
2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc. AH, 2007, 333–342

One-sided Variations on Tries: Path
Imbalance, Climbing, and Key Sampling

Costas A. Christophi1 and Hosam M. Mahmoud 2
1Cyprus International Institute for the Environment and Public Health in association with Harvard School of Public 
Health, 1105, Nicosia, Cyprus; email: cchristophi@cyprusinstitute.org
2Department of Statistics, The George Washington University, Washington, D.C. 20052, U.S.A.; email: 
hosam@gwu.edu

received 26th February 2007, revised 19th January 2008

One-sided variations on path length in a trie (a sort of digital trees) are investigated: They include imbalance factors,
climbing under different strategies, and key sampling. For the imbalance factor accurate asymptotics for the mean are
derived for a randomly chosen key in the trie via poissonization and the Mellin transform, and the inverse of the two
operations. It is also shown from an analysis of the moving poles of the Mellin transform of the poissonized moment
generating function that the imbalance factor (under appropriate centering and scaling) follows a Gaussian limit law.
The method extends to several variations of sampling keys from a trie and we sketch results of climbing under different
strategies. The exact probability distribution is computed in one case, to demonstrate that such calculations can be
done, at least in principle.

Keywords: Random trees, digital trees, recurrence, Mellin transform, poissonization, depoissonization, singularity
analysis.

1 Introduction
This extended abstract summarizes results in Mahmoud (2007+) and Christophi and Mahmoud (2007+),
where one-sided measures relating to imbalance and trie climbing are treated. Imbalance in random binary
trees has come into the spotlight when Donald Knuth posed it as a question of interest in his keynote
address to the 2004 Workshop on Analysis of Algorithms, which convened at Berkeley, and the random
climbing of tries has been a subject that authors revisit from time to time. It was considered in Moon
(1970) and in Meir and Moon (1975, 1978).

Kuba and Panholzer (2007+) analyze the basic binary search models for imbalance. We carry out this
program a step further and study the imbalance of keys in one flavor of digital trees.

The subject of tree climbing has been revisited recently in Panholzer (2005), who considered several
classes of random trees, including simply generated families and Pólya trees. In these investigations, a
class of trees is considered, and a type of random walk on it is exercised. Starting at the root, certain nodes
are accessed, and at each node a randomly selected edge emanating from it is chosen at random (all edges
coming out of a node being equally likely). The process is perpetuated until it is no longer possible to
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proceed. When the process is stopped the path inscribed in the tree by climbing reaches a leaf. We shall
study the climbing path length in tries, under this and a few other strategies.

The binary trie is a basic digital tree structure well known to this community. For properties and uses
see Knuth (1998) or Mahmoud (1992). Suppose we have n ≥ 0 keys given in their dyadic representation.
We assume that the keys in the trie are independent and of infinite precision and within each the bits are
independent with p probability of a bit being 1, and q probability of being 0 (p+ q = 1). Thus, each key
can be viewed as an infinite sequence of Bernoulli trials. This model is often called the Bernoulli model.

2 The imbalance factor
The imbalance factor of a key is the number of right-going edges minus the number of left-going edges
on the path from the root of the tree to that key. We shall study ∆n, the imbalance factor of a randomly
chosen key in a digital tree constructed from n keys.

Let Ln and Rn be respectively the number of keys residing in the left and right subtrees, among the n
keys stored in the tree (so, Ln+Rn = n). In view of the Bernoulli model, Ln is distributed like a binomial
random variable on n independent trials with rate of success q in each. Owing to the independence of the
keys and the bits within, the recursion of the insertion algorithm preserves the probabilistic structure in
the subtrees of the trie.

Given Ln, ∆n can be ∆Ln minus one with probability Ln/n when the randomly chosen key is from
the left subtree, or ∆Rn plus one with probability Rn/n when the randomly chosen key is from the right
subtree. We thus have

∆n |Ln =


∆Ln − 1, with probability Ln

n ;

∆Rn + 1, with probability Rn
n ,

(1)

with boundary conditions ∆0 = ∆1 = 0.

2.1 Functional equations
We derive a functional equation for φn(t), the moment generating function of ∆n, from the basic condi-
tional recurrence (1):

E
[
e∆nt |Ln

]
= e−te∆Ln t × Ln

n
+ ete∆Rn t × Rn

n
,

with an unconditional expectation satisfying

nφn(t) := nE
[
e∆nt

]
= e−tE

[
Lne

∆Ln t
]

+ etE
[
Rne

∆Rn t
]
, (2)

valid for n ≥ 2. It is not straightforward to solve this recurrence. However, a poissonized version of the
problem is amenable to the Mellin transform (see Flajolet, Gourdon and Dumas, 1995). Subsequently, we
suppose that instead of fixed n, the number of keys to be stored in the tree, is first determined by a random
draw from a Poisson distribution with parameter z. Let Nz be such a random number.

We introduce the generating function Φ(t, z) = e−z
∑∞
n=0 nφn(t) z

n

n! , so that Φ(t, z) = E
[
NzφNz (t)

]
is the Poisson transform of the sequence nφn(t). We multiply both sides of (??) by zne−z/n!, and sum
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over n ≥ 2. We do the calculations on the right-hand side by conditioning on Ln, and get

Φ(t, z)− ze−z = e−te−z
∞∑
n=2

zn

n!

n∑
`=0

`φ`(t)q`pn−`
(
n

`

)

+ete−z
∞∑
n=2

zn

n!

n∑
r=0

rφr(t)prqn−r
(
n

r

)
= etΦ(t, pz) + e−tΦ(t, qz)− ze−z(pet + qe−t).

The function Φ(t, z) does not have a Mellin transform. However, the shifted function Ψ(t, z) :=
Φ(t, z)− ze−z does. The functional equation for Ψ is

Ψ(t, z) = etΨ(t, pz) + e−tΨ(t, qz) + pzet(e−pz − e−z) + qze−t(e−qz − e−z).

For the Mellin transform of a term like e−pz− e−z , we first write it as (e−pz−1)− (e−z−1) to facilitate
the computation in the desired existence strip. Subsequently, for small |t| we get

Ψ∗(t, s) =
Γ(s+ 1)[et(p−s − p) + e−t(q−s − q)]

1− etp−s − e−tq−s
, (3)

in the strip 〈−2,−s0(t)〉, where s0(t) is the unique real solution of the bivariate characteristic equation

1− etp−s − e−tq−s = 0. (4)

We restrict t to be in an interval around 0, so that the right edge of the strip intersects the real line at a
point contained in a small neighborhood of s = −1.

We shall see in Section 2.2 a shortcut to the calculation of the leading terms in the asymptotic expansion
of the mean and variance. We carry out in the next subsection a more detailed asymptotic expansion to
capture such refined details as an oscillating behavior in the mean.

2.2 The Mean
We can find all the poissonized (and ultimately depoissonized) moments from the Mellin transform of
the bivariate moment generating function. The kth derivative of (2) with respect to t, when evaluated at
t = 0, yields a functional equation for the Mellin transform of the poissonized kth moment of ∆n. An
accurate asymptotic expansion for the kth moment can then be recovered by the inverse Mellin transform
then depoissonization. We shall carry out this program on the first moment, keeping in mind that it can be
extended, only at the expense of increasing computational effort, to higher moments.

The first derivative of Ψ(t, z) is A1(z) := ∂
∂tΨ(t, z)

∣∣∣
t=0

= E
[
Nz∆Nz

]
, with the Mellin transform,

A∗1(s) = − (p− q)Γ(s+ 1)
1− p−s − q−s

,

existing in 〈−2,−1〉. The poissonized average is retrieved by the inversion

A1(z) =
1

2πi

∫ − 3
2 +i∞

− 3
2−i∞

A∗1(s)z−s ds.
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We evaluate this integral by “the method of closing the box” (see Szpankowski, 2001):

A1(z) = −
∑

Residues of poles in
〈
−3

2
, θ
〉

+O(z−θ), (5)

for some θ > 0.
This leaves us with residue calculation at the poles of the Gamma function, and the roots of the charac-

teristic equation 1−p−s−q−s = 0 which have been studied before (see the refined exposition in Drmota,
Reznik, Savari and Szpankowski (2007+)).

The results are conveniently expressed in terms of the entropy-like functions hp = −p ln p − q ln q,
and h̃p = p ln2 p+ q ln2 q. Let a = inf< sk>−1< sk be the smallest of any real part of a root lying to the
right of the fundamental strip 〈−2,−1〉. As θ is arbitrarily chosen, we can take θ > a. We next collect
contributions of the residues of the poles to the right of the fundamental strip, as required in (4). Note that
the contribution of all the poles to the right of s0 = −1 is O(z−a). Putting all residues together we get

E[Nz∆Nz ] = (p− q)
(z ln z
hp

+
( γ
hp

+
h̃p
2h2

p

+ β1(z)
)
z +O(z−a)

)
,

where, γ is Euler’s constant, and β1(.) is the function

β1(z) =


1
hp

∞∑
k=−∞
k 6=0

Γ
(2πikr

ln p

)
z−

2πikr
ln p ; if ln p

ln q = r
m , rational with gcd(r,m) = 1,

0; otherwise.

(6)

In all cases, β1(.) is a small absolutely bounded function.
All conditions for depoissonization (see Jacquet and Szpankowski (1998)) are satisfied.

Proposition 1 In a trie of n random keys following the Bernoulli model, the average imbalance factor of
a randomly selected key is

E[∆n] = (p− q)
( lnn
hp

+
γ

hp
+

h̃p
2h2

p

+ β1(n) +O
( 1
nmin{a+1,0.99999}

))
,

where β1(n) is the oscillating function given in (??), and a is the minimum among the real parts of
characteristic roots to the right of −1.

Remark: In principle, one could continue pumping the higher moments in this manner, but the computa-
tion becomes too involved.

2.3 Limit distribution
The bivariate characteristic equation (3) has an infinitely countable number of roots (sk(t), for k =
0,±1,±2, . . .) that depend on t. If t is chosen from a small interval around 0, and ln p/ ln q is an irrational
number, the equation has one real root s0(t), and < (sk) > s0(t), for all k 6= 0. But if ln p/ ln q = r/m
is rational (with r and m being two integers with gcd(r,m) = 1) the equation has an infinite number
of equispaced roots lined up on the vertical line located at s0(t). These roots are of the form s̃k(t) =
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s0(t) + 2πikr/ ln p, for k = 0 ± 1,±2, . . ., and move with t. The rest of the roots fall to the right of
s0(t). The functions sk(t) are continuous and infinitely differentiable. In particular the essential root s0(t)
has a Taylor series expansion s0(t) = s0(0) + s′0(0)t + 1

2s
′′
0(0)t2 + O(t3). The bivariate characteristic

equation (3) immediately gives s0(0) = −1. The first derivative of (3) gives us s′0(0) = −p−qhp and the
second one gives

−s′′0(0) =
1
hp

(
1 + 2s′0(0)(q ln q − p ln p)+

(
s′0(0)

)2
h̃p

)
, σ2
p =

pq ln2(pq)
h3
p

.

We shall consider the roots for a small range of t around 0. The inverse Mellin transform is Ψ(t, z) =
1

2πi

∫ − 3
2 +i∞

− 3
2−i∞

Ψ∗(t, s)z−s ds. Evaluating this integral by closing the box we have

Ψ(t, z) = Φ(t, z)− ze−z ∼ − Res
s=s0(t)

z−sΓ(s+ 1)[et(p−s − p) + e−t(q−s − q)]
1− etp−s − e−tq−s

.

Theorem 1 Let ∆n be the imbalance factor of a randomly chosen key in a random trie constructed from
n keys from a biased Bernoulli model. Then

∆n − p−q
hp

lnn
√

lnn
L−→ N

(
0,
pq ln2(pq)

h3
p

)
.

Proof . We restrict t to a range such that s0(t) falls in a small interval around −1. As t → 0, the
Gamma function valuation at s0(t) + 1 becomes very large, whereas, for k 6= 0, the valuation at sk(t) + 1
remains bounded. Thus, if we let t → 0, as we shall, the essential contribution comes from s0(t). After
depoissonization we have

nE
[
e∆nt

]
∼ n−s0(t)Γ(s0(t) + 1)[et(p−s0(t) − p) + e−t(q−s0(t) − q)]

etp−s0(t) ln p+ e−tq−s0(t) ln q
.

We take t = v/
√

lnn, for fixed v, and let n be very large. Using the expansions c−x−c ∼ −(c ln c)(x+
1), and Γ(x+ 1) ∼ 1

x+1 , as x→ −1, we obtain

E
[
e

∆n
v√
lnn
]
∼ n

−s0( v√
lnn

)−1

∼ e
−s′0(0) v lnn√

lnn
−s′′0 (0) v

2
2 .

So, we can write E
[
e

(∆n+s′0(0) lnn) v√
lnn
]
→ e−s

′′
0 (0) v

2
2 . The right-hand side in the latter relation is the

moment generating function of N
(
0,−s′′0(0)

)
, the normal random variate with mean 0 and variance

−s′′0(0). It follows from Lévy’s continuity theorem that ∆n+s′(0) lnn√
lnn

L−→ N
(
0,−s′′(0)

)
. 2
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3 Climbing a trie
We consider the climbing of tries under different strategies. We change the “model of randomness” from
the usual uniform choice of edges to a climbing model that conforms with the manner in which these tries
are randomly generated. The trie emerges from keys that are taken from a data generator that emits bits of
data with 1’s having probability p, and 0’s having probability q = 1− p. The process may not necessarily
end on a leaf, as it may terminate at a null node, but it always generates a key (not necessarily in the trie).

The interpretation of this climbing is that a typical key is being “sampled” from the data base. Hence,
we call this strategy typical climbing. In the absence of knowledge of the key generating probability, we
consider an alternative strategy called uninformed climbing in which we follow the right and left nexus
with equal probability. We also consider the case of sampling extremal data.

3.1 Typical climbing
In typical sampling, we climb a trie by following an algorithm that emulates the natural frequency of bits.
We start at the root and access nodes. At each node accessed we generate an independent Ber(p) random
variable. If this variable yields 0, we follow the left edge if it exists (otherwise, the climbing is stopped),
and if the value generated is 1, we follow the right edge if it exists (otherwise, the climbing is stopped).

Let Sn be the number of nodes on the path inscribed in the trie by the typical climbing, and let φn(t)
be its moment generating function. Note that Sn can be linked to the depth Dn. If we are inserting the
(n+ 1)st key this will follow the path of Sn. If the climbing terminates at an empty node, Sn and Dn+1

are the same, but if the climbing terminates at a key, we need to insert a number of additional nodes. This
number is geometrically distributed, but is dependent on Sn.

With Ln, Rn as before, the variable Sn satisfies a basic recurrence:

Sn |Ln =


1 + SLn , with probability q;

1 + SRn , with probability p.

Let φn(t) be the moment generating function of Sn. Towards poissonization we construct the super gen-
erating function A(z, t) =

∑∞
n=0

φn(t)
n! zn. With a development similar to what was done for imbalance

we get

A(z, t) = qetepzA(qz, t) + peteqzA(pz, t)
+ 1− et + zet − (p2 + q2)e2tz − 2pqetz.

To guarantee the existence of the Mellin transform, we deal with the shifted super moment generating
function B(z, t) = e−z(A(z, t) − 1). This has the interpretation: B(z, t) = E

[
eSN(z)t

]
− e−z, where

N(z) is a Poisson random variable with parameter z. Whence, we obtain the functional equation

B(z, t) = et
(
pB(pz, t) + qB(qz, t)

+p(e−pz − e−z) + q(e−qz − e−z) + (p2 + q2)ze−z
(
1− et

))
.

The Mellin transform of this function is

B∗(s, t) =
etΓ(s)

(
p−s+1 + q−s+1 − 1 + (p2 + q2)(1− et)s

)
1− et(p−s+1 + q−s+1)

,
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existing in the domain −1 < < s < s0(t), where s0(t) is the only real solution to

p−s+1 + q−s+1 = e−t.

We shall keep |t| small enough for the entire strip 〈s0(t),−s0(t)〉 to be contained in 〈− 1
4 ,

1
4 〉.

Theorem 2 Let Sn be the number of nodes on the path of typical climbing of a trie on n keys from the
Ber(p) model. Then

E[Sn] =
lnn
hp

+
1
hp

(
γ − 1− ln p+ 2pq − ln q)

− 1
2h2

p

(
p ln2 p+ 2 ln p ln q + q ln2 q) + η1(lnn) + o(1)

)
,

Var[Sn] ∼ pq(ln p− ln q)2

h3
p

lnn+ o(lnn),

where η1(.) is absolutely bounded by a very small number. The lower-order terms in the variance may
also have small absolutely bounded oscillations.

Proof . Similar to that of Proposition 1, and we omit it. 2

Theorem 3 Let Sn be the number of nodes on the path of typical climbing of a trie on n keys from a
biased Ber(p) model. Then

Sn − 1
hp

lnn
√

lnn
L−→ N

(
0,
pq

h3
p

(ln p− ln q)2
)
.

Proof . Similar to the proof of Theorem 1, and we omit it. 2

3.2 Climbing with the lack of knowledge of p

If one is uninformed about p, one may be inclined to plead ignorance and simply generate moves in the
random walk to the right and left subtrees with equal probability, hoping that this will average good and
bad cases achieving a sampling strategy that is not too much worse than typical climbing.

The result below indicates that the average speed of climbing is improved in uninformed climbing on
average. Of course the two strategies coincide when p = q = 1

2 , but uninformed climbing requires less
time than typical climbing as p gets away from 1

2 , and the uninformed strategy speeds up considerably
near the extremal values p = 0 and p = 1. However, the improved performance in the uninformed search
comes at the expense of the quality of sampling, as less probable keys are given more weight than their
actual probability.

Let S̃n be the number of nodes on the path inscribed in the trie by the uninformed climbing. The length
S̃n satisfies a basic recurrence:

S̃n |Ln =


1 + S̃Ln , with probability 1

2 ;

1 + S̃Rn , with probability 1
2 .
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The techniques used and the derivations are similar to those already presented, and we only state the
results without proof.

Theorem 4 Let S̃n be the number of nodes on the path of uninformed climbing of a trie on n keys from
the Ber(p) model. Then

E[S̃n] = 2 log 1
pq
n+

ln2 p+ (1− 2γ) ln(pq) + ln2 q

ln2(pq)
+ η2(lnn) + o(1),

Var[S̃n] =
2(ln p− ln q)2

ln3 1
pq

lnn+O(lnn),

where η2(.) is a small function given by a Fourier expansion. The o(lnn) term in the variance may also
have small bounded oscillations. Moreover,

S̃n − 2 log 1
pq
n

√
lnn

L−→ N
(

0,
2(ln p− ln q)2

ln3 1
pq

)
.

3.3 Extremal sampling
To develop a sense for the extremes of the data present in the trie, a sampler may take after the extremal
strategy of following leftmost (for smallest) or rightmost (for largest) edges. Of course the two strategies
are symmetric with respect to the roles of p and q, and we only analyze one of them.

Let us introduce Ŝn as the number of nodes on the leftmost path. If the leftmost path reaches a null
node we may augment the corresponding prefix of zeros with a 1 to construct a representative sample of
the smallest data. We state the result without proof.

Theorem 5 Let Ŝn be the number of nodes on the path of leftmost extremal climbing of a trie on n keys
from the Ber(p) model. Then

E[Ŝn] = log 1
q
n+

2q + ln q − 2γ
2 ln q

+ η3(lnn) + o(1),

Var[Ŝn] =
1
12

+
π2

6 ln2 q
+

2q
ln q
− q2

ln2 q
+ o(1),

where η3(.) is absolutely bounded by a very small number. The lower order terms in the variance may add
small bounded oscillations. Furthermore, Ŝn − blog 1

q
nc does not have a nontrivial limit in distribution

under any scaling.

3.4 The exact distribution
Some of the exact distributions within the scope of this research may be amenable to direct combinatorial
methods. We illustrate this for extremal climbing.
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Theorem 6 Let Ŝn be the number of nodes on the path of leftmost extremal climbing of a trie on n ≥ 2
keys from the Ber(p) model. Then, for k ≥ 2,

P(Ŝn = k) = nqk−1
(
q(1− qk−1)n−1 − (1− qk−2)n−1

)
+ (1− qk)n − (1− qk−1)n,

and P(Ŝn = 0) = 0, and P(Ŝn = 1) = pn.

Proof . The boundary cases P(Ŝn = k), for k = 1, 2 are trivial. We develop the result in terms of the
number of edges S′n = Ŝn − 1. Letting k ≥ 2 we dissect the event {S′n = k} into two disjoint subsets.
One of them, A1, corresponds to the case where the tree goes down the left path k edges and then turns
right, with all the keys having a string of k zeros as prefix and 1 at position k + 1 (there must be at least
two such keys). This construction leaves a null node dangling at the leftmost position in the tree. This
can occur by having r keys, r = 2, . . . , n, in the subtree the root of which is a sibling of the leftmost null
node; the probability for any specific r to have this key structure is (qkp)r. The rest of the n − r keys
are not allowed to have a prefix of k 0’s, otherwise they would disturb the pattern. The probability for
these keys not to have the forbidden prefix is (1− qk)n−r. The r keys can be chosen in

(
n
r

)
ways. Hence,

P(A1) =
∑n
r=2

(
n
r

)
(pqk)r(1− qk)n−r. The second event, A2, corresponds to having exactly one key at

the end of a leftmost path with k internal vertices on it. By combinatorial arguments similar to that for
P(A1) we see that P(A2) =

∑n−1
r=1 (r + 1)

(
n
r+1

)
(pqk−1)rqk(1− qk−1)n−r−1. Hence,

P(S′n = k) = P(A1 ∪A2)

=
n∑
r=2

(
n

r

)
(pqk)r(1− qk)n−r

+
n−1∑
r=1

(r + 1)
(

n

r + 1

)
(pqk−1)rqk(1− qk−1)n−r−1.

The sums can be reduced via the binomial theorem. 2
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