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A coupon collector’s problem with bonuses
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In this article, we study a variant of the coupon collector’s problem introducing a notion of a bonus. Suppose that
there are c different types of coupons made up of bonus coupons and ordinary coupons, and that a collector gets every
coupon with probability 1/c each day. Moreover suppose that every time he gets a bonus coupon he immediately
obtains one more coupon. Under this setting, we consider the number of days he needs to collect in order to have
at least one of each type. We then give not only the expectation but also the exact distribution represented by a
gamma distribution. Moreover we investigate their limits as the Gumbel (double exponential) distribution and the
Gauss (normal) distribution.
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1 Introduction and results
1.1 The coupon collector’s problem
Discrete probability, which often appears in randomized algorithms, plays an important role in theoretical
computer science. The coupon collector’s problem is one of the most popular topics in discrete probability,
as it is simple and useful. There are a lot of standard probability/algorithm textbooks describing it. For
example see (8, p.48),(7, p.38),(15, p.55), (17, §2.4.1), (12, Problem 3.3.2), (18, §3.6), (21, p.12 Example
1.4f). The problem is the following:

The coupon collector’s problem (classical version): Suppose that there are c different types
of coupons, and that a collector gets every coupon with probability 1/c each day. What is the
number of days that he needs to collect in order to have at least one of each type?

For i = 1, · · · , c, let Xc
i be the number of waiting days until another new type has been obtained after i− 1

distinct types have been collected. We define Y c = Xc
1 + · · · + Xc

c , that is, Y c is the number of days the
collector needs to collect in order to have at least one of c types. The expected number of days collecting
all c coupons is well-known, that is,

E[Y c] =
c∑

i=1

E[Xc
i ] =

c∑
i=1

c

c− i + 1
= c

c∑
i=1

1
i
∼ c log c, (1)

where an ∼ bn denotes limn→∞
an

bn
= 1. In fact, {Xc

i }c
i=1 are geometrically distributed with parameter

(c − i + 1)/c respectively. Therefore since E[Xc
i ] = c

c−i+1 , we have Eq. (1). In addition to this, a closed
form of the exact distribution denoted by pc(n) = P (Y c = n) for n = 1, 2, · · · is known, that is,

pc(n) =
c−1∑
m=0

(
c− 1
m

)
(−1)m

(
1− m + 1

c

)n−1

=


c!
{

n−1
c−1

}
cn

, if n ≥ c,

0 if n < c,

(2)

where
{

n
k

}
is the Stirling number of the second kind (see (10; 22; 19)). Moreover some limit theorems are

also known. For example, Y c/c log c converges to 1 in probability (see (7, p.38, Example 5.3)), that is, for
an arbitrary η > 0 we have

lim
c→∞

P ((1− η)c log c ≤ Y c ≤ (1 + η)c log c) = 1. (3)
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More precisely, we note a sharp threshold theorem (see (7, p. 144), (18, Theorem 3.8)). Namely, for any
real number x we have

lim
c→∞

P (Y c ≤ c(log c + x)) = e−e−x

, (4)

lim
c→∞

P (Y c ≥ c(log c− x)) = 1− e−ex

. (5)

Eq. (5) is easily obtained by Eq. (4). The right hand side of Eq. (4) is said to be the Gumbel (double
exponential) distribution, which appears in extreme value theory (see (5; 13)). The result of Eqs. (4) and
(5) is almost like deterministic as a randomized algorithm since it so sharply identifies the threshold value
for collecting all coupons (see (18)).

1.1.1 Related topics:
More recently various applied researches concerning the problem are reported. Let us explain a small subset
of them. In combinatorial analysis Myers and Wilf (19) studied a variant of the classical coupon collector’s
problem using a combinatorial property of the Stirling number of the second kind. In computer science
Flajolet et al. (9) gave a unified study for the birthday paradox, the coupon collector’s problem, caching
algorithms, and self-organizing searches which are in the form of an integral representation. Martinez (16)
generalized their results focusing on a ratio limit theorem. Gardy (11) surveyed some problems including
the coupon collector’s problem as occupancy urn models from the viewpoint of computer science. There
are some other recent applications to computer science. For example, an application to a packet delivery
system as a randomized algorithm is described in (17, p. 34). M. Adler et al. (3) and Dimitrov, Plaxton
(6) studied load balancing in peer-to-peer networks using a structured coupon collector’s problem. I. Adler
et al. (1) studied a coalescing particle model which is applicable to population biology. They gave sharp
bounds for expected times and asymptotic results. Finally we point out a well-known fact that the coupon
collector’s problem is considered as a cover time of a random walk on a complete graph. For a cover time
on any graph there are diverse researches including graph theoretical issues (see (18, §6.5), (4, Chap. 6) and
references therein).

1.2 A coupon collector’s problem with bonuses
On the classical coupon collector’s problem, it seems reasonable to get all types of coupons as soon as
possible. Then, in this article, to get these coupons in a shorter time we give a variant of the coupon
collector’s problem by introducing a notion of a bonus. That means the following:

A coupon collector’s problem with bonuses (bonus version): Suppose that there are c coupons
made up of k bonus coupons and l = c − k ordinary coupons. Whenever a collector gets one
of the bonus coupons, he immediately collects one more coupon. In this setting, what is the
number of days that he needs to collect in order to have at least one of each type?

Every time the collector gets a bonus coupon, he immediately obtains a new coupon on the same day.
Consequently he may collect all k bonuses and one ordinary coupon in a day if he has a stretch of luck.
Let Y c,k be the number of days that he has to collect in order to have at least one of each of c types
of coupons including k bonuses. By definition, we see Y c,0 = Y c. We consider closed forms of the
expectation E[Y c,k], corresponding to Eq. (1), and the probability function pc,k(n) corresponding to Eq. (2)
respectively, where pc,k(n) = P (Y c,k = n). By definition, E[Y c,k] is smaller than E[Y c] for any k ≥ 1.
However it seems nontrivial to estimate the difference between E[Y c,k] and E[Y c].

Before illustrating the closed forms, we prepare a gamma random variable. Let Xn,l be a gamma random
variable with parameter (n, l), denoted by Xn,l ∼ Γ(n, l), if the probability density function is

l(lx)n−1

Γ(n)
e−lx for x > 0, (6)

where Γ(s) is the gamma function, that is, Γ(s) =
∫∞
0

e−xxs−1dx.

Theorem 1.1 (Exact distribution) For any integers k ≥ 0 and l ≥ 1, consider the coupon collector’s
problem with k bonuses and l ordinary coupons. Then the exact distribution is

P (Y k+l,k ≤ n) = E[(1− e−Xn,l)k]P (Y l ≤ n) for n ≥ 1, (7)
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where Xn,l is a gamma random variable with parameter (n, l). The probability function is

pk+l,k(n) =
k∑

i=0

l∑
j=0

(
k

i

)(
l

j

)
(−1)i+j+1 i + j

l + i

(
l − j

l + i

)n−1

for n ≥ 1. (8)

Remark 1.1 If l = 1, then the probability of Eq. (7) is

P (Y k+1,k ≤ n) = E[(1− e−Xn,1)k] = P (∆n > k) for n ≥ 1,

where ∆n is the inter-record time between the (n − 1)-th record and the n-th record appeared in extreme
value theory (see (20; 5; 13)).

Corollary 1.1 (Expectation) We have the following expectation of Y k+l,k:

E[Y k+l,k] = l

k+l∑
m=1

1
m

+
k

k + l
∼ l log(k + l). (9)

Remark 1.2 Eq. (9) means

E[Y k+l,k] =
l

k + l
· {(k + l)Hk+l}+

k

k + l
· 1. (10)

As a result, Eq. (10) says that E[Y k+l,k] is the dividing point whose ratio is k : l between E[Y k+l,0] =
(k + l)Hk+l (all k + l ordinary coupons) and E[Y k+0,k] = 1 (all k bonus coupons).

Next, we consider the concentration of Y k+l,k near E[Y k+l,k] ∼ l log(k + l) for large k and l. Before
observing asymptotic behaviors, we define the following growth rates:

(C1) For k ≥ 0 and l ≥ 1 we assume that there exist 0 ≤ α ≤ ∞ and 0 ≤ β ≤ ∞ (including∞) satisfying

α = lim
k+l→∞

k

l
, (11)

β = lim
k+l→∞

log k

l
, (12)

respectively. The notation k + l →∞ means that at least one of k and l must go to infinity.

Note that 0 ≤ β ≤ α ≤ ∞. Both of them do not be positive and finite. Moreover we see the following:

• If α, β = 0 then l →∞ but 0 ≤ k may be bounded.

• If α, β = ∞ then k →∞ but 1 ≤ l may be bounded.

Unless otherwise noted, we assume the existence of α and β in (C1) throughout the paper.

Proposition 1.1 (Law of Large Numbers) For any k ≥ 0 and l ≥ 1 we have

lim
k+l→∞

Y k+l,k

l log(k + l)
= 1 in probability. (13)

Remark 1.3 If k = 0, then Eq. (13) is equivalent to Eq. (3).

Before stating more precise results, we prepare some notations. Let N0,1 denote a standard Gauss (nor-
mal) random variable, that is, the density function φ and the distribution function Φ are

φ(x) =
1√
2π

e−
1
2 x2

, Φ(x) = P (N0,1 ≤ x) =
∫ x

−∞
φ(t)dt

respectively.

Theorem 1.2 (Limit distribution) The limit distributions of Y k+l,k for k ≥ 0 and l ≥ 1 are classified by
β which is defined by Eq. (12):
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1. If β = 0, then we have

lim
k+l→∞

P (Y k+l,k ≤ l {log(l + k) + x}) = e−e−x

. (14)

2. If 0 < β < ∞, then we have

lim
k+l→∞

P (Y k+l,k ≤ l {log(l + k) + x}) = E
[
exp

{
−e−x−N0,1

√
β
}]

=
1√
2π

∫ ∞

−∞
exp

{
−e−x−y

√
β − 1

2
y2

}
dy.

3. If β = ∞, then a central limit theorem holds. Namely, for any real number x we have

lim
k+l→∞

P
(
Y k+l,k ≤ l log(k + l) + x

√
l log(k + l)

)
= Φ(x). (15)

Remark 1.4 1. If k = 0 then Eq. (14) is equivalent to Eq. (4).

2. Put F (x) = E
[
exp

{
−e−x−N0,1

√
β
}]

. Then we see that F is a distribution function by the Lebesgue
bounded convergence theorem.

Corollary 1.2 Suppose that α does not exist. Namely, α < α holds, where α = lim supk+l→∞
k
l and

α = lim infk+l→∞
k
l . Then we have the following:

• If α < α < ∞, Eq. (14) holds.

• If α < ∞ and α = ∞, we have the following:

– If β = 0, then Eq. (14) holds.

– If β > 0, then any limit distribution does not exist.

Corollary 1.2 is immediately obtained, because of considering adequate subsequences in Theorem 1.2 for
α and α respectively. In a similar fashion, if the limit β does not exist, then any limit distribution does not
exist.

2 Proof of the exact distribution (Theorem 1.1)
First, we state a key lemma.

Lemma 2.1 Under the assumption of Theorem 1.1, we have

P (Y k+l,k ≤ n) =
k∑

m=0

(
k

m

)
(−1)m

(
l

l + m

)n

P (Y l ≤ n). (16)

Proof: We define the following events:

• Let Ei be the event that the bonus coupon i does not be collected for i ∈ {1, · · · , k} by the n-th day.

• Let F be the event that all l types of ordinary coupons are collected by the n-th day.

Then we have

{Y k+l,k ≤ n} =
k⋂

i=1

Ec
i ∩ F.

Moreover since
⋂k

i=1 Ec
i and F are independent, we obtain

P (Y k+l,k ≤ n) = P

(
k⋂

i=1

Ec
i

)
P (F ) =

(
1− P

(
k⋃

i=1

Ei

))
P (Y l ≤ n). (17)
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By the principle of inclusion-exclusion, it turns out

P

(
k⋃

i=1

Ei

)
=

k∑
m=1

(
k

m

)
(−1)m−1P (Ei1 ∩ Ei2 ∩ · · · ∩ Eim). (18)

Now, if we could show

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eim) =
(

l

m + l

)n

(19)

for any 1 ≤ i1 < i2 < · · · < im ≤ k, then Eq. (16) holds by Eqs. (17) and (18). Hence we check Eq. (19).
For n and i1, · · · , im, let Gt be an event that any bonus coupon i1, · · · , im does not appear on the t-th day.
Then we see that P (Gt) = l

m+l , because any one of ordinary l coupons is collected earlier than bonus
coupons i1, · · · , im. Since {Gt}n

t=1 are independent,

P (Ei1 ∩ Ei2 ∩ · · · ∩ Eim) = P

(
n⋂

t=1

Gt

)
=

n∏
t=1

P (Gt) =
(

l

m + l

)n

.

2

Proof of Theorem 1.1: First, to check Eq. (7), we claim

E
[
(1− e−Xn,l)k

]
=

k∑
m=0

(
k

m

)
(−1)m

(
l

m + l

)n

. (20)

In fact, by Eq. (6) we see

E
[
(1− e−Xn,l)k

]
=
∫ ∞

0

l · (lx)n−1e−lx

Γ(n)
(1− e−x)kdx

=
∫ ∞

0

l · (lx)n−1e−lx

Γ(n)

k∑
m=0

(
k

m

)
(−1)me−mxdx =

k∑
m=0

(
k

m

)
(−1)m

(
l

m + l

)n

.

Combining Eqs. (16) and (20) we have Eq. (7).
Next, to check Eq. (8), we review the distribution of the classical coupon collector’s problem. Namely,

for n ≥ c, we have

P (Y c ≤ n) =
c∑

m=0

(
c

m

)
(−1)m

(
1− m

c

)n

(see (8, IV.2 (2.3)), (10, p.80) and (22, p.157)). Using Eq. (16), we have

P (Y k+l,k ≤ n) =
k∑

i=0

l∑
j=0

(
k

i

)(
l

j

)
(−1)i+j

(
l − j

l + i

)n

. (21)

Hence we obtain Eq. (8). 2

Proof of Corollary 1.1: Since P (Y k+l,k ≥ 0) = 1, by Eq. (21) we see

E[Y k+l,k] =
∞∑

n=0

P (Y k+l,k > n) =
∞∑

n=0

∑
(i,j) 6=(0,0)

(
k

i

)(
l

j

)
(−1)i+j+1

(
l − j

l + i

)n

,

where the summation of the last term is in

{(i, j) : 0 ≤ i ≤ k, 0 ≤ j ≤ l} \ {(0, 0)}.
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Therefore we have

E[Y k+l,k] =
∑

(i,j) 6=(0,0)

(
k

i

)(
l

j

)
(−1)i+j+1 l + i

i + j
=

k+l∑
m=1

k∑
i=0

(
k

i

)(
l

m− i

)
(−1)m+1 l + i

m

=
k+l∑
m=1

l

m

k∑
i=0

(
k

i

)(
l

m− i

)
(−1)m+1 +

k+l∑
m=1

1
m

k∑
i=0

i

(
k

i

)(
l

m− i

)
(−1)m+1

(∗)
=

k+l∑
m=1

l

m
(−1)m+1

(
k + l

m

)
+

k+l∑
m=1

k

(
k − 1 + l

m− 1

)
(−1)m+1 1

m

= l

k+l∑
m=1

(
k + l

m

)
(−1)m+1 1

m
+ k

k+l−1∑
i=0

(
k − 1 + l

i

)
(−1)i 1

i + 1
.

To check the equality of (∗), we used

k∑
i=0

(
k

i

)(
l

m− i

)
=
(

k + l

m

)
and

k∑
i=0

i

(
k

i

)(
l

m− i

)
=

k−1∑
j=0

k

(
k − 1

j

)(
l

m− 1− j

)
= k

(
k − 1 + l

m− 1

)
(see (8, II.12 (12.9))). It is known that

n∑
m=1

(
n

m

)
(−1)m+1 1

m
= Hn,

n∑
i=0

(
n

i

)
(−1)i 1

i + 1
=

1
n + 1

(see (8, II.12 (12.19))). Thus we obtain

E[Y k+l,k] = lHk+l +
k

k + l
.

Hence we have Eq. (9). 2

3 Proof of limit distributions
To prove Proposition 1.1 and Theorem 1.2, we prepare three lemmas. First, we approximately put the
expectation with respect to a gamma distribution into the expectation with respect to the Gauss distribution.

Lemma 3.1 ((20, Lemma 1)) For any ε > 0, there exist a real number a > 0 and an integer n0 > 0 such
that for n ≥ n0, k ≥ 0 and l ≥ 1∣∣∣∣E[(1− e−Xn,l)k]− E

[(
1− e−

n
l −N0,1

√
n
l2

)k

1{−a≤N0,1≤a}

]∣∣∣∣ < ε, (22)

where 1A denotes the indicator function, that is, 1A(ω) =
{

1, if ω ∈ A
0, otherwise.

Proof: The proof is essentially due to (20, Lemma 1). Actually, if l = 1 then it is exactly the same
statement. The detail of the proof is omitted. 2

Using Lemma 3.1, we can prove Proposition 1.1. However the proof is also omitted. Next, we consider
P (Y k+l,k ≤ n) by estimating P (Y l ≤ n) and E[(1− e−Xn,l)k] in virtue of Eq. (7).

Lemma 3.2 For k ≥ 0, l ≥ 1 and any real x, we have

lim
k+l→∞

P (Y l ≤ l(log(l + k) + x)) =

{
e−

e−x

1+α , if 0 ≤ α < ∞,
1, if α = ∞.

(23)

Proof: Note that

P (Y l ≤ l(log(l + k) + x)) = P

(
Y l ≤ l

{
log l + x + log

(
1 +

k

l

)})
.
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By Eqs. (4) and (11), we obtain

lim
k+l→∞

P (Y l ≤ l(log(l + k) + x)) = e−e−x−log(1+α)
= e−

e−x

1+α

if α < ∞. In the case of α = ∞, we see

lim
k+l→∞

P (Y l ≤ l(log(l + k) + x)) = lim
k+l→+∞

e−e−C(k,l,x)
= 1,

where C(k, l, x) denotes some sequence satisfying limk+l→∞ C(k, l, x) = ∞. 2

By Lemma 3.1, we should estimate E[(1− e−
n
l −N0,1

√
n
l2 )k] instead of E[(1− e−Xn,l)k].

Lemma 3.3 For k ≥ 0, l ≥ 1 and any real x, put n = n(k, l, x) = l(log(l+k)+x). Then E[(1−e−Xn,l)k]
has the following limit:

• If α < ∞, then we have

lim
k+l→∞

E[(1− e−Xn,l)k] = e−
αe−x

α+1 . (24)

• If α = ∞, then two claims follow.

– If β = 0, then we have

lim
k+l→∞

E[(1− e−Xn,l)k] = e−e−x

. (25)

– If 0 < β < ∞, then we have

lim
k+l→∞

E[(1− e−Xn,l)k] = E
[
exp

{
−e−x−N0,1

√
β
}]

=
1√
2π

∫ ∞

−∞
exp

{
−e−x−y

√
β− 1

2 y2
}

dy. (26)

Proof: By Lemma 3.1, we consider E[(1 − e−
n
l −N0,1

√
n
l2 )k] instead of E[(1 − e−Xn,l)k]. Letting y be a

realization of N0,1, we deal with the integrand in the expectation, that is,

(1− e−
n
l −y

√
n
l2 )k =

(
1− e−x

k + l
e−y

q
log(k+l)+x

l

)k

. (27)

Then we have the following claims:

• The case of α < ∞:
Since limk+l→∞ k/l = α < ∞, we deduce

lim
k+l→∞

√
log(k + l) + x

l
= 0. (28)

We see k ∼ αl if l is sufficiently large. By Eq. (28) we obtain

lim
k+l→∞

(1− e−
n
l −y

√
n
l2 )k = lim

l→∞

(
1− e−x

(α + 1)l

)αl

= e−
αe−x

α+1 .

Therefore by the Lebesgue bounded convergence theorem, we conclude

lim
k+l→∞

E[(1− e−Xn,l)k] = lim
k+l→∞

E[(1− e−
n
l −N0,1

√
n
l2 )k] = e−

αe−x

α+1 .

• The case of α = ∞:
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– If β = 0, then Eq. (28) also holds. In this case, there exists a sequence {cl} such that
liml→∞

log cl

l = 0, liml→∞ cl = ∞, and k = lcl. Therefore using Eq. (27) we obtain

lim
k+l→∞

(1− e−
n
l −y

√
n
l2 )k = lim

l→∞

(
1− e−x

(cl + 1)l

)cll

= e−e−x

.

Hence applying again the theorem, we conclude

lim
k+l→∞

E[(1− e−Xn,l)k] = lim
k+l→∞

E[(1− e−
n
l −N0,1

√
n
l2 )k] = e−e−x

.

– If 0 < β < ∞, that is log k ∼ βl, then the limit of Eq. (28) is not 0 but
√

β for any x. Therefore
the limit of Eq. (27) is exp

{
−e−x−y

√
β
}

. Hence applying again the theorem, we have

lim
k+l→∞

E[(1− e−Xn,l)k] = E
[
exp

{
−e−x−N0,1

√
β
}]

.

2

Remark 3.1 If α = ∞ and β = ∞, then we see that limk+l→∞E[(1 − e−Xn,l)k] is degenerate for
n = l(log(l + k) + x). Hence we use n = l log(l + k) + x

√
l log(l + k) in Item (iii) of Theorem 1.2.

Proof of Theorem 1.2. Using Eq. (7), we combine Lemmas 3.2 and 3.3.

• Item (i): Since β = 0, the case includes both α < ∞ and α = ∞.

– If α < ∞, then by Eqs. (23) and (24) we have

lim
k+l→∞

P (Y k+l,k ≤ l {log(l + k) + x}) = e−
αe−x

α+1 × e−
e−x

α+1 = e−e−x

.

– If α = ∞, then by Eqs. (23) and (25) we have

lim
k+l→∞

P (Y k+l,k ≤ l {log(l + k) + x}) = 1× e−e−x

.

• Item (ii): Since 0 < β < ∞, we see α = ∞. By Eqs. (23) and (26) we have

lim
k+l→∞

P (Y k+l,k ≤ l {log(l + k) + x}) = 1× E
[
exp

{
−e−x−N0,1

√
β
}]

.

• Item (iii): Since β = ∞, we see α = ∞ and l = o(log k). For k, l and any real x, put

n = n(k, l, x) = l log(k + l)− x
√

l log(k + l). (29)

By Eq. (7) and α = ∞ in Lemma 3.2, we have for n in Eq. (29)

lim
k+l→∞

P (Y k+l,k ≤ l log(k + l)− x
√

l log(k + l)) = lim
k+l→∞

E[(1− e−Xn,l)k].

Applying Lemma 3.1, we consider E

[(
1− e−

n
l −N0,1

√
n
l2

)k
]

instead of E[(1 − e−Xn,l)k] for a

sufficiently large n defined by Eq. (29). Hence for any ε > 0, we have for sufficiently large numbers
a, k ∣∣∣∣∣P (Y k+l,k ≤ l log(k + l)− x

√
l log(k + l))−

∫ +a

−a

(
1− e−

n
l −y

√
n
l2

)k e−
y2

2

√
2π

dy

∣∣∣∣∣ < ε.

If we can show that

lim
k+l→∞

{1− e−n/l−y
√

n/l}k =
{

0, if x > y
1, if x < y

(30)
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for y ∈ (−a, a), then by the Lebesgue bounded convergence theorem we have

lim
k+l→∞

P (Y k+l,k ≤ l log(k + l)− x
√

l log(k + l)) =
1√
2π

∫ ∞

x

e−
y2

2 dy = 1− Φ(x).

Hence we conclude the desired result, namely Eq. (15). We check Eq. (30). To obtain Eq. (30), it is
sufficient to show

lim
k+l→∞

log{1− e−n/l−y
√

n/l}k = − lim
k+l→∞

exp
{
−n

l
− y

√
n

l
+ log k

}
=

{
−∞, if x > y
0, if x < y.

(31)

In fact, the limit of the exponential part of Eq. (31) is

lim
k+l→∞

{
−n

l
− y

√
n

l
+ log k

}

= lim
k+l→∞

log
k

k + l
+ x

√
log(k + l)

l
− y

√
log(k + l)

l
− x

√
log(k + l)

l3


(∗)
=

{
+∞, if x > y,
−∞, if x < y.

Since l = o(log k), we have

lim
k+l→∞

log(k + l)
l

= ∞.

Therefore the equality of (∗) holds. Hence Eq. (31) follows.

4 Conclusion
In this article, we study a random collecting time of a coupon collector’s problem with bonuses. We give
not only the expectation but also the exact distribution. As a result, the distribution function has a repre-
sentation that the effect of bonus coupons and the one of ordinary coupons are specifically separated (see
Eq. (7)). Moreover the limit distributions are classified by the growth order of the number of bonus coupons
compared to the one of ordinary coupons.

• If the growth order is smaller than the exponential order, then the limit distribution is Gumbel.

• If the growth order is greater than the exponential order, then the limit distribution is Gauss.

• If the growth order is exponential, then the limit distribution is mixed by the Gumbel distribution and
the Gauss distribution.

We will study the distribution more precisely by investigating the record-time appeared in extreme value
theory in our future works.
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