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Concentration Properties of Extremal
Parameters in Random Discrete Structures
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The purpose of this survey is to present recent results concerning concentration properties of extremal parameters of
random discrete structures. A main emphasis is placed on the height and maximum degree of several kinds of random
trees. We also provide exponential tail estimates for the height distribution of scale-free trees.
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1 Introduction
Concentration of distribution has always been a hot topic in probability theory. In fact, the law of large
numbers, the central limit theorem and the law of the iterated logarithm are very prominent examples of
the early times of probability theory where concentration occurs. However, even recently several books and
survey articles on concentration have been published, we just mention few of them (22; 44; 65; 67).

Usually concentration is easy to prove if the random variable of interest can be written as a sum of
(almost) independent random variables. However, if one is interested in extremal parameters the situation
gets much more involved.
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Of course, there is a counterpart to the central limit theorem, there are only 3 kinds of possible limiting
distribution of the maximum of n iid random variables X1, . . . , Xn, the most prominent is the so-called
extremal value distribution or Gumbel distribution (with distribution function F (x) = exp(−e−x)).(i) But
there are only very few cases where one can apply this theorem directly. Nevertheless, the Gumbel distribu-
tion appears in several applications, even if the random variables involved are neither identically distribution
nor independent.

The aim of this article is to survey some recent results and methods that have been developed to prove
concentration and distributional result of extremal parameters of random discrete structures. Of course, it is
impossible to present a complete picture. The subsequent choice of topics also reflects the author’s interest.
Nevertheless, we have tried to collect a representative sample of results and methods.

The first two problems, the chromatic number of random graphs and the travelling salesman problem,
can be seen as functionals of iid random variables, where one can use either Azuma’s inequality or Tala-
grand’s inequality to provide concentration results. The third example, the longest increasing subsequence
in random permutations is of special interest. First there is mysterious connection to random matrices and
second, the methods used are more analytic than probabilitic. The next two sections focus on two extremal
parameters of random graphs resp. of random trees, the diamter resp. the height and the maximum node
degree. We present two different classes of random graphs, the G(n, p)-model and a scale-free model that
follows the ideas of Barabasi and Albert. Finally, we have collected result on several kinds of random trees.
The advantage of random trees is that due to their recursive structure they are usually easy to describe from
a combinatorial point of view. The recursive structure is usually translated into recurrences (of different
types) for corresponding generating functions that can be – usually – handled analytically.

In a final section we also present a proof that the height of scale-free trees is highly concentrated, that
is, we provide exponential tail estimates. For example, this implies that the variance of the height stays
bounded.

One also observes that – usually – extremal parameters are concentrated. In our collection there are
only two parameters that are not concentrated, the height of Galton-Watson trees and the maximum degree
of scale-free trees. In both cases the mean value is of (rather large) order nα for some 0 < α < 1,
where n is the size of the discrete structure. Second, one observes that small extremal parameters are more
concentrated than large ones. For example, it seems that – usually – an extremal parameter of order log n
is highly concentrated (which means that the variance is bounded, compare with Section 2.3) Finally, there
is another strange phenomenon on the side of the proof techniques. In several cases it seems to be more
difficult to get asymptotics for the mean than to prove concentration. This is, for example, true if one
applies Azuma’s or Talagrand’s inequality. Further the concentration proof for the height of scale-free trees
(Section 8) does not provide an asymptotic expansion for the mean, either.

2 Types of Concentration
Concentration is usually not formally defined. For our purposes we say that a sequence of random variables
Xn is concentrated if there exists a sequence a(n) with a(n) →∞ (as n→∞) and with

lim
n→∞

P
{∣∣∣∣ Xn

a(n)
− 1
∣∣∣∣ ≥ ε

}
= 0 (1)

for all ε > 0. Equivalently one has Xn/a(n) d−→ δ1,(ii) where δ1 is the delta distribution concentrated at 1.
(Usually one uses the expected value EXn for the scaling sequence a(n) if it exists.)

In what follows we will observe different types of concentration. More precisely we will distinguish
between 3 different kinds and, of course, there is also the case of no concentration.

We will now always assume that EXn →∞ (as n→∞).

2.1 No Concentration
A sequence of random variables Xn is not concentrated if Xn/a(n) 6d−→ δ1 for all sequences a(n) with
a(n) → ∞. For example, if EX2

n ∼ c · (EXn)2 for some c > 1 then usually there is no concentration.
Typically one additionally has

Xn

EXn

d−→ Y, (2)

where Y is a random variable with distribution different from δ1, see Figure 1.
(i) The two other types are the Fréchet type distributions and the Weibull type distributions.
(ii) We use the notation Xn

d−→ X for convergence in distribution resp. weak convergence.
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Fig. 1: No concentration
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Fig. 2: “Weak” concentration

2.2 “Weak” Concentration
We say that a sequence of random variablesXn is weakly concentrated if there are two sequences a(n), b(n)
with a(n) →∞ and b(n) →∞ but b(n) = o(a(n)) (as n→∞) such that for all ε > 0 there exists K > 0
with

lim sup
n→∞

P
{∣∣∣∣Xn − a(n)

b(n)

∣∣∣∣ ≥ K

}
≤ ε. (3)

Note that (3) implies (1). Typically one uses a(n) = EXn and b(n) = (VXn)1/2 if second moments exist.
For example, if EX2

n ∼ (EXn)2 and VXn → ∞ (as n → ∞) then we have weak concentration (in this
sense) by Chebyshev’s inequality. Typically one additionally has

Xn − EXn

(VXn)1/2

d−→ Y, (4)

where Y is a random variable with distribution different from δ1, see Figure 2. If Y is normally distributed
then we say that Xn satisfies a central limit theorem.

2.3 “Strong” Concentration
We call a sequence of random variables Xn strongly concentrated (instead of weakly) if (3) holds with
constant b(n) = 1. More precisely we assume that there exists a sequence a(n) with a(n) → ∞ (as
n→∞) such that for all ε > 0 there exists K > 0 with

lim sup
n→∞

P {|Xn − a(n)| ≥ K} ≤ ε. (5)

Note that (5) is implied if
E |Xn − EXn|d = O(1) (n→∞) (6)

for some d ≥ 1. If (6) holds for d = 2 then the variance stays bounded which is a quite frequent phe-
nomenon for several extremal parameters. Furthermore, one typically has

P{Xn ≤ k} = F (k −m(n)) + o(1) (7)



4 Michael Drmota

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40

x

Fig. 3: “Strong” concentration

for some continuous (distribution) function F (x) and some sequence m(n) that is close to the median of
Xn. Note that (7) is only valid for integral k. This means that F (x) (appropriately shifted) is a common
continuous envelope of the discrete distribution functions of Xn. Sometimes such a function F (x) is also
called travelling wave, compare with Figure 3. Of course, F (x) is not the limiting distribution of Xn (there
is usually no limit).

2.4 “Very Strong” Concentration
Condition (5) does not say that Xn−a(n) is bounded (with high probability). Nevertheless, there are cases
where Xn is asymptotically concentrated at finitely consecutive values:

P{m(n) ≤ Xn ≤ m(n) + L} = 1 + o(1). (8)

for some sequence m(n) with m(n) → ∞ (as n → ∞) and some integer L ≥ 0. Here we say that Xn is
very strongly concentrated.

3 The Chromatic Number of Random Graphs
Let n be a positive integer and p a real number with 0 ≤ p ≤ 1. The random graph G(n, p) is a probability
space over the set of graphs on the vertex set {1, 2, . . . , n} determined by

P{(i, j) ∈ G} = p

for all possible
(
n
2

)
(undirected) edges (i, j) with 1 ≤ i < j ≤ n with these events mutually independent.

Similarly one also defines random graphs G(n,m), where m is also a given integer with 0 ≤ m ≤
(
n
2

)
.

Here one considers the set of all graphs on the set of vertices {1, 2, . . . , n} with exactly m (undirected)
edges and assumes that each of these graphs is equally likely. Due to the law of large numbers G(n,m)
will have very similar properties as G(n, p) with p = m/

(
n
2

)
.

The chromatic number χ(G) of a graph G is the smallest number k such that there exists a regular k-
coloring of the vertices of G, that is, a coloring of k colors of the vertices such that adjacent vertices have
different colors.

The chromatic number of random graphs was a intensively studied object in the last decades of the 20th
century. The next theorem collects some results of the expected size of χ(G(n, p)) if p = p(n) depends on
n is a certain way. The results are due to Bollobás (16; 17), Frieze (50), Grimmet and McDiarmid (54), and
McDiarmid (68). A more detailed discussion can be found in (56).

In this context we say that a property holds almost always if the probability of the exceptional set con-
verges to zero as n→∞.

Theorem 1

(i) If C0/n ≤ p = p(n) ≤ (log n)−7 (for a proper constant C0 > 0) then almost always

np

2 log(np)− 2 log log(np) + 1
≤ χ(G(n, p)) ≤ np

2 log(np)− 40 log log(np)
.
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(ii) If (log n)−2 ≤ p = p(n) ≤ c (for some arbitrary c < 1) then almost always

n

2 logb n− logb logb n
≤ χ(G(n, p)) ≤ n

logb n− 6 logb logb n
,

where b = 1/(1− p).

(iii) If p = p(n) > n−δ for every δ > 0 (and sufficiently large n) but p = p(n) ≤ c (for some arbitrary
c < 1) then almost always

χ(G(n, p)) =
n

2 logb n− 2 logb logb n+O(1/p)
.

Note that all of these bounds are rather crude although they provide asymptotic equivalence (in most cases).
They do not imply any concentration property. Nevertheless there is “very strong” concentration if p = p(n)
is sufficiently small. The following result is due to Łuczak (64) and Alon and Krivelevich (6).

Theorem 2 Fix some ε > 0. For every sequence p = p(n) there exists a function h(n) such that almost
always

(i) if p ≥ n−
1
2−ε then χ(G(n, p)) ∼ h(n), and

(ii) if p ≤ n−
1
2−ε then h(n) ≤ χ(G(n, p)) ≤ h(n) + 1.

The proof of these kinds of concentration properties relies basically on Azuma’s inequality. For example,
one can show Theorem 2.(ii) for p ≤ n−6/7 with this method (together with some tricky elementary argu-
ments). Alon and Krivelevich used a further ingredience, the Lóvasz Local Lemma, to sharpen this result
to p ≤ n−

1
2−ε.

In what follows we give some hints how one can use Azuma’s inequality to problems like the chromatic
number of random graphs. We recall that a martingale is a sequence of random variables Y0, Y1 . . . , Yn on
a probabilty space (Ω,F ,P) with E (Yk+1|Fk) = Yk, where F0 = {∅,Ω} ⊆ F1 ⊆ · · · ⊆ Fn = F is an
increasing sequence of σ-fields.

Theorem 3 (Azuma’s Inequality) Suppose that Y0, Y1 . . . , Yn is a martingale with constant Y0 and that

|Yk+1 − Yk| ≤ ck (9)

for some some constants ck (0 ≤ k < n). Then, for every t > 0,

P{|Yn − EYn| ≥ t} ≤ 2 exp
(
− t2

2
∑n

k=1 c
2
k

)
. (10)

A very useful application of Azuma’s inequality is the following property that is also called independent
bounded difference inequality (that is due to McDiarmid (67)).

Theorem 4 LetX1, . . . , Xn be independent random variables, withXk taking values in a set Ωk. Suppose
that a function f : Ω1 × · · · × Ωn → R satisfies the property that

|f(x1, . . . , xn)− f(y1, . . . , yn)| ≤ ck (11)

if (x1, . . . , xn) and (y1, . . . , yn) differ only at the k-th coordinate, that is xj = yj for j 6= k.
Then, the random variable Y = f(X1, . . . , Xn) satisfies, for any t ≥ 0,

P{|Y − EY | ≥ t} ≤ 2 exp
(
− t2

2
∑n

k=1 c
2
k

)
. (12)

Proof: Let Fk denote the σ-field generated y X1, . . . , Xk and consider the corresponding martingale de-
fined by Yk = E (f(X1, . . . , Xn)|Fk), k = 0, 1, . . . , n. Then it is easy to show that (11) implies (9). Thus,
Theorem 3 applies. 2

In the context or random graphs one frequently uses the vertex exposure martingale that is constructed
in the following way. Let Ak = {(j, k) : 1 ≤ j < k} the set of (undirected) edges of the complete
graph on vertex set {1, 2, . . . , n} that connect k with a vertex j < k and let Xk = (I[e∈G(n,p)] : e ∈ Ak)
denote the random vector of indicators of edges in Ak. Now let f be any graph theoretical function (for
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example, the chromatic number). Then Yk = E (f(G(n, p))|Fk), where Fk is the σ-field generated by
X1, . . . , Xk is a martingale, the so-called vertex exposure martingale. It can be interpreted as the conditional
expectation of f with partial information on the first k vertices and their internal edges. Here (11) says that
|f(H1) − f(H2)| ≤ ck if H1,H2 are subgraphs of the complete graph on the vertices {1, 2, . . . , n} such
that the symmetric difference of the edge sets of H1 and H2 is contained in Ak.

Let us illustrate this property with the chromatic number. Let H1,H2 be subgraphs of the complete
graph on the vertices {1, 2, . . . , n} with the property that the symmetric difference of the edge sets of H1

and H2 is contained in Ak. Let H denote the graph that corresponds to the intersetion of the edge sets of
H1 and H2. Then H and H1 resp. H and H2 differ (at most) by the vertex k and some edges that connect
k with vertices j < k. Since we can color the vertex k always with one additional color we surely have
χ(H) ≤ χ(H1) ≤ χ(H) + 1 and similarly χ(H) ≤ χ(H2) ≤ χ(H) + 1. Thus, |χ(H1)− χ(H2)| ≤ 1 and
we can use (11) with ck = 1. In particular, we immediately obtain the following concentration property
that is due to Shamir and Spencer (87).

Theorem 5 Let n, p arbitrary. Set c = E (χ(G(n, p))) Then

P{|χ(G(n, p))− c| > λ
√
n− 1} < 2 e−λ2/2.

Of course, this does not prove the concentration properties of Theorem 2.(ii). However, it provides a first
bound that is probably not too far from optimality if p is large.

4 Talagrand’s Inequality and the Travelling Salesman Problem
Let X = (X1, X2, . . . , Xn) be an n-tuple of random point selected uniformly and independently in the unit
square [0, 1]2 and let TSP(X) the length of the minumum (travelling salesman) tour through these points:

TSP(X) = min
π∈Sn

n∑
j=1

∣∣Xπ(j) −Xπ(j+1)

∣∣ .
The exact behaviour of E (TSP(X)) or the median M(TSP(X)) is not known. However, by a classical
theorem of Beardwood, Halton and Hammersley (9) we have

TSP(X)√
n

→ β2

in probability, where β2 > 0 is a constant for which no analytic expression is known, compare also with
Karp (58) and Steele (84).

However, by an application of Talagrand’s inequality one can show “strong” concentration.

Theorem 6 Let TSP(X) the length of the minumum tour through n independent random points in the unit
square. Then there exists a constant c > 0 with

P {|TSP(X)−M(TSP(X))| ≥ t} < 4e−t2/c. (13)

This is in fact a very strong result and was first proved by Rhee and Talagrand (88) by very much involved
arguments that are based on a martingale approach.

We shortly describe Talagrand’s inequality (89) and how it can be applied to the Travelling Salesman
Problem without much effort (compare also with (44; 67)).

Let Ω1,Ω2, . . . ,Ωn probability spaces and Ω the product space. Further, let X = (X1, X2, . . . , Xn) be
an n-tuple of independent random variables Xk taking values in Ωk. For x ∈ Ω and A ⊂ Ω let

dT (x, A) = sup
α≥0,‖α‖=1

inf
y∈A

dα(x,y)

be Talagrand’s convex distance, where

dα(x,y) =
∑

xi 6=yi

αi

is a weighted Hamming distance related to α = (α1, . . . , αn) with αk ≥ 0 (1 ≤ k ≤ n). Talagrand’s
inequality can be now stated as

P{X ∈ A} · P{dT (X, A) ≥ t} < e−t2/4. (14)

For a proof see (67; 89).
The next variant of Talagrand’s inequality is quite useful for applications.
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Theorem 7 Let f be a real valued function on Ω = Ω1 × · · · ×Ωn and suppose that for every x ∈ Ω there
exists a non-negative unit n-vector α and a constant c > 0 such that for all y ∈ Ω

f(x) ≤ f(y) + c dα(x,y). (15)

Then, for every random n-tuple X = (X1, . . . , Xn) of independent random variables Xk taking values in
Ωk we have

P{|f(X)−M(f(X))| ≥ t} ≤ 4 et2/(4c2). (16)

Proof: For a real number a set Aa = {y ∈ Ω : f(y) ≤ a}. By assumption for every x ∈ Ω there exists a
non-negative unit n-vector α such that for all y ∈ Aa

f(x) ≤ f(y) + c dα(x,y) ≤ a+ c dα(x,y).

By taking the miminum over all y ∈ Aa we, thus, get

f(x) ≤ a+ c dα(x, Aa) ≤ a+ c dT (x, Aa).

Hence, if f(x) ≥ a+ t then dT (x, Aa) ≥ t/c. Consequently, by Talagrand’s inequality

P{f(X) ≤ a} · P{f(X) ≥ a+ t} ≤ P{X ∈ Aa} · P{dT (x, Aa) ≥ t/c}

≤ e−t2/(4c2).

Finally, if we use a = M(f(X)) then P{f(X) ≤ a} = 1
2 and we get

P{f(X) ≥ M(f(X)) + t} ≤ 2 e−t2/(4c2).

Similarly, if we use a = M(f(X))− t we obtain P{f(X) ≤ M(f(X))− t} ≤ 2 e−t2/(4c2). Of course, this
proves (16). 2

Finally, we show that f = TSP satisfies (15). Of course, this proves Theorem 6.
Let x = (x1, x2, . . . , xn) ∈ Ω = ([0, 1]2)n. It is an easy exercise that there exists a permutation π ∈ Sn

such that
n∑

j=1

‖xπ(j+1) − xπ(j)‖2 < c

for some absolute constant c. For example one just has to divide the unit square [0, 1]2 into ≈ n subrect-
angles of diameter ≈ 1/

√
n. We denote by T (x) =

(
xπ(1), xπ(2), . . . , xπ(n)

)
the tour corresponding to

this permutation. Further, set βk = ‖xπ(k−1) − xπ(k)‖ + ‖xπ(k) − xπ(k+1)‖ and β = (β1, . . . , βn). Then∑n
k=1 β

2
k ≤ 4c. We will show that

TSP(x) ≤ TSP(y) + dβ(x,y) (17)

holds for all y ∈ Ω. Obviously, if we set α = β/‖β‖ then (17) implies

TSP(x) ≤ TSP(y) + 2
√
c dα(x,y),

that is, we have proved (15) for f = TSP and we are done.
For x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ Ω = ([0, 1]2)n we set x̃ = {x1, . . . , xn} and ỹ =

{y1, . . . , yn} ⊆ [0, 1]2. If x̃ ∩ ỹ = ∅ then dβ(x,y) = 2 `(T (x)), where `(T (x)) denotes the length of
the tour T (x)). Of course, in this case (17) holds trivially. Similarly, if |x̃∩ ỹ| = 1 then dβ(x,y) ≥ `(T (x)
and, thus, (17) holds.

Now suppose that |x̃ ∩ ỹ| ≥ 2. The tour T (x) is now divided in segments S = (a, v1, . . . , vj , b) with
a, b ∈ x̃ ∩ ỹ and v1, . . . , vj ∈ x̃ \ ỹ. We build up a multiset F of edges. The edges (vi, vi+1) are put into
F twice for 1 ≤ i ≤ j − 1 and further the shorter of the edges (a, v1), (vj , b) is put into F twice, too. This
is done for all segments S of T (x) of this form. Note that by this construction the sum of all lenghts of F
(according to their multiplicity) is bounded from above by dβ(x,y). Next consider an optimal tour T ∗(y)
of y and consider the (multi)graph G with vertex set x̃∪ ỹ and (multi)edge set that consists of the edges of
T ∗(y) and of F . Then G is connected and Eulerian since every vertex has even degree. The total weight of
an Eulerian tour is bounded above by TSP(y) + dβ(x,y). Obviously the length of an optimal tour T ∗(x)
of x is bounded above by this value. This completes the proof of (17).

This method can be applied to several other problem, for example to the minimal Steiner tree problem
etc., see (67; 89).
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5 The Longest Increasing Subsequence in Random Permutations
Let Sn denote the set of permutations of the numbers {1, 2, . . . , n}, where we assume that every permutation
in Sn is equally likely. If π ∈ Sn we say that π(i1), π(i2), . . . , π(ik) is an increasing subsequence in π if
i1 < i2 < · · · < ik and π(i1) < π(i2) < · · · < π(ik).

We denote by Ln = Ln(π) the length of the longest increasing subsequence and the question is to
determine the limiting behaviour of Ln. This question goes back to Ulam (90) in the early 60’s who
conjectured that ELn ∼ c

√
N for some constant c > 0. Erdős and Szekeres (45) could show c ≥ 1

2 ,
later Logan and Shepp (62) proved c ≥ 2 and almost simultanously Vershik and Kerov (91) settled Ulam’s
problem and proved c = 2. Alternate proofs are due to Aldous and Diaconis (4), Seppäläinen (86) and
Johansson (57). Frieze (51) was then the first who proved that Ln is concentrated with help of martingale
methods. His result was improved by Bollobás and Brightwell (18) and by Talagrand (89) who showed that
the variance is bounded by VLn = O(

√
N). However, it turned out that this order of magnitude is not

optimal. Calculations of Odlyzko and Rains (73) indicated that the exact order should be N1/3 which is in
fact true.

Eventually Baik, Deift, and Johansson (11) settled the problem completely. They proved the following
weak concentration property.

Theorem 8 Let Sn be the group of permutations of n numbers with uniform distribution and Ln the longest
increasing subsequence. Then there exists a random variable Y such that

Ln − 2
√
n

n1/6

d−→ Y. (18)

Furthermore, we have convergence of all moments.

It is remarkable that the limiting distribution Y is exactly the same at the limiting distribution of the
largest eigenvalue in random Hermitian matrices (see (69)). However, it seems that there is no direct
connection between these two problems.

The distribution function F (t) = P{Y ≤ t} of Y that is also called Tracy-Widom distribution can be
characterized by

F (t) = exp
(∫ ∞

t

(x− t)2u(x)2 dx
)
,

where u(x) is the solution of the Painlevé II equation

u′′ = 2u3 + xu, u(x) ∼ Ai(x) (as x→∞);

Ai(x) denotes the Airy function.
The proof is an analytic tour de force. Basically one determines the asymptotic behaviour of the Poisson

transform

φk(λ) =
∞∑

n=0

e−λλn

n!
P{Ln ≤ k}

that can be represented as

φk(λ) =
e−λ

(2π)kk!

∫
[−π,π]k

exp

2
√
λ

k∑
j=1

θj

 ∏
1≤j<`≤k

∣∣eiθj − eiθ`
∣∣ dθ1 · · · dθk.

One has to use the theory of orthogonal polynomials on the unit circle, sophisticated Riemann-Hilbert
problem techniques and certain properties on eigenvalues of random matrices.

There are also studies of the longest increasing subsequence of random permuations under certain re-
strictions, for example see (30) for permutations that avoid certain patterns of size 3. However, the resuls in
these cases are completely different and also depend on the specific pattern that is avoided.

6 Diameter and Maximum Degree in Random Graphs
We will discuss two different kinds of random graphs, first, the usual G(n, p) model and, second, so-called
scale-free random graphs that model real world graphs in the sense of Barabási and Albert (8).

The diameter diam(G) of a graph connected G is the largest distance between two nodes in G. If G is
not connected then diam(G) = ∞.

The maximum degree of an (undirected) graph G will be denoted by ∆(G).
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6.1 G(n, p)-Random Graphs
There are serveral results concerning the diameter of G(n, p). The following theorem collects some of
Burtin (23; 24) and Bollobás (13).

Theorem 9

(i) If (pn)/ log n→∞ and log n/ log(pn) →∞ then almost always

diam(G(n, p)) ∼ log n
log(pn)

.

(ii) Let c be a positive constant and p = p(n) and d = d(n), an integer ≥ 2, be related by pdnd−1 =
log(n2/c). Further suppose that (pn)/(log n)3 →∞. Then

lim
n→∞

P{diam(G(n, p)) = d} = e−c/2

and
lim

n→∞
P{diam(G(n, p)) = d+ 1} = 1− e−c/2.

The second part of the result says that the distribution of the diameter is highly concentrated. (Note that
G(n, p) is almost always connected if np = log n+ ωn for any sequence ωn →∞.)

For example, if np ∼ (log n)` for some ` ≥ 3 then the diameter is of order (log n)/(` log log n). How-
ever, if p ∼ n−δ for some δ < 1 then the diameter is bounded. In particular, if p2n − 2 log n → ∞ and
n2(1− p) →∞ then diam(G(n, p)) = 2 (almost always).

The distribution of the maximum degree will depend on the behaviour of

λk = λk(n) := n

(
n− 1
k

)
p(n)k(1− p(n))n−k−1.

We first state a result on “very strong” concentration properties of the maximal degree ∆ that is due to
Bollobás (15).

Theorem 10 Suppose that p = p(n) = o(log n/n) and let k = k(n) ≥ np be such that the quantity
max{λk, 1/λk} is minimal.

(i) If 0 < lim inf λk ≤ lim supλk <∞ then, as n→∞,

P{∆ = k(n)} = 1− e−λk + o(1)

and
P{∆ = k(n)} = e−λk + o(1).

(ii) If limλk = ∞ then
P{∆ = k(n)} = 1 + o(1).

(iii) If limλk = 0 then
P{∆ = k(n)− 1} = 1 + o(1).

(iv) If there is a function D(n) with P{∆ = D(n)} = 1 + o(1) as n→∞ then p = p(n) = o(log n/n).

The situation is completely different if p is constant. There is no strong concentration (see (12; 13; 82)).

Theorem 11 Suppose that 0 < p < 1 is fixed and q = 1− p.

(i) For every real number y we have

P
{

∆ ≤ pn+
√

2pqn log n
(

1− log log n
4 log n

+
y − 2

√
π

2 log n

)}
= exp

(
−e−y

)
+ o(1).
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(ii) Almost always we have∣∣∣∣∆− pn−
√

2pqn log n+ log log n
√

pqn

8 log n

∣∣∣∣ ≤ log log n
√

n

log n
.

(iii) For every real number b there exists c(b) such that

P{∆ < pn+ b
√
npq} = (c(b) + o(1))n.

There are several extension of this result concerning the m-th largest degree, the difference between the
largest and the smallest degree etc., see also the paper of Ivchenko (55).

If np → 0 then G(n, p) is definitely disconnected. However, one can study the largest diameter of all
components. This has been worked out by Łuczak (63).

6.2 Scale-Free Random Graphs
There has been substantial interest in random graph models where vertices are added to the graph suc-
cesively and are connected to several already existing nodes according to some given law. The so-called
Barabási-Albert model (8) joins a new node to an existing one with probability proportionally to the degree.
The idea behind is to model various real-word graphs like the internet or social networks.

It turns out that the Barabási-Albert model is not unambigously defined. Therefore Bollobás and Riordan
(20) introduced a precise version for a random (multi)graph Gn

m. In order to make the presentation simpler
we start with the description of Gn

1 . One starts with an initial node 1 with a loop. (This means that 1 has
degree 2). Then at step k we add one node that is connected to j ≤ k with propability

degGk−1
1

(j)

2k − 1
if j < k,

1
2k − 1

if j = k.

Of course, after n steps we have produced a random (multi)graph with vertex set {1, 2, . . . , n} and n edges.
This graph is closely related to plane oriented recursive trees that will discuss these (and related kinds of
trees) in Section 7.

Now the random graphGn
m is constructed fromGmn

1 by identifying the nodes {(`−1)m+1, (`−1)m+
2, . . . , `m} (1 ≤ ` ≤ n) ofGmn

1 to a new node ` (and all edged within the nodes {(`−1)m+1, (`−1)m+
2, . . . , `m} are now loops of the new node `). Of course, this procedure results in a random (multi)graph
with vertex set {1, 2, . . . , n} and mn edges. (It is also possible to construct Gn

m recursively from Gn−1
m by

adding a new node and exactly m edges according to the degree distribution of Gn−1
m but this is a little bit

more difficult to state.)
It turns out that the degree distribution of Gn

m satisfies a power law. The probability that a randomly
chosen node of Gn

m has degree d is asymptotically 2/d3 (see (21)). Graphs with this property are called
scale-free.

Bollobás and Riordan (20) proved the following result for the diameter of Gn
m.

Theorem 12 Suppose that m ≥ 2. Then for every ε > 0

lim
n→∞

P
{

(1− ε)
log n

log log n
≤ diam(Gn

m) ≤ (1 + ε)
log n

log log n

}
= 1.

For m = 1 the result is different, the diameter is of order log n (see Pittel (79)).
As already noted there are very precise results on the degree distribution of Gn

m but there are no results
on the maximum degree. (Only in the case m = 1 we can adopt the results on trees that we will discuss in
the next section.)

7 Height and Maximum Degree in Random Trees
Properties of trees are important for many algorithms. Further they are used as data structures in computer
science in various ways so that there are several natural probabilistic models. Therefore we put a special
emphasis on trees. Here we focus on two extremal statistics, on the height of trees and on the the maximum
degree.
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7.1 Galton-Watson Trees
Let ξ be a non-negative integer valued random variable with E ξ = 1, 0 < V ξ = σ2 < ∞.(iii) The
Galton-Watson branching process (Zk)k≥0 is now given by Z0 = 1, and for k ≥ 1 by

Zk =
Zk−1∑
j=1

ξ
(k)
j ,

where the (ξ(k)
j )k,j are iid random variables distributed as ξ.

It is well-known that Galton-Watson branching processes can be represented by ordered (finite or infinite)
rooted trees T such that the sequence (Zk)k≥0 is just the profile sequence and

∑
k≥0 Zk, which is called the

total progeny, is just the number of nodes |T | of T .(iv) We will denote ν(T ) the probability that T occurs.
The generating function y(x) =

∑
n≥1 ynx

n of the numbers

yn = Pr[|T | = n] =
∑
|T |=n

ν(T )

satisfies the functional equation
y(x) = xϕ(y(x)),

where ϕ(t) = E tξ =
∑
ϕit

i with ϕi = Pr{ξ = i}. If Tn denotes the set of rooted trees T of size |T | = n
then

νn(T ) :=
ν(T )
yn

is a probability distribution on Tn which we will use in the sequel. The random tree in Tn will be denoted
by Tn. Note that

yn ∼
d√
2πσ

n−3/2 (n ≡ 1 mod d), (19)

where d = gcd{i > 0 : ϕi > 0}.(v) Meir and Moon (70) have considered the same kind of trees under the
notion of simply generated trees. In fact they introduced general non-negative weights ϕi. However, by a
proper scaling simply generated trees can be reduced to (critical) Galton-Watson trees.

For example, for ϕ(t) = E tξ = (1 + t)2/4 = 1
4 + t

2 + t2

4 we just recover the class of binary trees with
n (internal) nodes, where each binary tree (of size n) has equal probability. Another well-know example
is that of planted plane trees (again with uniform distribution on trees of size n). They are induced by
ϕ(t) = E tξ = 1/(2 − t) = 1

2 + t
4 + t2

8 + · · · . Further, ϕ(t) = et−1 models rooted labeled trees, that is,
all nn−2 rooted labeled trees are equally likely.

The first contribution to the height of special Galton-Watson trees is due to de Bruijn, Knuth and Rice
(29) who considered the case of planted plane trees (ϕ(t) = 1/(2 − t)). Later Flajolet and Odlyzko (48)
and Flajolet, Gao, Odlyzko and Richmond (47) determined the distribution of the height for a very general
class of simply generated trees, that is, in terms of Galton-Watson trees, where E tξ exists for some t > 1.
Later, Aldous (1; 2; 3) introduced the notion of a continuum random tree that is (in a proper sense) the
weak limit of scaled Galton-Watson trees. Since the height is a continuous functional (in this context) one
directly gets a weak limit theorem for the height under the weak assumption that the second moment of the
offspring distribution exists.

Theorem 13 Suppose that the second moment E ξ2 is finite. Then

1√
n
Hn

d−→ 2
σ

max
0≤t≤1

e(t),

where (e(t), 0 ≤ t ≤ 1) denotes Brownian excursion of duration 1. Furthermore, if ϕ(t) = E tξ exists for
some t > 1 then we also have convergence of all moments. For every r ≥ 0 we have, as n→∞,

E (Hr
n) = 2r/2σ−rr(r − 1)Γ(r/2)ζ(r) · nr/2

(
1 +O(n−

1
4+η)

)
where ζ(s) denotes the Riemann Zeta-function and (r−1)ζ(r) = 1 for r = 1 and η is any positive number.
(iii) Usually it is not assumed that E ξ = 1 (which characterize so-called critical branching processes). However, for our purposes it

is no loss of generality to make this assumption (see (59)).
(iv) For critical branching processes the probability that the total progeny is finite equals 1.
(v) In what follows we will always assume that d = 1. The case d > 1 is completely analogous.
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In particular, the height is not concentrated. This is quite unusual for extremal parameters. However, this
phenomenon is easy to explain with help of the continuum random tree approximation.

Note that the distribution function of M := max
0≤t≤1

e(t) is explicitly given by

P{M ≤ x} = 1− 2
∞∑

k=1

(4x2k2 − 1)e−2x2k2

and the moments by
E (Mr) = 2−r/2r(r − 1)Γ(r/2)ζ(r).

The approach of Aldous is quite general, but it does not give an error term. The only known method that
provides an error term is due to Flajolet and Odlyzko (48) and is based on generating function. We quickly
sketch their approach.

Let yk(x) denote the generating functions

yk(x) =
∑
n≥1

P{|T | = n, hT ≤ k}xn,

where hT denotes the height of T , then y0(x) = ϕ0x, and recursively

yk+1(x) = xϕ(yk(x)), (k ≥ 0). (20)

With help of these function one gets the generating function of the expected height:

H(x) :=
∑
n≥1

E Hn · yn · xn =
∑
k≥0

(y(x)− yk(x)).

After a subtle analysis of the above recurrence (20) it is possible to derive a local representation of the form

H(x) =
1
σ2

log
1

1− x
+K +O

(
|1− x| 14−η

)
for some constant K and every (fixed) η > 0 (see (48)). Thus, with help of the Transfer Lemma (see (49))
and (19) we directly get, as n→∞,

E Hn =
√

2π
σ

·
√
n+O

(
n

1
4+η
)
.

In a similar way one gets corresponding asymptotic equivalents for higher moments which characterize
again the distribution of n−1/2Hn of Theorem 13.

In rooted trees one usually considers the out-degree of a node, which is the same as the degree at the
root and differs by 1 from the degree for all nodes that are different from the root. Further, we only have
to discuss cases where ϕ(t) is not a polynomial. Namely, if ϕ(t) is a polynomial of degree d then the
maximum out-degree equals d for almost all trees in Tn.

The maximum out-degree will be again denoted by ∆(Tn). The following theorem collects some results
of Meir and Moon (71) and of Carr, Goh and Schmutz (25).

Theorem 14

(i) Suppose that ϕi = Pr{ξ = i} > 0 for sufficiently large i ≥ i0 and that ϕi+1/ϕi → 0 as i → ∞.
Then

P{|∆(Tn)− δ(n)| ≤ 1} = 1 + o(1),

where δ(n) = max{k ≥ 0 : P{ξ ≥ k} ≥ 1/n}.

(ii) If ϕ(t) = et−1 then there exists a sequence δ′(n) that is asymptotically equivalent to δ′(n) ∼ log n
log log n

such that
P{δ′(n) ≤ ∆(Tn) ≤ δ′(n) + 1} = 1 + o(1).

(iii) If ϕ(t) = 1/(2− t) then we have uniformly for all k ≥ 0

P{∆(Tn) ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1)
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The proofs of these results rely (again) on generating functions. Set

yd(x) =
∑
n≥1

P{|T | = n, ∆(Tn) ≤ d}xn.

Then this generating function satisfies the functional equation

yd(x) = xϕd(yd(x)) with ϕd(t) =
∑
i≤d

ϕit
i.

Thus, we are in a similar situation as in the original problem. For every fixed d it follows that

Pr{|T | = n, ∆(Tn) ≤ d} ∼ Cd(ϕ′d(τd))
nn−3/2,

where τd > 0 is determined by the equation τdϕ′d(τd) = ϕd(τd) and Cd is a certain constant. This implies
that

P{∆(Tn) ≤ d} =
Pr{|T | = n, ∆(Tn) ≤ d}

Pr{|T | = n}
∼
√

2πσCd (ϕ′d(τd))
n.

The only problem is to make this asymptotic relation uniform for d in the interesting range (which is non-
trivial) and to determine the (asymptotic) behaviour of τd − 1 (which is usually easy).

Another interesting (extremal) parameter of trees is the width, that is, the maximal number of nodes in
the same level. In (40) it was shown that (up to scaling) the width has the same limiting distribution as the
height. Furthermore one also has convergence of moments, see (41). Again there is no concentration.

7.2 Pólya Trees
We now consider rooted unlabeled (non-planar) trees and let tn denote the number of trees of this type of
size n. It has been first observed by Pólya (80) — this explains the notion Pólya Trees – that the generating
function

t(x) =
∑
n≥1

tnx
n.

satisfies the functional equation

t(x) = x exp
(
t(x) +

1
2
t(x2) +

1
3
t(x3) + · · ·

)
. (21)

Later, Otter (74) determined the asymptotic structure and also that the generating function t̃(x) of unrooted
unlabeld trees is given by t̃(x) = t(x)− 1

2

(
t(x)2 − t(x2)

)
.

The radius of convergence of t(x) (and of t̃(x)) is approximately ρ ≈ 0.338219 and is given by t(ρ) = 1,
that is, t(x) is convergent at x = ρ. Further, t(x) has a local expansion of the form

t(x) = 1− b(ρ− x)1/2 + c(ρ− x) +O(|ρ− x)3/2), (22)

where b ≈ 2.6811266 and c = b2/3 ≈ 2.3961466, which implies via asymptotic transfer that

tn =
b
√
ρ

2
√
π
n−3/2ρ−n

(
1 +O(n−1)

)
. (23)

The essential observation is that ρ < 1. Hence the part 1
2 t(x

2) + 1
3 t(x

3) + · · · in the functional equation
(21) behaves nicely if x is close to the singulartity. Hence, (21) has a similiar structure as the functional
equation y(x) = xϕ(y(x)) for Galton-Watson trees. It is therefore not unexpected that the height and
maximum degree behave similar to (proper) Galton-Watson trees if we assume that Pólya trees of size n are
considered to be equally likely.

First the heightHn satisfies the same properties as the height of Galton-Watson trees, Theorem 13 applies
for Pólya trees, too. This is shown in a forthcoming paper (42).

The distribution of the maximum degree was determined by Goh and Schmutz (52).

Theorem 15 Let ∆(Tn) denote the maximum out-degree of Pólya trees of size n. Then

P{∆(Tn) ≤ k} = exp
(
−c0ηk−µn

)
+ o(1)

with c0 = 3.262 . . ., η = 0.3383 . . ., and µn = 0.9227 . . . · log n.
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This means that the maximum degree of Pólya trees behaves quite similiar to the maximum degree of
planted plane trees, however, with a different scaling. Nevertheless, in both cases we have “strong” concen-
tration and the limiting behaviour is described with help of the extreme value (or Gumbel) distribution.

The proof runs (again) along the lines that have been indicated for Galton-Watson trees. However, it is
much more involved. For example, one has to make use of asymptotic properties of the cycle index of the
symmetric group.

7.3 m-Ary Search Trees
Fringe balanced m-ary search trees are characterized by two integer parameters m ≥ 2 and t ≥ 0. The
search tree is built from a set of n distinct keys taken from some totally ordered set such as the real numbers
or integers; for our purposes we can assume that the keys are the integers 1, . . . , n. The search tree will be
an m-ary tree where each node has at most m children; moreover, each node will store one or several of
the keys, up to at most m− 1 keys in each node. The parameter t affects the probability distribution of the
trees; higher values of t tend to make the tree more balanced. We remark that the simplest, and most often
studied, case is the random binary search tree obtained by taking m = 2 and t = 0.

To describe the construction of the search tree, we begin with the simplest case t = 0. If n = 0, the
tree is empty. If 1 ≤ n ≤ m − 1, the tree consists of a root only, with all keys stored in the root. If
n ≥ m, we randomly select m− 1 keys that are called pivots (with the uniform distribution over all sets of
m − 1 keys). The pivots are stored in the root. The m − 1 pivots split the set of the remaining n −m + 1
keys into m subsets I1, . . . , Im: if the pivots are x1 < x2 < . . . xm−1, then I1 := {xi : xi < x1},
I2 := {xi : x1 < xi < x2}, . . . , Im := {xi : xm−1 < xi}. We then construct recursively a search tree
for each of the sets Ii of keys (ignoring it if Ii is empty), and attach the roots of these trees as children of
the root in the search tree. As already mentioned, in the case m = 2, t = 0, we thus have the well-studied
binary search tree, see (66).

In the case t ≥ 1, the only difference is that the pivots are selected in a different way, which affects
the probability distribution of the set of pivots and thus of the trees. We now select mt + m − 1 keys at
random, order them as y1 < · · · < ymt+m−1, and let the pivots be yt+1, y2(t+1), . . . , y(m−1)(t+1). In the
case m ≤ n < mt+m−1, when this procedure is impossible, we select the pivots by some supplementary
rule (possibly random, but depending only on the order properties of the keys). This splitting procedure
was first introduced by Hennequin for the study of variants of the Quicksort algorithm and is referred to as
the generalized Hennequin Quicksort, see (28).

We describe the splitting of the keys by the random vector Vn = (Vn,1, Vn,2, . . . , Vn,m), where Vn,k :=
|Ik| is the number of keys in the kth subset, and thus the number of nodes in the kth subtree of the root
(including empty subtrees). We thus always have, provided n ≥ m,

Vn,1 + Vn,2 + · · ·+ Vn,m = n− (m− 1) = n+ 1−m

and elementary combinatorics, counting the number of possible choices of the mt +m − 1 selected keys,
shows that the probability distribution is, for n ≥ mt+m− 1 and n1 + n2 + · · ·+ nm = n−m+ 1,

P{Vn = (n1, . . . , nm)} =

(
n1
t

)
· · ·
(
nm
t

)(
n

mt+m−1

) . (24)

For this random model of trees let H(m,t)
n denote the height and H

(m,t)

n the saturation level, that is, the
maximal level up to which the tree is a complete m-ary tree. The above description of m-ary search trees
directly leads to an explicit recurrence of the form

P{H(m,t)
n ≤ k + 1} (25)

=
∑

n1+n2+···+nm=n−m+1

(
n1
t

)(
n2
t

)
· · ·
(
nm
t

)(
n

m(t+1)−1

) P{H(m,t)
n1

≤ k} · · ·P{H(m,t)
nm ≤ k}.

The reason is that a tree of size n has height ≤ k + 1 if and only if all subtrees of the root (of sizes
n1, . . . , nm) have heights ≤ k.

The height Hn = H
(2,0)
n of binary search trees (and its variants) has a long history (compare with (37)).

In 1986 Devroye (32) proved that the expected value EHn satisfies the asymptotic relation EHn ∼ c log n
(as n → ∞), where c = 4.31107 . . . is the largest real solution of the equation

(
2e
c

)c = e. (Earlier Pittel
(76) had shown that Hn/ log n → γ almost surely as n → ∞, where γ ≤ c, compare also with Robson
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(83).) Based on numerical data Robson conjectured that the variance VarHn is bounded. Eventually, Reed
(81) and independently Drmota (37) settled Robson’s conjecture and proved that

VHn = O(1).

In (37) the distribution of Hn was also asymptotically determined.
In what follows we present a result from (26) that generalizes this result to the height (and saturation

level) of fringe balanced m-ary search trees. Let β1 > 0 and β2 < 0 be the two solutions of the equation

(m−1)(t+1)−1∑
j=0

log(β + t+ 1 + j)− log
(

(m(t+ 1))!
(t+ 1)!

)
=

(m−1)(t+1)−1∑
j=0

β

β + t+ 1 + j
(26)

and set

ρ1 = exp

(m−1)(t+1)−1∑
j=0

1
β1 + t+ 1 + j

 and ρ2 = exp

(m−1)(t+1)−1∑
j=0

1
β2 + t+ 1 + j

 .

Next consider the functional equation

F (x/ρ) = E (F (xV1) · · ·F (xVm)) , (27)

where the random vector V = (V1, V2 . . . , Vm) is supported on the simplex ∆ = {(s1, . . . , sm) : sj ≥
0, s1 + · · ·+ sm = 1} with density

f(s1, . . . , sm) =
((t+ 1)m− 1)!

(t!)m
(s1 · · · sm)t.

In (26) it is shown that (27) has (up to scaling) a unique solution F (m,t)(x) for ρ = ρ1 and a solution
G(m,t)(x) for ρ = ρ2 with the properties

1− F (m,t)(x) ∼ d1x
β1 log x (x→ 0+) (28)

and
1−G(m,t)(x) ∼ d2x

β2 log x (x→∞) (29)

for non-zero real constants d1, d2. Furthermore, F (m,t)(x) and G(m,t)(x) are strictly decreasing resp.
increasing, continuous, and satisfy

lim
x→∞

F (m,t)(x) = lim
x→0+

G(m,t)(x) = 0. (30)

Theorem 16 Let m ≥ 2 and t ≥ 0 be integers. There exist sequences ck, dk with

lim
k→∞

ck+1

ck
= ρ1 and lim

k→∞

dk+1

dk
= ρ2

such that

P{H(m,t)
n ≤ k} = F (m,t)(n/ck) + o(1) and P{H(m,t)

n > k} = G(m,t)(n/dk) + o(1).

Furthermore, set k1(n) = max{k ≥ 0 : ck ≤ n} ∼ log n/ log ρ1 and k2(n) = max{k ≥ 0 : dk ≤
n} ∼ log n/ log ρ2. Then

EH(m,t)
n = k1(n) +O(1) and EH(m,t)

n = k2(n) +O(1)

and there exists η > 0 with

P{|H(m,t)
n − EH(m,t)

n | ≥ y} = O(e−ηy) and P{|H(m,t)

n − EH(m,t)

n | ≥ y} = O(e−ηy).

In particular we have, as n→∞,

VH(m,t)
n = O(1) and VH(m,t)

n = O(1).
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This result shows that the height and saturation level of m-ary search trees are strongly concentrated.
The proof is based on an analysis of generating functions. Set

yk(x) =
∑
n≥0

P{H(m,t)
n ≤ k} · xn and yk(x) =

∑
n≥0

P{H(m,t)

n ≥ k} · xn.

Then (25) is restated as

y
(m(t+1)−1)
k+1 (x) =

(m(t+ 1)− 1)!
(t!)m

(
y
(t)
k (x)

)m

, (31)

y
(m(t+1)−1)
k+1 (x) =

(m(t+ 1)− 1)!
(t!)m

(
y
(t)
k (x)

)m

(32)

with initial conditions
y0(x) = 1, yk(0) = y′k(0) = · · · = y

(m−1)
k (0) = 1

and
y0(x) =

x

1− x
, yk(0) = y′k(0) = · · · = y

(m−1)
k (0) = 0.

In Section 8 we will present a proof of strong concentration for the height of scale free trees that is very
similar to the proof of concentration in the present case.

As for Galton-Watson trees one is also interested in the width Wn of m-ary search trees. However, there
are only few resulst for binary search trees (m = 2, t = 0). It is known (27) that

Wn

n/
√

4π log n
→ 1 a.s.

Further, a similar relation holds for the expected profile: EWn ∼ n/
√

4π log n (43; 35). Devroye and
Hwang (35) also showed that the level Kn of the width is strongly concentrated.

7.4 Recursive Trees
A recursive tree is a (non-planar) rooted tree (with n nodes) where the nodes are labeled with 1, 2, . . . , n
such that all successors of each node have a larger label. In particular, the root has label 1, and every path
from the root to a leaf has strictly increasing labels. It is also possible to consider a recursive tree as the
result of an evolution process. The process starts with the root (that gets label 1). Next, another node is
attached to the root (that gets label 2) and in every step a new node is attached to an already existing node
(and gets the next label). The labels are the history of the tree evolution. By definition it is clear the number
yn of increasing trees of size n is given by (n− 1)!. Note that the generating function

y(z) =
∑
n≥1

yn
zn

n!
=
∑
n≥1

zn

n
= log

1
1− x

satisfies the differential equation

y′(z) = ey(z) = 1 + y(z) +
1
2
y(z)2 + · · · ,

which has a natural combinatorial explanation.
Let Hn denote the height of random recursive trees of size n. By using this combinatorial interpretation

we also get a recurrence relation for the generating functions

yk(z) =
∑
n≥0

P{Hn ≤ k}z
n

n
.

They satisfy the recurrence
y′k+1(z) = eyk(z)

with y0(z) = 0 and yk+1(0) = 0.
Szymanski (85) was the first who studied the height Hn of recursive trees. He proved then (1 − ε) ≤

Hn/ log n ≤ e in probability. Later Pittel (79) proved that the upper bound is the correct limit: Hn/ log n→
e in probability. The following result that settles the distribution and proves strong concentration is due to
the author (and is contained in a forthcoming paper (38)).
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Theorem 17 Let Hn denote the height of random recursive trees of size n.

EHn = e log n+O
(√

log n (log log n)
)
.

Furthermore we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = F (n/y′k(1)) + o(1),

where F (y) satisfies the integral equation

y F (y/e1/e) =
∫ y

0

F (z/e1/e)F (y − z) dz. (33)

Moreover, as n→∞,
VHn = O(1)

and there exist η > 0 and c > 0 such that

P{|Hn − EHn| ≥ y} ≤ c e−ηy

for all y ≥ 0.

Again the proof of the concentration property is similar to that of Section 8 with is based on generating
functions.

The maximum out-degree ∆(Tn) of random recursive trees was studied by Szymanski (85), Devroye and
Lu (36) and Goh and Schmutz (53).

Theorem 18 Let ∆(Tn) denote the maximum out-degree or random recursive trees. Then we have E ∆(Tn) ∼
log2 n and the distribution is given by

P{∆(Tn) ≤ k} = exp
(
−2−(k−log2 n+1)

)
+ o(1). (34)

Unfortunately it is not known whether the variance (and other central moments) stay bounded as n → ∞
although Theorem 18 suggests such a property.

The proof of (34) relies on a careful analysis of the generating functions

yd(z) =
∑
n≥0

P{∆(Tn) ≤ d}z
n

n
,

that satisfy the differential equations

y′d(x) =
d∑

`=0

1
`!
yd(x)`.

7.5 Scale-Free Trees
So-called scale-free trees are defined similarly to recursive trees. Fix some r > 0(vi) and let a random
(recursive) tree grow by the following random procedure.

The process starts with the root that is labeled with 1. Then at step j a new node (with label j) is attached
to any previous node of outdegree d with probability proportial to d+ r

For r = 1 one exactly gets plane oriented recursive trees or heap ordered trees. Note, too, that this
process is almost the same as the Gn

1 -construction of scale-free graphs.
The notion scale-free comes again from the asymptotic degree distribution. The probability that a random

node has out-degree d is asymptically given by

λd =
(r + 1)Γ(2r + 1)Γ(r + d)

Γ(r)Γ(2r + d+ 2)
∼ (r + 1)Γ(2r + 1)

Γ(r)
· d−2−r.

Pittel (79) has already shown that the height Hn of scale-free trees satisfies Hn/ log n→ cr in probabil-
ity; cr is defined in Theorem 19. The next theorem (by the author (38)) provides strong concentrations and
a distributional result for rational r.

The formulation of the theorem uses a sequence of (generating) functions defined by y0(x) = 0 and
y′k+1(x) = (1− yk(x))−r with yk+1(0) = 0. (In Section 8 we will discuss these functions in detail.)

(vi) Sometimes the parameter β = r − 1 > −1 is used to define scale-free trees.
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Theorem 19 Suppose that r = A
B > 0 is rational (where A,B are positive coprime integers). Set cr =

r/((r + 1)γ), where γ is the real solution of γe1+γ/r = 1 Then

EHn ∼ cr log n.

Furthermore we have (uniformly for all k ≥ 0 as n→∞)

P{Hn ≤ k} = G(r)
(
(r + 1)n/(y′k(1/(r + 1)))1+

1
r

)
+ o(1). (35)

The function G(r)(y) is given by

G(r)(y) =
Γ
(

A
A+B

)
Γ
(

1
A+B

)A

∫
z1+···+zA=1,zj≥0

A∏
j=1

(
F (yzj)z

1
A+B−1

j

)
dz (36)

and F (y) satisfies the integral equation

y
1
d−1F (ye−1/c′r ) =

Γ
(
1 + 1

A+B

)
Γ
(

1
A+B

)A+B+1

∫
y1+···+yA+B+1=y,yj≥0

B+1∏
j=1

(
F (yje

−1/c′r )y
1

A+B−1

j

)

×
A+B+1∏
`=B+2

(
F (y`)y

1
A+B−1

`

)
dy.

Moreover, for all r > 0 we have, as n→∞,

VHn = O(1)

and there exist η > 0 and c > 0 such that

P{|Hn − EHn| ≥ y} � e−ηy

for all y ≥ 0.

There is no doubt that (35) is also true for irrational r > 0. However, the methods of (38) are not strong
enough to prove this more general case. In Section 8 we will present a short proof of the concentration
property of Hn.

Recently the maximum out-degree of scale-free trees was discussed by Mori (72)

Theorem 20 Let ∆(Tn) denote the maximum degree of scale-free trees with parameter r > 0. Then

∆(Tn)

n
1

1+r
→ µ (a.s.)

for some random variable µ (that is related to the degree distribution of Tn). Further

∆(Tn)− µn
1

1+r√
µn

1
1+r

d−→ N(0, 1).

In particular, we have no concentration if we just scale by average order of magnitude n
1

1+r . However, if we
subtract n

1
1+r µ then there is concentration (and a central limit theorem). The proof of this theorem relies

on martingale methods.

7.6 Tries
Tries are rooted trees which are used to store data which are labeled with a (possibly) infinite string of
symbols from a finite alphabet. For simplicity we first restrict ourselves to the binary alphabet {0, 1}.

Let x1 = (x10, x11, . . .), . . . ,xn = (xn0, xn1, . . .) ∈ {0, 1}ω be labels of n data. Each string xj defines
an infinite path in the (infinite) binary tree; 0 denotes to go to the left subtrees and 1 to go to the right subtree.
If the xj are different then each infinite path ends with a suffix path that is traversed by that string only.



Concentration Properties of Extremal Parameters 19

Let uj denote the node where the suffix part starts. Then we can trim the tree by cutting away everything
below node uj . The node uj becomes now a leaf representing xj . If we repeat this procedure for all labels
x1, . . . ,xn then we obtain a finite binary tree with n nodes, called the trie.

It is usual to assume that the strings follow the Bernoulli model with probability p ∈ (0, 1), or equiva-
lently they are obtained from a memoryless source on 2 symbols.

In the symmetric case the limiting distribution of the height is well-known, compare with Flajolet (46).

Theorem 21 Let Hn denote the height of tries in the symmetric case p = 1
2 . Then

P{Hn ≤ k} = exp
(
−2−(k−2 log2 n)−1

)
+ o(1).

Furthermore, as n→∞,
EHn = 2 log2 n+O(1), VHn = O(1)

and there exist η > 0 and c > 0 such that

P{|Hn − EHn| ≥ y} � e−η y

for all y ≥ 0.

This result is, in fact, quite easy to obtain, since the generating function of the height distribution is given
by

Hk(x) =
∑
n≥0

P{Hn ≤ k}x
n

n!
=
(
1 +

x

2k

)2k

which directly implies that

P{Hn ≤ k} =
n!
2kn

(
2k

n

)
.

However, in (46) this result is proved in a more general context for so-called b-tries.
Note that an infinite 0-1-string can be identified with the binary expansion of a real number in [0, 1] and

that the symmetric Bernoulli model is equivalent to uniform distribution on [0, 1]. Thus, there is a natural
generalization. One can consider a density f(x) on [0, 1] and take Xj iid according to that law. Devroye
(31) analyzed the corresponding trie and obtained a direct generalization of Theorem 21.

Theorem 22 Let Hn denote the height of tries of generated by iid labels with f(x) as a density on [0, 1]. If
C :=

∫ 1

0
f(x)2 dx <∞ then

P{Hn ≤ k} = exp
(
−C 2−(k−2 log2 n)−1

)
+ o(1).

Furthermore,
EHn = 2 log2 n+O(1).

If
∫ 1

0
f(x)2 dx = ∞ then EHn = ∞ for all n ≥ 2.

On the other hand Pittel (78) obtained a very general result in the asymmetric case in the case of anm-ary
alphabet with probability distribution p1, p2, . . . , pm.

Theorem 23 LetHn denote height of tries of generated by iid labels on anm-ary alphabet with probability
distribution p1, p2, . . . , pm and set

b =

(
m∑

i=1

p2
i

)− 1
2

.

Then

P{Hn ≤ k} = exp
(
−1

2
b−2(k−logb n)

)
+ o(1).

However, it is unknown whether the variance is bounded (as it is suggested by this result).
We finally want to mention that Devroye (33) applied Talagrand type inequalities to very general trie (and

PATRICIA trie) versions and obtained (weak) concentration just by the assumption that EHn →∞.
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7.7 Digital Search Trees
Digital search trees are again rooted trees which are used to store data which are labeled with a (possibly)
infinite string of symbols from a finite alphabet. Digital search trees are closely related to the Lempel-Ziv
scheme.

We will first restrict ourselves on the binary alphabet {0, 1}. Suppose that we have n data of that kind.
Then the digital search tree algorithm runs as follows. The empty string is stored in the root, while the
first item occupies the right or left child of the root depending whether its first symbol is “1” or “0”. The
remaining items are always stored in the next available node according to the rule that we move to the right
if the next symbol is “1” and we move to the left if the next symbol is “0”. In the same way we can also
search for a specific item. (For more details see (61) and (66).)

As above we assume that the 0-1-strings follow the Bernoulli model with probability p ∈ (0, 1) With
respect to this probabilistic model many parameters of digital search trees have been very well studied,
compare (again) with (61) and (66). However, it turns out that the symmetric case is much more easy to
handle than the asymmetric case.

The following theorem is due to the author (39) (compare also with (60) for a formal asymptotic but
non-rigorous approach).

Theorem 24 Let Hn denote the height of digital search trees in the symmetric case p = 1
2 . Then there

exists a sequence kn that is asymptotically given by

kn = log2 n+
√

2 log2 n− log2

(√
2 log2 n

)
+O(1)

such that
P{kn ≤ Hn ≤ kn + 1} = 1 + o(1).

Furthermore, if 0 ≤ y ≤ c1
√

log n (for some constant c1 > 0) then there exist constants c2, c3 > 0 with

P{|Hn − kn| ≥ y} ≤ c2 e
−yc3

√
log2 n.

This answers a question that is contributed to Kesten (see (5)). The height is concentrated at at most two
consecutive levels (and we have extremely small tail estimates).

It is expected that the height is also strongly concentrated in the asymmetric case. But it seems that this
is very difficult to prove. The only known result on the height is due to Pittel (77) who has proved that the
height of digital search trees with labels on an m-ary alphabet with probability distribution p1, p2, . . . , pm

satisfies
Hn

log n
→ 1

min
1≤j≤m

log 1/pj
a.s.

We also want to mention a universal approach to random trees by Devroye (34) that covers several kinds
of trees: m-ary search trees, tries, digital search trees, quadtrees etc. For example, the height Hn of these
so-called split trees always satisfies the relation

Hn

log n
→ c

in probability (for some computable constant c > 0). It is believed that all split trees have the property that
the height is strongly concentrated.

8 The Height of Scale Free Trees
We finally present a proof of the strong concentration property of the height scale-free trees. It is (again)
remarkable that it is easier to prove concentration than to provide precise asymptotics for the expected
height.

We first recall that scale-free trees are a special case of increasing trees that have been introduced by
Bergeron, Flajolet, and Salvy (10). There one considers the class of all planar recursive trees and associates
a weight to these trees in the following way. Let ψj , j ≥ 0, be a given sequence of non-negative numbers
with ψ0 > 0. Then the weight ω(t) of a recursive tree t is defined by

ω(t) =
∏
j≥0

ψ
Dj(t)
j ,
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where Dj(t) denotes the number of nodes in t with j successors. Let Jn denote the set of recursive trees of
size n then we set

yn =
∑
t∈Jn

ω(t)

and

y(z) =
∑
n≥0

yn
zn

n!
.

By definition it is clear that the generating function y(z) satisfies the differential equation

y′(z) = Ψ(y(z)), y(0) = 0, (37)

where
Ψ(w) =

∑
j≥0

ψjw
j .

The weights ω(t) induce a natural probability model on Jn. The probability of a tree t ∈ Jn is given by
Pn(t) = ω(t)/yn.

For Ψ(w) = (1 + w)2 we recover binary search trees (as binary increasing trees) and with Ψ(w) = ew

we can model random recursive trees. Further, if we use Ψ(w) = (1−w)−r then we exactly get scale-free
trees.

This can be seen in the following way. In a recent paper Panholzer and Prodinger (75) proved that there
are exactly three families where the sequence Pn of probability measures on Jn is induced by a (natural)
tree evolution process (described below) if and only if Ψ(t) has one of the three forms:

• Ψ(w) = ψ0 (1 + (ψ1/(dψ0))w)d for some d ∈ {2, 3, . . .} and ψ0 > 0, ψ1 > 0.

• Ψ(w) = ψ0e
ψ1
ψ0

w with ψ0 > 0, ψ1 > 0.

• Ψ(w) = ψ0

(
1− ψ1

rφ0
w

)−r

for some r > 0 and ψ0 > 0, ψ1 > 0.

The corresponding tree evolution process runs as follows The starting point is (again) one node (the root)
with label 1. Now assume that a tree t is size n is present. We attach to every node v of t a local weight
ρ(v) = (k+1)ψk+1ψ0/ψk when v has k successors and set ρ(t) =

∑
v∈t ρ(v). Observe that in a planar tree

there are k+1 different ways to attack a new (labeled) node to an (already existing) node with k successors.
Now choose a node v in t according to the probability distribution ρ(v)/ρ(t) and then independently and
uniformly one of the k+1 possibilities to attach a new node there (when v has k successors). This construc-
tion ensures that in these three particular cases a tree t of size n that occurs with probability proportional to
ω(t) generates a tree t′ of size n+ 1 with probability that is proportional to ω(t)ψk+1ψ0/ψk which equals
ω(t′). Thus, this procedure induces the same probability distribution on Jn as the above mentionen one
where a tree t ∈ Jn has probablility ω(t)/yn.

Note that if we are only interested in the distributions Pn then we can work (without loss of generality)
with some special values for ψ0 and ψ1. It is sufficient to consider the generating functions

• Ψ(w) = (1 + w)d for some d ∈ {2, 3, . . .} (d-ary increasing trees).

• Ψ(w) = ew (recursive trees).

• Ψ(w) = (1− w)−r for some r > 0 (scale-free trees).

In the third class, the probabilty of choosing a node with out-degree j is proportional to j + r (as a short
calculation shows).

In particular, this shows that scale-free trees have two completely different ways of description, the tree
evolution process and the recursive description (splitting at the root) that corresponds to (37).

In our case (Ψ(w) = (1 − w)−r) the generating function y(z) =
∑

n≥1 ynz
n/n! satisfies y′(z) =

(1− y(z))−r and is explicitly given by

y(z) = 1−
(
1− (r + 1)z

)1/(r+1)
.
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The coefficients are also explicit:

yn = n!(−1)n−1(r + 1)n

(
1/(r + 1)

n

)
.

The advantage of the recursive description is that one can also get a recurrence of the generating functions
of the height distribution. If we set

yk(z) =
∑
n≥0

ynP{Hn ≤ k}z
n

n!

then we have y0(z) = 0 and recursively

y′k+1(z) =
1

(1− yk(z))r
(yk+1(0) = 0).

By taking derivatives it follows that

y′′k+1(z) = r
(
y′k+1(z)

)1+ 1
r y′k(z).

If we set
Yk(z) = y′k(z)

then we have Y1(z) = 1 and the recurrence relation

Y ′
k+1(z) = r Yk+1(z)1+

1
r Yk(z) (Yk+1(0) = 1). (38)

Note further that the functions Yk(z) encodes the height distribution, too:

Yk(z) = y′k(z) =
∑
n≥0

yn+1P{Hn+1 ≤ k}z
n

n!
.

The first lemma is one of the key properties of the proof. It will provide us upper and lower bounds.

Lemma 1 Suppose that Y1(z), Y2(z), Y 1(z), Y 2(z) are non-negative continuous functions that are de-
fined for z ≥ 0 such that Y1(0) < Y 1(0), Y2(0) < Y 2(0), Y ′

2(z) = r Y2(z)1+
1
r Y1(z), Y

′
2(z) =

r Y 2(z)1+
1
r Y 1(z), and that the difference Y 1(z)−Y1(z) has exactly one positive zero. Then the difference

Y 2(z)− Y2(z) has at most one positive zero.

Proof: For j = 1, 2 set

yj(z) =
∫ z

0

Yj(t) dt and yj(z) =
∫ z

0

Y j(t) dt.

Then we have y1(z) < y1(z), y2(z) < y2(z) (at least) for a small interval 0 < z < ζ and also y′2(z) =
(1−y1(z))−r and y′2(z) = (1−y1(z))−r. Furthermore, since Y 1(z)−Y1(z) is positive (for small positive
z) and has at most one positive zero, the same follows for

y1(z)− y1(z) =
∫ z

0

(
Y 1(t)− Y1(t)

)
dt,

This can be seen in the following way. Suppose that Y 1(z) ≥ Y1(z) for 0 ≤ z ≤ z0 and Y 1(z) ≤ Y1(z)
for z ≥ z0, that is, z0 is the only (positive) zero of the difference Y 1(z) − Y1(z). Since y′1(z) − y′1(z) =
Y 1(z) − Y1(z) the same is true for the difference y′1(z) − y′1(z). Hence, the difference y1(z) − y1(z) is
increasing for 0 ≤ z ≤ z0 and decreasing for z ≥ z0. Since y1(0) > y1(0) it directly follows that the
difference y1(z)− y1(z) has at most one zero.

Now observe that ((1− y)−r − (1− z)−r/(y − z) > 0 for real y, z < 1. Hence,

Y 2(z)− Y2(z) = y′2(z)− y′2(z) =
(1− y1(z))−r − (1− y1(z))−r

y1(z)− y1(z)
(y1(z)− y1(z))

has at most one positive zero, too. 2
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Lemma 2 The sequence Yk(1/(r + 1)) is log-concave, that is,

Yk+2(1/(r + 1))
Yk+1(1/(r + 1))

≤ Yk+1(1/(r + 1))
Yk(1/(r + 1))

.

Proof: For 0 ≤ γ < 1 set

Vk(z, γ) =

{
(1− (r + 1)z)−r/(r+1) for 0 ≤ z ≤ 1

r+1 (1− γ),

γ−r/(r+1)Yk

(
z− 1

r+1 (1−γ)

γ

)
for 1

r+1 (1− γ) ≤ z ≤ 1
r+1 .

These functions satisfy
V ′

k+1(z, γ) = r Vk+1(z, γ)1+
1
r Vk(z, γ),

Vk(0) = 1 and Vk(1/(r + 1), γ) = γ−r/(r+1)Yk(1/(r + 1)). In particular, for

γk =
(

Yk(1/(r + 1))
Yk+1(1/(r + 1))

)1+ 1
r

we have Vk(1/(r+1), γk) = Yk+1(1/(r+1)). Now inductive application of Lemma 1 shows that Yk+1(z)−
Vk(z, γ) has (at most) one positive zero. Since Vk(1/(r + 1), γk) = Yk+1(1/(r + 1)) this implies that

Yk+1(z) ≤ Vk(z, γk) for 0 ≤ z ≤ 1
r + 1

and after integration

Yk+2(1/(r + 1)) ≤ Vk+1(1/(r + 1), γk) = γ
−r/(r+1)
k Yk+1(1/(r + 1)) =

Yk+1(1/(r + 1))2

Yk(1/(r + 1))
.

This completes the proof of the lemma. 2

Note that Lemma 2 shows that the sequence Yk+1(1/(r+1))/Yk(1/(r+1)) has a limit ρ ≥ 1. The next
step is to show that this limit is actually > 1. This will be done with help of the next lemma.

Lemma 3 For 0 ≤ z < 1
r+1 and k ≥ 1 we have

Y (z)− Yk(z) ≤
(

2r + 1
r + 1

)k∑
`≥k

1
`!

(
log

1
1− (r + 1)z)

)`

. (39)

Proof: We proceed by induction. Since Y1(z) = 1 and (1 − (r + 1)z)−r/(r+1) ≤ (1 − (r + 1)z)−1 we
immediately get (39) for k = 1. Now, we can inductively use

Y (z)′ − Yk+1(z)′ = r
(
Y (z)2+

1
r − Yk+1(z)1+

1
r Yk(z)

)
≤ r

(
Y (z)2+

1
r − Yk(z)2+

1
r

)
≤ r

(
2 +

1
r

)
Y (z)1+

1
r (Y (z)− Yk(z))

= (2r + 1)
1

1− (r + 1)z
(Y (z)− Yk(z))

to complete the proof of (39). 2

Lemma 4 For every C with 1 < C < er/(r+1) that satisfies C >
(
2 + 1

r

)
e logC we have

Yk+1(1/(r + 1))
Yk(1/(r + 1))

≥ C (40)

for all k ≥ 1.
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Note that if C is close to 1 then the condition C >
(
2 + 1

r

)
e logC is surely satisfied.

Proof: Set c = C−r/(r+1) and z0 = 1
r+1 (1− ck). Then log 1

c < 1 and we get from (39)

Y (z0)− Yk(z0) ≤
(

2r + 1
r + 1

)k∑
`≥k

1
`!

(
k log

1
c

)`

≤ c1

(
2r + 1
r + 1

)k (k log 1
c

)k
k!

≤ c1

(
2r + 1
r + 1

e log
1
c

)k

= c1

((
2 +

1
r

)
e logC

)k

,

where c1 > 0. On the other hand we have Y (z0) = Ck. Since C >
(
2 + 1

r

)
e logC this implies that

Yk(1/(r + 1)) ≥ Yk(z0) ≥ Ck(1 + o(1)).

Thus, the limit has to be bounded by

ρ = lim
k→∞

Yk+1(1/(r + 1))
Yk(1/(r + 1))

≥ C.

Consequently (40) follows from Lemma 2. 2

In a next step we will prove bounds for P{Hn ≤ k}.

Lemma 5 If n ≥ Yk(1/(r + 1))1+
1
r then

P{Hn ≤ k} = O
(
Yk(1/(r + 1)) · n−r/(r+1)

)
. (41)

Conversely if n ≤ Yk(1/(r + 1))1+
1
r then

P{Hn > k} = O
(
Yk(1/(r + 1))−1− 1

r · n
)
. (42)

Proof: Let zk be defined by Y (zk) = Yk(1/(1 + r)). Set ηk = Yk(1/(1 + r)). Then

zk =
1

r + 1

(
1− η

−1− 1
r

k

)
.

Further set Ỹ (z) = (zk(r + 1))r/(r+1)Y (zk(r + 1)z). Then Ỹ (0) < 1 = Yk(0) and

Ỹ ′(z) = rỸ (z)2+
1
r .

Hence, a successive application of Lemma 1 implies that Ỹ (z) ≤ Yk(z) for 0 ≤ z ≤ zk and Ỹ (z) ≥ Yk(z)
for z ≥ zk. Further, by construction we know that P{Hn+1 ≤ k} ≤ P{Hn ≤ k}.

If z ≥ zk then

Ỹ (z) ≥ Yk(z)

≥
n−1∑
`=0

y`+1P{H`+1 ≤ k}z
`

`!

≥ P{Hn ≤ k}
n−1∑
`=0

y`+1
z`

`!

Now suppose that n ≥ η
1+ 1

r

k and use z = 1
r+1 . Then we have (after a short elementary calculation)

Ỹ (1/(r + 1)) ≤ c2ηk
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and
n−1∑
`=0

y`+1
(r + 1)`

`!
≥ c2n

r/(r+1)

(for some constants c2 > 0 and c3 > 0). Thus,

P{Hn ≤ k} ≤ c4ηkn
−r/(r+1).

Similarly we obtain an upper bound for P{Hn > k}. If 0 ≤ z ≤ zk then

Y (z)− Ỹ (z) ≥ Y (z)− Yk(z)

≥
∞∑

`=n−1

y`+1P{H`+1 > k}z
`

`!

≥ P{Hn > k}
∞∑

`=n−1

y`+1
z`

`!
.

Here we use z′ = 1
r+1

(
1− 1

n

)
. If n ≤ η

1+ 1
r

k then z′ ≤ zk and we get (again after a short elementary
calculation)

Y (z′)− Ỹ (z′) ≤ c5n
1+ r

r+1 η
−1− 1

r

k

and
∞∑

`=n−1

y`+1
(z′)`

`!
≥ c6 n

r/(r+1)

(for some constants c5 > 0 and c6 > 0). Of course this proves

P{Hn > k} ≤ c7η
−1− 1

r

k n

and completes the proof of the lemma. 2

By combining Lemma 4 and Lemma 5 we finally obtain exponential tail estimates.

Lemma 6 Let k(n) := max{` ≥ 1 : Y`(1/(r + 1))1+
1
r ≤ n}. Then

EHn = k(n) +O(1) (43)

and there exist η > 0 and c > 0 such that

P{|Hn − EHn| > y} ≤ ce−ηy

for all y > 0.

Proof: From Lemma 4 we get for all ` ≥ 0

Yk(n)+`(1/(r + 1))
Yk(n)(1/(r + 1))

≥ C`

and consequently (42) gives

P{Hn > k(n) + `} ≤ c8Yk(n)+`(1/(r + 1))−1− 1
r n

≤ c8 C
r+1
r ` Yk(n)(1/(r + 1))−1− 1

r n

≤ c9C
− r+1

r `.

Similarly we get (with help of Lemma 4 and (41))

P{Hn ≤ k(n)− `} ≤ c10C
−`.

Thus, there exist η > 0 and c > 0 with

P{|Hn − k(n)| ≥ y} ≤ ce−ηy



26 Michael Drmota

for all y > 0. Of course this implies the lemma. 2

The above proof provides stong concentration around the mean but it does not say where the mean value
actually is. We only know that it is related to the growth of Yk(1/(r + 1)), compare with (43). Thus one
has to analyze the recurrence (38) in more detail. One essential tool to do this is the function G(r)(y) that
is defined in (36). Namely, if we set

Y k(z) = α
rk
1+rΦ

(
αk(ρ− z)

)
where α = e1/cr and

Φ(u) =
1

(r + 1)
r

1+r Γ
(

r
1+r

) ∫ ∞

0

G(r)(y)y−
1

1+r e−yu dy

then we have
Y
′
k+1(z) = r

(
Y k+1(z)

)1+ 1
r Y k(z),

0 < Y k(0) < 1 and Y k(1/(r + 1)) = αrk/(1+r).
Thus, the sequence of function Y k(z) satisfies the same recurrence as Yk(z) and, in fact, it is possible to

approximate Yk(z) with help of Y k(z) in some way. Since we have direct access to Y k(1/(r+ 1)) we also
get some information on Yk(1/(r + 1)) which determines the expected value. Further, it is also possible to
approximate the coefficients of Yk(z) in terms of the coefficients of Y k(z) which provides the asymptotic
distribution of Hn. However, this step is very technical, compare with (38).
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Études Sci. Publ. Math. 81 (1995), 73–205.

[90] S. M. Ulam, Monte Carlo calculations in problems of mathematical physics, in: Modern Mathematics
for the Engineers, E. F. Beckenbach ed., McGraw-Hill, 261–281, 1961.

[91] A. M. Vershik and S. V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and
the limiting form of Young tables, Soviet Math. Dokl. 18 (1977), 527–531.


	Introduction
	Types of Concentration
	No Concentration
	``Weak'' Concentration
	``Strong'' Concentration
	``Very Strong'' Concentration

	The Chromatic Number of Random Graphs
	Talagrand's Inequality and the Travelling Salesman Problem
	The Longest Increasing Subsequence in Random Permutations
	Diameter and Maximum Degree in Random Graphs
	G(n,p)-Random Graphs
	Scale-Free Random Graphs

	Height and Maximum Degree in Random Trees
	Galton-Watson Trees
	Pólya Trees
	m-Ary Search Trees
	Recursive Trees
	Scale-Free Trees
	Tries
	Digital Search Trees

	The Height of Scale Free Trees

