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1 Introduction

Let G be a graph. (All graphs considered are finite, simple and undirected.) The vertex and edge sets of

G are denoted by V (G) and E(G), respectively. The minimum and maximum degree of G are denoted

by δ(G) and ∆(G), respectively. The density of G is η(G) := |E(G)|/|V (G)|.
A vertex ordering of G is a bijection σ : V (G) → {1, 2, . . . , |V (G)|}. In a vertex ordering σ of G,

let Lσ(e) and Rσ(e) denote the endpoints of each edge e ∈ E(G) such that σ(Lσ(e)) < σ(Rσ(e)).
Where the vertex ordering σ is clear from the context, we will abbreviate Lσ(e) and Rσ(e) by Le and Re,

respectively. For edges e and f of G with no endpoint in common, there are the following three possible

relations with respect to σ, as illustrated in Figure 1:

(a) e and f nest if σ(Le) < σ(Lf ) < σ(Rf ) < σ(Re),

(b) e and f cross if σ(Le) < σ(Lf ) < σ(Re) < σ(Rf ),

(c) e and f are disjoint if σ(Le) < σ(Re) < σ(Lf ) < σ(Rf ).
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(a) nested (b) crossing (c) disjoint

Fig. 1: Relationships between pairs of edges with no common endpoint in a vertex ordering.

A queue in σ is a set of edges Q ⊆ E(G) such that no two edges in Q are nested. Observe that when

traversing σ from left to right, the left and right endpoints of the edges in a queue are reached in first-in-

first-out order—hence the name ‘queue’. Observe that Q ⊆ E(G) is a queue if and only if for all edges

e, f ∈ Q,

σ(Le) ≤ σ(Lf ) and σ(Re) ≤ σ(Rf ) , (1)

or σ(Lf ) ≤ σ(Le) and σ(Rf ) ≤ σ(Re) .

A k-queue layout of G is a pair

(σ, {Q1, Q2, . . . , Qk})

where σ is a vertex ordering of G, and {Q1, Q2, . . . , Qk} is a partition of E(G), such that each Qi is a

queue in σ. The queue-number of a graph G, denoted by qn(G), is the minimum k such that there is a

k-queue layout of G.

Queue layouts were introduced by Heath et al. [15, 19]. Applications of queue layouts include sorting

permutations [12, 20, 22, 24, 27], parallel process scheduling [3], matrix computations [23], and graph

drawing [4, 6]. Other aspects of queue layouts have been studied in the literature [7, 9, 10, 13, 25, 26].

Queue layouts of directed graphs [5, 11, 17, 18] and posets [16] have also been investigated.

Table 1 describes the best known upper bounds on the queue-number of various classes of graphs.

Planar graphs are an interesting class of graphs for which it is not known whether the queue-number is

bounded (see [6, 23]).

This paper studies queue layouts of graph products and graph powers. To prove optimality we use the

following lower bound by Heath and Rosenberg [19]. See Pemmaraju [23] and Dujmović and Wood [9]

for slightly more exact lower bounds.

Lemma 1 ([19]) Every graph G has queue-number qn(G) > η(G)/2.

This paper is organised as follows. In Section 2 we introduce the concepts of strict queue layout and

strict queue-number. Many of the upper bounds on the queue-number that are presented in later sections

will be expressed as functions of the strict queue-number. In Section 3 we prove bounds on the queue-

number of the power of a graph in terms of the queue-number of the underlying graph. In Section 4 we

define the graph products that will be studied in later sections. In Section 5 we study the queue-number of

the cartesian product of graphs. Finally in Section 6 we study the queue-number of the direct and strong

products of graphs.

‡ Dujmović and Wood [8] gave a simple proof of this result.
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Tab. 1: Upper bounds on the queue-number.

graph family queue-number reference

n vertices ⌊n
2 ⌋ Heath and Rosenberg [19]

m edges e

√
m Dujmović and Wood [9]

tree-width w 3w · 6(4w−3w−1)/9 − 1 Dujmović et al. [6]

tree-width w, max. degree ∆ 36∆w Wood [29]

path-width p p Dujmović et al. [6]

band-width b ⌈ b
2⌉ Heath and Rosenberg [19]

track-number t t − 1 Dujmović et al. [6]

2-trees 3 Rengarajan and Veni Madhavan [25]‡

k-ary butterfly ⌊k
2 ⌋+1 Hasunuma [14]

d-ary de Bruijn d Hasunuma [14]

Halin 3 Ganley [13]

X-trees 2 Heath and Rosenberg [19]

outerplanar 2 Heath et al. [15]

arched levelled planar 1 Heath et al. [15]

trees 1 Heath and Rosenberg [19]

2 Strict Queue Layouts

Let σ be a vertex ordering of a graph G. We say an edge e is inside a distinct edge f , and e and f overlap,

if

σ(Lf ) ≤ σ(Le) < σ(Re) ≤ σ(Rf ) .

A set of edges Q ⊆ E(G) is a strict queue in σ if no edge in Q is inside another edge in Q. Alternatively,

Q is a strict queue in σ if

σ(Le) < σ(Lf ) and σ(Re) < σ(Rf ) , (2)

or σ(Lf ) < σ(Le) and σ(Rf ) < σ(Re) .

Note that Equation (2) is obtained from Equation (1) by replacing “≤” by “<”.

Hence a strict queue is a set of edges, no two of which are nested or overlapping, as illustrated in

Figure 2. Note that edges forming a ‘butterfly’ can be in a single strict queue.

(a) butterfly (b) left overlap (c) right overlap

Fig. 2: Relationships between pairs of edges with a common endpoint in a vertex ordering.

A strict k-queue layout of G is a pair (σ, {Q1, Q2, . . . , Qk}) where σ is a vertex ordering of G, and

{Q1, Q2, . . . , Qk} is a partition of E(G), such that each Qi is a strict queue in σ. We sometimes write
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queue(e) = i for each edge e ∈ Qi. The strict-queue-number of a graph G, denoted by sqn(G), is the

minimum k such that there is a strict k-queue layout of G.

Heath and Rosenberg [19] proved that a fixed vertex ordering of a graph G admits a k-queue layout of

G if and only if it has no (k + 1)-edge rainbow, where a rainbow is a set of pairwise nested edges, as

illustrated in Figure 3(a). Consider the analogous problem for strict queues: assign the edges of a graph G
to the minimum number of strict queues given a fixed vertex ordering σ of G. As illustrated in Figure 3(b),

a weak rainbow in σ is a set of edges R such that for every pair of edges e, f ∈ R, e is inside f or f is

inside e.

(a) (b)

Fig. 3: (a) rainbow, (b) weak rainbow

Lemma 2 A vertex ordering of a graph G admits a strict k-queue layout of G if and only if it has no

(k + 1)-edge weak rainbow.

Proof: A strict k-queue layout has no (k + 1)-edge weak rainbow since each edge of a weak rainbow

must be in a distinct strict queue. Conversely, suppose we have a vertex ordering with no (k + 1)-edge

weak rainbow. For every edge e ∈ E(G), let queue(e) be one plus the maximum number of edges in a

weak rainbow consisting of edges that are inside e. If e is inside f then queue(e) < queue(f). Hence

we have a valid strict queue assignment. The number of strict queues is at most k. ✷

A linear forest is a graph in which every component is a path. The linear arboricity of a graph G,

denoted by la(G), is the minimum integer k such that E(G) can be partitioned in k linear forests; see

[1, 2, 30, 31]. We have the following lower bounds on sqn(G).

Lemma 3 The strict queue-number of every graph G satisfies:

(a) sqn(G) ≥ la(G) > η(G),

(b) sqn(G) ≥ la(G) ≥ ∆(G)/2, and

(c) sqn(G) ≥ δ(G).

Proof: Say Q is a strict queue in a vertex ordering σ of G. Every 2-edge path (u, v, w) in Q has σ(u) <
σ(v) < σ(w) (or σ(w) < σ(v) < σ(u)). Thus no vertex is incident to three edges in Q, and Q induces a

linear forest. Hence la(G) ≤ sqn(G).
Since a linear forest in G has at most |V (G)| − 1 edges, la(G) ≥ |E(G)|/(|V (G)| − 1) > η(G). This

proves (a). At most two edges incident to each vertex are a linear forest. Thus la(G) ≥ ∆(G)/2. This

proves (b).
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In every vertex ordering of G, every edge incident to the first vertex is in a distinct strict queue. Hence

sqn(G) ≥ δ(G). This proves (c). ✷

Obviously a proper edge (∆(G) + 1)-colouring [28] can be combined with a qn(G)-queue layout to

obtain a strict queue layout.

Lemma 4 Every graph G has strict queue-number sqn(G) ≤ (∆(G) + 1) · qn(G). ✷

3 Graph Powers

Let G be a graph, and let d ∈ Z
+. The d-th power of G, denoted by Gd, is the graph with vertex set

V (Gd) = V (G), where vw ∈ E(Gd) if and only if the distance between v and w in G is at most d. The

following general result is similar to a theorem of Dujmović and Wood [10].

Theorem 1 For every graph G and d ∈ Z
+,

qn(Gd) ≤ (2 sqn(G))d+1 − 1

2 sqn(G) − 1
− sqn(G) − 1 .

Proof: Let σ be the vertex ordering in a strict sqn(G)-queue layout of G. Consider σ to be a vertex

ordering of Gd. For every pair of vertices v, w ∈ V (G) with σ(v) < σ(w) and at distance ℓ ≤ d, fix a

path P (vw) from v to w in G with exactly ℓ edges. Suppose P (vw) = (x0, x1, . . . , xℓ), where v = x0

and w = xℓ. For each 1 ≤ i ≤ ℓ, let dir(xi−1xi) be ‘+’ if σ(xi−1) < σ(xi), and ‘−’ otherwise. Let

f(vw) be the vector

f(vw) =
[

(

queue(xi−1xi), dir(xi−1xi)
)

: 1 ≤ i ≤ ℓ
]

.

Consider two edges vw, pq ∈ E(Gd) with f(vw) = f(pq). Then |P (vw)| = |P (pq)|. Let P (vw) =
(x0, x1, . . . , xℓ) and P (pq) = (y0, y1, . . . , yℓ). We have dir(x0x1) = dir(y0y1) and queue(x0x1) =
queue(y0y1). Thus x0 6= y0. Without loss of generality σ(x0) < σ(y0). By Equation (2), σ(x1) <
σ(y1). In general, σ(xi−1) < σ(yi−1) implies σ(xi) < σ(yi), since queue(xi−1xi) = queue(yi−1yi)
and dir(xi−1xi) = dir(yi−1yi). By induction, σ(xi) < σ(yi) for all 0 ≤ i ≤ ℓ. In particular, σ(w) <
σ(q). Thus vw and pq can be in the same strict queue. If we partition the edges of Gd by the value of f
we obtain a strict queue layout of Gd. The number of queues is

d
∑

ℓ=1

(2 sqn(G))ℓ =
(2 sqn(G))d+1 − 1

2 sqn(G) − 1
− 1 .

Observe that for the edges of G we have counted 2 sqn(G) queues. Of course we need only sqn(G)
queues. Thus the total number of queues is as claimed. ✷

3.1 Powers of Paths and Cycles

In a vertex ordering σ of a graph G, the width of an edge e is σ(Re) − σ(Le). The bandwidth of σ is the

maximum width of an edge of G. The bandwidth of G, denoted by bw(G), is the minimum bandwidth

of a vertex ordering of G. Alternatively, bw(G) = min{k : G ⊆ P k
n} for every n-vertex graph G.
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Heath and Rosenberg [19] observed that edges whose widths differ by at most one are not nested. Thus

qn(G) ≤ ⌈bw(G)/2⌉, as mentioned in Table 1. In a vertex ordering, edges with the same width are not

nested or overlapping, and thus form a strict queue. The next lemma follows.

Lemma 5 Every graph G has strict queue-number sqn(G) ≤ bw(G). ✷

We have the following results that give more precise bounds on the queue-number and strict-queue-

number of powers of paths and cycles than Theorem 1.

Lemma 6 The k-th power of a path Pn (n ≥ k + 1) has queue-number qn(P k
n ) = ⌈k/2⌉ and strict

queue-number sqn(P k
n ) = k

Proof: The bandwidth of a graph G can be thought of as the minimum integer k such that G ⊆ P k
n . Thus

the upper bound is nothing more than the result qn(G) ≤ ⌈bw(G)/2⌉ of Heath and Rosenberg [19]. The

lower bound follows since P k
n contains a (k + 1)-clique, which contains ⌈k/2⌉ pairwise nested edges in

any vertex ordering, all of which must be assigned to distinct queues.

The natural vertex-ordering of P k
n has no (k+1)-edge weak rainbow. Thus sqn(P k

n ) ≤ k by Lemma 2.

The lower bound follows since P k
n contains a (k + 1)-clique, which contains a k-edge weak rainbow in

any vertex ordering. ✷

A graph is unicyclic if every connected component has at most one cycle. Heath and Rosenberg [19]

proved that any unicyclic graph has a 1-queue layout. In particular, every cycle has a 1-queue layout.

More generally,

Lemma 7 The k-th power of a cycle Cn (n ≥ 2k) has queue-number k
2 < qn(Ck

n) ≤ k, and strict

queue-number sqn(Ck
n) = 2k.

Proof: Observe that δ(Ck
n) = ∆(Ck

n) = 2k and η(Ck
n) = k. Thus the claimed lower bounds follow from

Lemmata 1 and 3. For the upper bounds, say Cn = (v1, v2, . . . , vn). By considering the vertex ordering

(v1, vn; v2, vn−1; . . . ; vi, vn−i+1; . . . ; v⌊n/2⌋, v⌈n/2⌉) , (3)

we see that Ck
n ⊂ P 2k

n . The result follows from Lemma 6. ✷

4 Graph Products

Let G1 and G2 be graphs. Below we define a number of graph products whose vertex set is

V (G1) × V (G2) = {(a, v) : a ∈ V (G1), v ∈ V (G2)}) .

We classify a potential edge (a, v)(b, w) as follows:

• G1-edge: ab ∈ E(G1) and v = w.

• G2-edge: a = b and vw ∈ E(G2).

• direct edge: ab ∈ E(G1) and vw ∈ E(G2).
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The cartesian product G1 � G2 consists of the G1-edges and the G2-edges. The direct product G1×G2

consists of the direct edges. The strong product G1 ⊠ G2 consists of the G1-edges, the G2-edges, and the

direct edges. That is, G1 ⊠ G2 = (G1 � G2)∪ (G1×G2). Note that other names abound for these graph

products. Our notation is taken from the survey by Klavžar [21]. Assuming isomorphic graphs are equal,

each of the above three products are associative, and for instance, G1 � G2 � · · · � Gd is well-defined.

Figure 4 illustrates these three types of graphs products.

(a) P4 � K4 (b) P4 × K4 (c) P4 ⊠ K4

Fig. 4: Examples of graph products: (a) cartesian, (b) direct, (c) strong.

The following lemma is well-known and easily proved.

Lemma 8 For all graphs G1 and G2, the density satisfies

(a) η(G1 � G2) = η(G1) + η(G2),

(b) η(G1 × G2) = 2η(G1) · η(G2),

(c) η(G1 ⊠ G2) = 2η(G1) · η(G2) + η(G1) + η(G2).

5 The Cartesian Product

We have the following bounds on the queue-number of a cartesian product. In a vertex ordering σ of a

graph product, we abbreviate σ((v, a)) by σ(v, a).

Theorem 2 For all graphs G and H ,

qn(G � H) ≤ sqn(G) + qn(H) .
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Furthermore, if for some constant c we have sqn(G) ≤ c · η(G) and qn(H) ≤ c · η(H), then

qn(G � H) ≥ 1
2c

(

sqn(G) + qn(H)
)

.

Proof: First we prove the upper bound. Let σ be the vertex ordering in a strict sqn(G)-queue layout of

G. Let π be the vertex ordering in a qn(H)-queue layout of H . Let φ be the vertex ordering of G � H in

which φ(v, a) < φ(w, b) if and only if σ(v) < σ(w), or v = w and π(a) < π(b).
For all edges e of G and for all vertices a of H , we have φ(Le, a) < φ(Re, a). Similarly, for all edges

e of H and for all vertices v of G, we have φ(v, Le) < φ(v,Re).
Consider two G-edges (Le, a)(Re, a) and (Lf , b)(Rf , b) of G � H , for which e and f are in the same

strict queue of G. By Equation (2), without loss of generality, σ(Le) < σ(Lf ) and σ(Re) < σ(Rf ).
Thus φ(Le, a) < φ(Lf , b) and φ(Re, a) < φ(Rf , b). Hence for each strict queue in G, the corresponding

G-edges of G � H form a strict queue in φ.

Consider two H-edges (v, Le)(v,Re) and (w,Lf )(w,Rf ) of G � H , for which e and f are in the

same queue of H . By Equation (1), without loss of generality, π(Le) ≤ π(Lf ) and π(Re) ≤ π(Rf ). First

suppose that σ(v) ≤ σ(w). Then φ(v, Le) ≤ φ(w,Lf ) and φ(v,Re) ≤ φ(w,Rf ). Thus (v, Le)(v,Re)
and (w,Lf )(w,Rf ) are not nested in φ. Now suppose that σ(w) < σ(v). Then φ(w,Lf ) < φ(w,Rf ) <
φ(v, Le) < φ(v,Re). Thus (v, Le)(v,Re) and (w,Lf )(w,Rf ) are disjoint. Thus for each queue in H ,

the corresponding H-edges of G � H form a queue in φ. Therefore φ admits a (sqn(G)+qn(H))-queue

layout of G � H .

Now we prove the lower bound. By Lemmata 1 and 8(a), qn(G � H) > η(G � H)/2 = (η(G) +
η(H))/2. The result follows since η(G) ≥ 1

c sqn(G) and η(H) ≥ 1
c qn(H). ✷

Theorem 2 has the following immediate corollary.

Corollary 1 For all graphs G1, G2, . . . , Gd,

qn(G1 � G2 � · · · � Gd) ≤ qn(G1) +

d
∑

i=2

sqn(Gi) .

✷

5.1 Grids

A d-dimensional grid is a graph Pn1
� Pn2

� · · · � Pnd
, for all ni ≥ 1. Heath and Rosenberg [19]

determined the queue-number of every 2-dimensional grid.

Lemma 9 ([19]) Every 2-dimensional grid has queue-number one. ✷

A generalised d-dimensional grid is a graph G = P k
n1

� P k
n2

� · · · � P k
nd

, for all k ≥ 1 and

ni ≥ k + 1. Now P k
n has kn − k(k + 1)/2 edges. Thus η(P k

n ) = k − k(k+1)
2n . By Lemma 8(a),

η(G) =

d
∑

i=1

(k − k(k + 1)

2ni
) = dk − 1

2
k(k + 1)

d
∑

i=1

1

ni
. (4)

Lemma 9 generalises as follows.
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Theorem 3 For all d ≥ 2, the queue-number of a d-dimensional grid G = Pn1
� Pn2

� · · · � Pnd

satisfies:

d

4
≤ 1

2

(

d −
d
∑

i=1

1

ni

)

< qn(G) ≤ d − 1 .

Proof: The lower bound follows from Lemma 1 and Equation (4) with k = 1.

For the upper bound, we have qn(Pn1
� Pn2

) = 1 by Lemma 9. Obviously sqn(Pni
) = 1 for all

i ≥ 3. Thus qn(G) ≤ d − 1 by Corollary 1.

We now give an alternative proof of the upper bound using a different construction. The graph G can

be thought of as having vertex set {((x1, x2, . . . , xd) : 1 ≤ xi ≤ ni, 1 ≤ i ≤ d}, where two vertices

(x1, x2, . . . , xd) and (y1, y2, . . . , yd) are adjacent if and only if |xi − yi| = 1 for some i, and xj = yj for

all j 6= i. We say this edge is in the i-th dimension. For all s ≥ 0, let Vs be the set of vertices

Vs = {(x1, x2, . . . , xd) :

d
∑

i=1

xi = s} .

Order the vertices (V0, V1, . . . ), where each Vs is ordered lexicographically. If vw is an edge then v and

w differ in exactly one coordinate, and v ∈ Vs and w ∈ Vs+1 for some s. Thus if two edges vw and pq
are nested then v, p ∈ Vs and w, q ∈ Vs+1 for some s. Let Qi be the set of edges in the i-th dimension.

Consider two edges e and f in Qi. Say

e = (x1, x2, . . . , xd)(x1, . . . , xi−1, xi + 1, xi+1, . . . , xd) ,

and

f = (y1, y2, . . . , yd)(y1, . . . , yi−1, yi + 1, yi+1, . . . , yd) .

Without loss of generality (x1, x2, . . . , xd) ≺ (y1, y2, . . . , yd), which implies that

(x1, . . . , xi−1, xi + j, xi+1, . . . , xd) ≺ (y1, . . . , yi−1, yi + j, yi+1, . . . , yd) .

Thus e and f are not nested, and Qi is a queue. Hence we have a d-queue layout. (At this point we have

in fact proved that the lexicographical order admits a d-queue layout.)

We now prove that Qd−1∪Qd is a queue, and thus we obtain the claimed (d−1)-queue layout. Suppose

two edges e ∈ Qd−1 and f ∈ Qd are nested. Say

e = (x1, x2, . . . , xd)(x1, x2, . . . , xd−1 + 1, xd) ,

and

f = (y1, y2, . . . , yd)(y1, y2, . . . , yd−1, yd + 1) .

Then for some s, both (x1, x2, . . . , xd) and (y1, y2, . . . , yd) are in Vs, and both (x1, x2, . . . , xd−1 +1, xd)
and (y1, y2, . . . , yd−1, yd + 1) are in Vs+1.

Case 1. (x1, x2, . . . , xd) ≺ (y1, y2, . . . , yd): Let j be the first dimension for which xj < yj . If

j ≤ d − 2 then

(x1, x2, . . . , xd−2, xd−1 + 1, xd) ≺ (y1, y2, . . . , yd−1, yd + 1) ,
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which implies that e and f are not nested. Observe that j 6= d as (x1, x2, . . . , xd) and (y1, y2, . . . , yd)
differ in at least two coordinates, since

∑

i xi =
∑

i yi. Thus j = d − 1. That is,

xd−1 ≤ yd−1 − 1 . (5)

Since e and f are nested, we have (y1, y2, . . . , yd−1, yd + 1) ≺ (x1, x2, . . . , xd−2, xd−1 + 1, xd), which

implies that yd−1 ≤ xd−1 + 1. By Equation (5), xd−1 = yd−1 − 1. Since xd−1 + xd = yd−1 + yd, we

have xd = yd + 1, which implies that

(y1, y2, . . . , yd−1, yd + 1) = (x1, x2, . . . , xd−2, xd−1 + 1, xd) .

That is, the right-hand endpoints of e and f are the same vertex. Hence e and f are not nested.

Case 2. (y1, y2, . . . , yd) ≺ (x1, x2, . . . , xd): By the same argument employed above, the first coordi-

nate for which (y1, y2, . . . , yd) and (x1, x2, . . . , xd) differ is d − 1. That is,

yd−1 < xd−1 . (6)

Since e and f are nested, we have (x1, x2, . . . , xd−2, xd−1 + 1, xd) ≺ (y1, y2, . . . , yd−1, yd + 1). Thus

xd−1 + 1 < yd−1, which contradicts Equation (6). Hence e and f are not nested.

Therefore Q1, Q2, . . . , Qd−2, Qd−1 ∪ Qd is the desired (d − 1)-queue layout. ✷

More generally we have the following.

Theorem 4 The queue-number of a generalised d-dimensional grid G = P k
n1

� P k
n2

� · · · � P k
nd

(where ni ≥ k + 1) satisfies:

dk

4
≤ dk

2
− k(k + 1)

4

d
∑

i=1

1

ni
< qn(G) ≤

⌈

(d − 1
2 )k
⌉

.

Proof: By Lemma 6, qn(P k
n ) = ⌈k

2 ⌉ and sqn(P k
n ) ≤ k. Thus, the upper bound follows from Corollary 1.

Thus the lower bound follows from Lemma 1 and Equation (4). ✷

By Theorem 4 with k = n − 1 we have the following.

Corollary 2 The queue-number of the d-dimensional Hamming graph G = Kn � Kn � · · · � Kn

satisfies:
d(n − 1)

4
< qn(G) ≤

⌈

(d − 1
2 )(n − 1)

⌉

.

A generalised d-dimensional toroidal grid is a graph Ck
n1

� Ck
n2

� · · · � Ck
nd

for all k ≥ 1 and

ni ≥ 2k + 1.

Theorem 5 The queue-number of a generalised toroidal grid G = Ck
n1

� Ck
n2

� · · · � Ck
nd

(where

ni ≥ 2k + 1) satisfies:
kd

2
< qn(G) ≤ (2d − 1)k .

Proof: Since η(G) = kd, we have that qn(G) > kd
2 by Lemma 1. Thus qn(G) ≥ ⌊d

2⌋+1. By Lemma 7,

qn(Ck
n1

) ≤ k and sqn(Ck
n1

) ≤ 2k. By Corollary 1, qn(G) ≤ 2k(d − 1) + k = (2d − 1)k ✷
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6 Direct and Strong Products

We have the following bounds on the queue-number of direct and strong products.

Theorem 6 For all graphs G and H ,

qn(G × H) ≤ 2 sqn(G) · qn(H) .

Furthermore, if sqn(G) ≤ c · η(G) and qn(H) ≤ c · η(H), then

qn(G × H) > 1
c2 sqn(G) · qn(H) .

Proof: First we prove the upper bound. Let k := sqn(G), and let (σ, {Q1, Q2, . . . , Qk}) be a strict

k-queue layout of G. Let ℓ := qn(H), and let (π, {P1, P2, . . . , Pℓ}) be an ℓ-queue layout of H . For

1 ≤ i ≤ k and 1 ≤ j ≤ ℓ, let

E′
i,j := {(v, a)(w, b) ∈ E(G × H) : vw ∈ Qi, ab ∈ Pj , σ(v) < σ(w), π(a) < π(b)}

E′′
i,j := {(v, a)(w, b) ∈ E(G × H) : vw ∈ Qi, ab ∈ Pj , σ(v) < σ(w), π(b) < π(a)}

Then {E′
i,j , E

′′
i,j : 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ} is a partition of E(G × H) into 2kℓ sets. Let φ be the vertex

ordering of G × H in which φ(v, a) < φ(w, b) if and only if σ(v) < σ(w), or v = w and π(a) < π(b).
We claim that each set E′

i,j and E′′
i,j is a queue in φ.

Suppose that two edges (v, a)(w, b), (x, c)(y, d) ∈ E′
i,j are nested. Without loss of generality, φ(v, a) <

φ(x, c) < φ(y, d) < φ(w, b). If v 6= x and y 6= w, then σ(v) < σ(x) < σ(y) < σ(w), and the edges

vw, xy ∈ Qi are nested in σ. If v 6= x and y = w, then σ(v) < σ(x) < σ(y) = σ(w), and the edges

vw, xy ∈ Qi overlap in σ. If v = x and y 6= w, then σ(v) = σ(x) < σ(y) < σ(w), and the edges

vw, xy ∈ Qi overlap in σ. Each of these outcomes contradict the assumption that Qi is a strict queue in

σ. Otherwise v = x and y = w, in which case π(a) < π(c) < π(d) < π(b), and ab and cd are nested in

π. This contradicts the assumption that Pj is a queue in π. Thus each E′
i,j is queue in φ. By symmetry,

each E′′
i,j is also a queue in φ.

Now we prove the lower bound. Lemmata 1 and 8(b) imply that

qn(G × H) > η(G × H)/2 = η(G) · η(H) ≥ 1
c sqn(G) · 1

c qn(H) .

✷

Theorem 7 For all graphs G and H ,

qn(G ⊠ H) ≤ 2 sqn(G) · qn(H) + sqn(G) + qn(H) .

Furthermore, if sqn(G) ≤ c · η(G) and qn(H) ≤ c · η(H), then

qn(G ⊠ H) > 1
c2 sqn(G) · qn(H) + 1

2c

(

sqn(G) + qn(H)
)

.

Proof: To prove the upper bound, observe that the vertex ordering φ defined in Theorems 2 and 6 is the

same. By Theorem 2, φ admits a sqn(G) + qn(H)-queue layout of G � H . By Theorem 6, φ admits a
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2 sqn(G) · qn(H)-queue layout of G×H . Since G ⊠ H = (G � H)∪ (G×H), φ admits the claimed

queue layout of G ⊠ H .

For the lower bound, Lemmata 1 and 8(c) imply that

qn(G ⊠ H) > 1
2η(G ⊠ H) = η(G) · η(H) + 1

2 (η(G) + η(H)) ≥ 1

c
sqn(G) · 1

c
qn(H) .

✷
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