :
B; > Bj if all the letters of B; are greater than those of B;; in other words, if the opener of B; is greater
than the closer of B;.

Definition 1.5 A block inversion in 7 is a pair (i, j) such that i < j and B; > B;. We denote by bInvr
the number of block inversions in w. We also set cbInv = (g) — blnv.

Let w; be the index of the block (counting from the left) containing ¢, namely the integer j such that
1 € B;. Following Steingrimsson [10]], we define for 1 < 7 < n ten coordinate statistics on ™ € OPZ:

rosi(m) = #{j e (OUS)(n)|j<i, wj>w},
robi(m) = #{j € (OUS)(m)[j>1i, w; >wi},
resi(m) = #{je(CUS)(n)|j<i, w;>w},
rebi(m) = #{j € (CUS)(7)|j > i, w; > w;},
losi(m) = #{j € (OUS)(7)]|j<i, wj <w;},
lobi(m) = #{je (QUS)(n)|j>1i, wj <w},
lesi(m) = #{je(CUS)(n)|j<i, wj <w},
Iebi(m) = #{je(CUS)(m)|j>1i, w; <w},

where (OUS)(7) = O(7) US(w), and let rsb; () (resp. 1sb; (7)) be the number of blocks in 7 to the right
(resp. left) of the block containing ¢ such that the opener of B is smaller than 7 and the closer of B is greater
than 7. Then define ros, rob, rcs, rcb, lob, los, Ics, Icb, Isb and rsb as the sum of their coordinate statistics,

e.g.
ros = E ros;.

i

Remark 1.6 Note that ros is the abbreviation of “right, opener, smaller”, while 1sb is the abbreviation of
left, closer, bigger”, etc.

More generally, if stat is one of the above ten statistics, we define stat(O U S) by

stat(OUS)(m) = Y stat;(m).

i€(OUS) ()

In the same way, we define stat(7 UC), stat(CUS), etc. The following results illustrate the above notions.

Proposition 1.7 The following functional identities hold on OPk:

bInv =rcs(OUS), inv=ros(OUS) and cinv=1os(OUS). 4
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For instance, we give the values of the coordinate statistics computed on the partition 7 = 6 8 — 5 —
147-39-2:

T= 68 — 5 — 147 — 39 — 2
losi: 00 — 0 — 002 — 13 — 1
ros;: 44 — 3 — 022 — 11 — 0
lob;: 00 — 1 — 220 — 20 — 3
rob;: 00 — 0 — 200 — 00 — O
les;: 00 — 0 — 001 — 03 — O
resj: 23 — 1 — 011 — 11 — O
Iech;: 00 — 1 — 221 — 30 — 4
rchy: 21 — 2 — 211 — 00 — O
Ish;: 00 — 0 — 001 — 10 — 1
rsh;: 21 - 2 — 011 — 00 — O

Since {6,8} > {5}, {6,8} > {2}, {5} > {2} and {3,9} > {2}, we have bInv7 = 4 and cblnvr =
(5) — 4 = 6. Moreover, perm(r) = 54132, thus inv(7) = 8 and cinv(r) = (}) — 8 = 2.

Inspired by the statistic mak on the permutations due to Foata & Zeilberger [3]] , Steingrimsson intro-
duced its analogous on (973]; as follows:

mak = ros+ lcs,

lmak = n(k—1) — [los + rcs],
mak’ = lob+ rch,
Imak’ = n(k— 1) — [lcb + rob].

The following proposition permits to reduce the conjecture 12 in [10] almost by half. This result was first
proved in [4].

Proposition 1.8 On (’)Pﬁ the following functional identities hold:
mak = lmak’ and mak’ = lmak.

Define also the statistic cinvLSB on OP* by
k
cinvLSB := Isb 4 cblnv + (2) . %)

1.3 Main resulis

Consider the following two generating functions of ordered partitions with k& > 0 blocks:

¢k: (a; z,y,t, U) s = E x(mak+b1nv)7r ycinVLSB T tinv ™ ucinv 7ra|71'\7 (6)
™€ OPk

O (CL; z,t, ’LL) - E Z(lmakerInv)w tinv ™ ucinv7r a\7r|, (7
m™€eOPk

where |7r| = n if 7 is a partition of [n]. The following Theorem is the main result of this paper.
Theorem 1.9 We have

k

0* () ) [k iz !

Pula; .y, b, u) = -, (8)
k 15, (1 — alilay)
ko5
or(a;z,t,u) = akz( ) [Kez.! )

[Ti=i (1 = alil-)
The above theorem infers results on Euler-Mahonian statistics on ordered partitions. Indeed, it follows
directly from (2)) that

> [K]g!Sy(n, k) a” G0N (10)

I N
n>k Hi:1(1 - a[z]q)
Then, by appropriate specializations in (6) and (7), we obtain the following result conjectured by Ste-
ingrimsson [10, conj.12 and 13].
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Theorem 1.10 The following statistics are Euler-Mahonian on OP?L:

mak + blnv, Ilmak + bInv, cinvLSB.

In other words, the generating functions of the above statistics over OPZ are all equal to [k]!S4(n, k).
Others specializations give rise to new Euler-Mahonian statistics.

Theorem 1.11 The following statistics are Euler-Mahonian on OPZ:
mak + bInv — (inv —cinv), lmak + bInv + (inv —cinv), cinvLSB + (inv —cinv).

Theorem provides also an alternative proof of the following combinatorial interpretations for g-
Stirling numbers of the second kind, where the first two interpretations were proved by Ksavrelof and
Zeng [4]] and the third interpretation was first proved by Stanton (see [12]).

Corollary 1.12
Sq(n, k) = Z qmakﬂ _ Z qlmakw _ Z qISbTrJr(g)'

nePk nePk nePk

Indeed, an (unordered) partition can be identified with an ordered partition without inversion, i.e.,
PF = {rm € OPF | inv m = 0}.

Since the statistic bInv vanishes on (unordered) partitions and the identity cinvLLSB = Isb + 2 (12‘) holds on
PF, it is then trivial to obtain Corollary

There are three main ingredients in the proof of Theorem [I.9} a bijection which maps ordered partitions
to walks on some digraphs, the transfer-matrix method which permits to compute the generating function
of walks using determinants, and the evaluation of determinants.

2 Ordered partitions and walks in digraphs

2.1 Encoding ordered partitions by walks

Let 7 = By — By — --- — By, in OPF and 7 an integer in [n]. The restriction B;(< i) := B; N [i] of the
block B; is said to be active if B; ¢ [i] and B; N [i] # 0, complete if B; C [i]. We define the restriction of
7 on [i], called the i-th trace of m, by

Ty(m) = By(< i) = Ba(< i) — - — Bu(< i),

with the empty restrictions being omitted. The sequence (T;(7))1<i<n is called the trace of the partition 7.
We denote by act; 7 and com; 7 the numbers of active blocks and complete blocks, respectively, in T ()
and set

wi(m) = (com;m, act;m) for 1<3i<n,

with wg(7) = (0,0). The sequence (w;(m))o<i<n is called the walk of the partition 7.
For instance, if 7 = {6} — {3,5,7} — {1,4,10} — {9} — {2, 8}, then Ts(w) = {6} — {3,5,--- } —{1,4,--- } —
{2,---}, where each active block ends with an ellipsis, and we get wg () = (1, 3).

Definition 2.1 Let D = (V, E) be the digraph on V = N? with edges set E defined by
E={(u,v) e V?|u=v=(,y)withy >0 or u—wv=/(0,1), (1,0), (1,—1)}.
Clearly there are four types of edges. An edge (u,v) of D is called:
e North ifv =u+(0,1);
e East ifv =u+(1,0);
e South-East if v = u + (1,—1);
e Null ifv = u.

For any integer k£ > 0, let Vi, = {(4,5) € V' |i+ j < k} and Dy, be the restriction of the digraph D on
Vi . An illustration of Dy, is given in Figure 1.
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Fig. 1: The digraph Dy,

Definition 2.2 A walk of depth k and length n in D is a sequence w = (vo,v1, . .., Uy ) of points in V such
that vy = (0,0), v, = (k,0) and (v;,vi11) is an edge of D fori = 0,...,n — 1. Moreover, the abscissa
and height of the step (v;,v;y1) are the abscissa and ordinate of v; respectively. Let Q¥ be the set of walks
of depth k and length n and QF be the set of walks of depth k in D.

The following result characterizes the walks of ordered partitions.
Proposition 2.3 Forn > k > 0, the walks of the partitions in (’)Pﬁ are exactly the walks in QF.

We need a refinement of the notion of walk.
Definition 2.4 A walk diagram of depth k and length n is a pair (w, &), where w = (vg v1 -+ v,) IS a
walk in QF and ¢ = (&)1<i<n Is a sequence of integers such that 1 < &; < q if the i-th step is (Null or

South-East) of height q, and 1 < &; < p+ q + 1 if the i-th step is (North or East) of abscissa p and height
q.

Denote by A the set of path diagrams of depth k and length n. The main ingredient of our proof is a
mapping from AF to OPfL which keeps track of several statistics of Steingrimsson.

Theorem 2.5 There exists a bijection 1) : AF — (’)PEL such that if h = (w, &) is in AF and if the i-th step
of w is of abscissa p and height q, and of type:

(i) Northor East : then, i € (O US)(y(h)),
(les + res);(w(h)) =q and (Isb +rsb)i(v(h)) = p,
losi(¥(h)) =& —1 and rosi(v(h))=p+q+1-¢&.

(ii) South-East or Null : then, i € (T UC)(¢(h)),
(Ies + res)i(¢p(h)) =p and (Isb +rsb)i(v(h)) =q—1,
Isbi(¢(h)) =& —1 and 1sbi(y(h)) =q—¢&

2.2 Generating functions of walks
For0 <k <mn,lett= (tl, to,13,t4,15, 6, t7) and
Qn,k(t) I Z tglCSJrrCS)(OUS)W t(21cs+rcs)(TUC)ﬂ' t;sb(TUC)ﬂ (11)
TEOPE

Isb(7UC)m ,ros(OUS)m ,los(OUS) 7 ,(Isb+rsb)(OUS)w
x : th 4 :
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Given a walk w, define the weight v(w) of w to be the product of the weights of all its steps, where the
weight of a step of abscissa ¢ and height j is:

12)

ti 42 [i + 4 14,4,  if the step is North or East;
t5 [5)ts 4 if the step is Null or South-East.

It follows easily from Theorem 2.3 that

Z v(w) = Qni(t) .

weNk

Denote by |w| the length of the walk w. Then, using the above identity, we get

Qr(a;t) == Z Qni(t)a™ = Z v(w)al! . (13)

n>0 weNk
It is obvious that the number of vertices of Dy, is equal to

Er=1+2+-~-+(k+1):w_

Let vy, - , v be the vertices of Dy, arranged according to the following order: (i, ) < (i’,j') if and only
ifi+j<i+jor@GE+j =447 andj > j'). For instance, we get v; = (0,0), va = (0,1), v3 =
(1,0), v4 = (0,2), vs = (1,1), v6 = (2,0),--- , vz = (k,0).

The adjacency matrix Ay, of Dy, relative to the valuation v is the % x k matrix defined by

. v(vi,v)  if (v5,v4) is an edge of Dy;
Ax(i:J) = { 0 otherwise.

Applying the transfer-matrix method (see e.g. [9, Theorem 4.7.2]), we obtain

(=) det(I — aAy; &, 1)
det(I — aAk) ’

Qu(a;t) = (14)
where (B;1,7) denotes the matrix obtained by removing the i-th row and j-th column of B and I is the
k x k identity matrix.

In order to prove Theorem[T.9]it suffices to evaluate the following specializations of (T4):

fela;z,y,t,u) = Qrla;x, x,2,y,t,u,y), 15)
gk(a; z,t,u) = Qra; 1, 2,1, 2, t,u, 1). (16)

Let A}, and A} be the adjacency matrix of Dj, relative to the weight function v/ and v”’ obtained from
the weight function v by making the substitution (T3) and (T6)), respectively. Namely, the weights v/(e) and
v"(e) of an edge e = ((4, 7), (¢',4")) of Dy with initial vertex (¢, j) are :

~

v = { I 105 = 63k Dori 1)
z* [flay if (i, ") = (i,j) or (i + 1,5 — 1),
and
Viey= { T e (0, 5) = (5,5 + 1) or (i +1,7) 5
2'[j]= if (¢',j') = (i,4) or (i + 1,5 — 1).
Now, for each k& > 0 let
My =1—aA) and Ny=1—aAj.

Then by (T4), (T3) and (T6) we have

(—1)"+F det (Mj,; &, 1)
det Mk
(—1)1* det(Ny; &, 1)
det Nk

fk(a;xay,tvu) = (17)

gk(a;zvtau) = (18)
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foreach k > 1.
Since M,, and N,, are upper triangular matrices it is easy to see that for each n > 1

n m
det Mn = H H(l - axi[m - Z]»L,y)v
m=1i=0

n n—m

det Ny = [ [ (0 = az¥mly).

m=1 k=0

The evaluation of det(M,,; 1, 1) and det(V,,; 7, 1) is highly non trivial.

Theorem 2.6 Let n > 1 be a positive integer. Then

n—1 m
det(Mn; 7, 1) = (—1) B anz G [n], ! []Q - azim —i+1].,),
m=1i=1
Theorem 2.7 Let n > 1 be a positive integer. Then
n—1n—m
det(Ny;7,1) = (~1)Ea [n)u! TT T (1 - a2 mls).
m=1 k=1

It is now trivial to obtain the following result.
Corollary 2.8 For k > 0, we have
k() [k,
a®x u!
frla;z,y,tu) = — L

ITiei (1 = afdle.y)

k k]!
gk(a;z,t,u): . a []t,u

[Timy (1 —az"7[i]2)
Finally Theorem [I.9]follows immediately from Corollary 2.8 and the following lemma.
Lemma 2.9 The following identities hold.:

¢k(a;x,y,t,u) = fk(a;x,y,xyt,qu),
vr(a; z,t,u) = gk(azkflg 1/z,t,u/z).

Therefore in order to prove Theorem [I.9]it remains to prove Theorems [2.6]and

3 Determinantal computations
3.1 Proof of Theorem([2.6

The matrix M, can be defined recursively by

My=(1) and M, = forn > 1,

where M,,_ is the (n+1) x (n+ 1) matrix

o~

M, = (51‘3‘ - QIFI[” +1- i]my(fsij + 5i+17j))1§i}j§n+1

and M,_, isthen — 1 x (n + 1) matrix

. ﬁ,nJrl
My_1=
M,

19)

(20)

2n

(22)

(23)

(24)

(25)

(26)

27

(28)
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with the n X (n + 1) matrix

M, 1= (—axi_lyn_i[“]t,u(‘sz’j + 5i+11j))1§i§n,1§j§n+l' (29)
Here 0;; stands for the Kronecker delta and O,,, ,, denotes the m X n zero matrix. Let

K,—f-1-""0F3)
2
and let P, = (M,;n,1), i.e the K,, x K,, matrix obtained from M,, by deleting the nith row and the first
column. The problem is to compute det P, for n > 1. The matrix P, can also be defined recursively:

Pn—l ‘ ?n—l
Po=\—"—
Xn—l ‘ Pn—l

Here P,,_1isaK,_1 x (n+ 1) matrix, X,,_1 isa (n + 1) x K,,_1 matrix, and ﬁn_l isa(n+1)x(n+1)
matrix. The idea here is to use the following well-known formula for any block matrix with an invertible
square matrix A,
A|B
det | ——— | =detA-det (D - CA™'B).
C|D

Since the entries of C A~! B are also written by minors, we guess these entries and prove it by induction.

3.2 Proof of Theorem

Let F = {F,}32, be a sequence of non-zero functions in finitely many variables vy, vs,.... We use the
convention that F,,! = [];_, F} and

{n} _ Fk!illl,k!’ it0 <k <mn,
F 0, otherwise.

We prove Theorem (22) by considering the following matrix IV, (z, a), which generalize the matrix N,,
(setz =1 and F,, = [n];, to obtain N,,). Let N,,(z, a) be the matrix defined inductively by:

No(z,a) = ()
and -
Np—1(z,a) ‘ N,_1(z,a)
Np(z,a) = - (30)
Opirimt | Namalz,a)

where N,,_1(z,a) is the (n + 1) x (n + 1) matrix defined by

~

No—1(z,a) = (265 — aq' ' n+ 1 —ilq(8ij + Sit1,5) )1§i,j§n+1 (3D
and N,,_1(z,a) is the n — 1 x (n + 1) matrix
Oﬁ—\2,n+1
Nya
with the n x (n + 1) matrix
Ny = (=aFy - (855 + 0iv15)) 1 <icm. I<j<nil " (32)

Let N,,(z,a) denote the matrix obtained from N,,(z,a) by deleting the 7ith row and the first column.
Then the following theorem is sufficient to prove our result.
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Theorem 3.1 We have

n—1n—m

det Nn(x,a) = (—1)%a" F 'z H H (a: — aqk_l[m]q) . (33)
m=1 k=1

Setting # = 1 and F,, = [n];., we obtain Theorem[2.7]

Here our strategy is as follows. We regard det N,,(z, a) as a polynomial in z and find all linear factors.
Finally we check the leading coefficient in the both sides.
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