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We consider samples of n geometric random variables (Γ1, Γ2, . . . Γn) where P{Γj = i} = pqi−1, for 1 ≤ j ≤ n,
with p + q = 1. The parameter we study is the position of the first occurrence of the maximum value in a such a
sample. We derive a probability generating function for this position with which we compute the first two (factorial)
moments. The asymptotic technique known as Rice’s method then yields the main terms as well as the Fourier ex-
pansions of the fluctuating functions arising in the expected value and the variance.
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1 Introduction
We consider samples of n geometric random variables (Γ1,Γ2, . . .Γn) where P{Γj = i} = pqi−1, for
1 ≤ j ≤ n, with p + q = 1. Such samples have been studied in their own right (see [Pro96] and
[KP04] and those papers listed below), as well as with reference to skiplists (for example, see [KP94] and
[LP06a]) and probabilistic counting algorithms (see [KP93], among others). In recent years, questions
relating to the maximum value of such a sample have attracted quite a lot of attention. In particular,
the expectation and distribution of the maximum value, and the probability of a single maximum have
been dealt with by various authors in papers [Pro91], [Sol94], [SR90], [ESS93], [BSW94] and [BES95].
Thereafter, Kirschenhofer and Prodinger ([KP96]) studied the expectation and variance of the number of
maxima, as well as the probability of exactly m maxima in a random sample, for a fixed m ≥ 1. Further
papers on the topic of how many maxima occur in a geometric sample are listed in [LP06b].

However, the position of the maximum values has not previously been studied. In this paper we study
the mean and variance of the position at which the maximum value first occurs. As in the case of the
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previous statistics studied for maxima of geometric samples, the mean and variance do not converge as
n → ∞ but instead exhibit small fluctuations. Our methodology follows that of [KP96], the asymptotic
technique that yields the main terms and Fourier expansions of the fluctuating functions very effectively
is “Rice’s method”, as surveyed in [FS95].

For convenience we denote by position the number of places before the maximum first occurs. (To
count the first maximum as well in the position, just add 1 to the mean value below; the variance remains
unchanged.)

Theorem 1 The average position En of the first (left-most) occurrence of the maximum in a sample of
geometric random variables is given by

En = n
( 1
L

+
1

1−Q
+ δE1(logQ n)

)
+

1
L

+
Q

1−Q
− δE2(logQ n) + o(1)) (1.1)

where Q = 1
q ; L = logQ, χk = 2kπi/L,

δE1(x) :=
1
L

∑
k 6=0

χkΓ(−1− χk)e2kπix (1.2)

and
δE2(x) :=

1
2L

∑
k 6=0

χk(1 + χk)(χk − 2)Γ(−1− χk)e2kπix. (1.3)

We remark that δE1(x) and δE2(x) are continuous periodic functions of period 1, mean zero and of small
amplitude. The same holds for δv(x) below.

Theorem 2 The variance of the position of the first occurrence of the maximum in a sample of geometric
random variables is given by

V ar = n2

(
1 +Q

2L(Q− 1)
− 1
L2

)
+n

(
Q

(Q− 1)2
− 2
L2

+
Q+ 1

2L(Q− 1)

)
+

Q

(Q− 1)2
− 1
L2

+ o(1). (1.4)

There are also negligibly small contributions from the fluctuating terms. These are calculated only for the
dominant term of the variance, and are given by

n2([δ2E1]0 + δv(logQ n))

where

[δ2E1]0 =
Q

2L(1−Q)
+

Q

(Q− 1)2
+

2
L

∑
l≥2

l(−1)l

(Ql − 1)(l + 1)(l − 1)
+

log 2
L
− 1
L2

and
δv(x) :=

−1
L

∑
k 6=0

Vke
2kπix

with

Vk :=
Γ(−2− χk)
L(Q− 1)

(
− L(Q+ 1)− 4χk(L+Q− 1) + χ2

k(2− 2Q+QL− L)
)

−
∑
l≥1

l(−1)l

(l + 1)!
(l − χk)Γ(l − 1− χk)

Ql + 1
Ql − 1

.
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In particular, since the variance is of order n2 and the mean of order n, we note that the distribution of the
position about the mean is not concentrated. Note also that [δ2E1]0 is an extremely small quantity, typically
of size 10−12.

2 Method
We start off by expressing all possible patterns of geometric words in a symbolic manner in which the first
occurrence of the maximum value k is highlighted. This gives the expression

{1, 2, . . . , k − 1}∗k{1, 2, . . . , k}∗.

To translate this into a probability generating function, let z mark each letters and let u mark only those
letters which lie to the left of the first maximum value k. Then the generating function corresponding to
{1, 2, . . . , k − 1} is

pzu+ pqzu+ pq2zu+ · · ·+ pqk−2zu = zu(1− qk−1).

Similarly, for the letters which occur right of the first k, {1, 2, . . . , k} ≡ z(1− qk) and thus⋃
k≥1

{1, 2, . . . , k − 1}∗k{1, 2, . . . , k}∗ ≡
∑
k≥1

1
1− zu(1− qk−1)

pqk−1z
1

1− z(1− qk)
.

Hence we have found the bivariate generating function

F (z, u) :=
∑
k≥1

pqk−1z

(1− zu(1− qk−1))(1− z(1− qk))
. (2.1)

2.1 The expected value
The generating function for the expected position of the first maximum in a sample of n letters is given
by ∂

∂uF (z, u)|u=1. Using (2.1) this leads to

∂

∂u
F (z, u)|u=1 =

∑
k≥1

pqk−1(1− qk−1)z2

(1− z(1− qk))(1− z(1− qk−1))2
.

We decompose this into partial fractions so that the coefficients of zn can be obtained:

[zn]
∂

∂u
F (z, u)|u=1 = [zn]

∑
k≥1

[
q1−k − 1

p(1− z(1− qk))
− q1−k − 2 + q

p(1− z(1− qk−1))
− 1

(1− z(1− qk−1))2

]

=
∑
k≥1

[
q1−k − 1

p
(1− qk)n − q1−k − 2 + q

p
(1− qk−1)n − (n+ 1)(1− qk−1)n

]
=

1
p

∑
k≥2

[
(q1−k − 1)(1− qk)n − (q1−k + q + n− 1)(1− qk−1)n

]
,
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since the k = 1 term is zero. The binomial theorem is now used to expand certain factors, bearing in mind
that in order for the sums on k to converge, we need to remove the terms of the binomial expansion where
i = 0 or i = 1 and treat them separately. Thus

[zn]
∂

∂u
F (z, u)|u=1 =

1
p

∑
k≥2

(q1−k − 1)

[
n∑
i=2

(
n

i

)
(−qk)i + 1− nqk

]

− 1
p

∑
k≥2

(q1−k + q + n− 1)

[
n∑
i=2

(
n

i

)
(−qk−1)i + 1− nqk−1

]
.

Interchanging the order of summation and performing the inner sums over k leads to

[zn]
∂

∂u
F (z, u)|u=1 =

n∑
i=2

(
n

i

)
(−1)i

qi−1(qi − 1 + nqi − nq)
(1− qi−1)(1− qi)

+
qn(n− 1)

p

which we express in the form
(
recall Q = 1

q

)
[zn]

∂

∂u
F (z, u)|u=1 = −

n∑
i=2

(
n

i

)
(−1)i

1
Qi−1 − 1︸ ︷︷ ︸

α

−n
n∑
i=2

(
n

i

)
(−1)i

1
Qi − 1︸ ︷︷ ︸

β

+
n(n− 1)
Q− 1

. (2.2)

The terms α and β are typical expressions to which ‘Rice’s method’ can be applied, due to the presence
of the binomial coefficient inside an alternating sum. First we deal with α, and the function involved for
Rice’s method is f(z) = 1

Qz−1−1 . Rice’s method also uses the kernel function

[n; z] :=
(−1)n−1n!

z(z − 1) · · · (z − n)
=

Γ(n+ 1)Γ(−z)
Γ(n+ 1− z)

.

Now we consider the function [n; z]f(z) which has a double pole at z = 1 and simple poles at z = 0 and
z = χk + 1 for k 6= 0 where k ∈ Z. The first two contribute to the main term (asymptotically as n→∞)
and the others contribute to the fluctuations. The residue of the double pole at z = 1 can be obtained from
the expansions (set ε = z − 1)

f(z) ∼ 1
εL
(
1 + εL

2

) and [n; z − 1] ∼ n
(1
ε
− 1 +Hn

)
,

where Hm =
∑m
i=1

1
i is a harmonic number. After taking the coefficient of ε−1 in the product of these,

we get the asymptotic contribution as n→∞ to be

−γ n
L

+
n

L
+

1
2L
− n

L
log n+

n

2

(where log denotes loge). For the simple pole at z = 0, we have f(z) ∼ 1
Q−1−1 and [n; z] ∼ −1

z , which
leads to a contribution of Q

1−Q . For the sum labelled β, the function for Rice’s method is f(z) = 1
Qz−1

but the double pole is now at z = 0, so expanding we get:

f(z) ∼ 1
zL

(
1− zL

2

)
and [n; z] ∼ −1

z

(
1 + zHn

)
,
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which together give an asymptotic contribution of

−n
2

+
n

L
log n+

γ n

L
+

1
2L
.

We also have a simple pole at z = 1 which contributes − n2

Q−1 . Adding these four terms to the last term in
(2.2) simplifies to the main terms in (1.1).

2.2 The fluctuations in the expected value.

The fluctuations in the asymptotic estimates for the sums α and β arise from the simple poles at z = χk+1
and z = χk (k 6= 0) and are given by

−n
L

∑
k 6=0

Γ(−1− χk)e2kπi logQ n +
1

2L

∑
k 6=0

χk(χk + 1)Γ(−1− χk)e2kπi logQ n,

and

−n
L

∑
k 6=0

Γ(−χk)e2kπi logQ n − 1
2L

∑
k 6=0

χk(1− χk)Γ(−χk)e2kπi logQ n

respectively. We combine these together to produce the functions δE1(x) and δE2(x) given in (1.2) and
1.3).

2.3 The variance

Using the same generating function as in (2.1), we need to compute the second partial derivative with
respect to u to find the variance. Firstly,

∂2

∂u2
F (z, u) =

∑
k≥1

2pqk−1z3(1− qk−1)2

(1− z(1− qk))(1− zu(1− qk−1))3
.

Next substituting u = 1 and using partial fractions we obtain

∂2

∂u2
F (z, 1) = 2

∑
k≥1

[
(qk−1 − 1)2

p2q2k−2(1− z(1− qk))
− 1

(1− z(1− qk−1))3
− q1−k(1− 3qk−1 + 2qk)

p(1− z(1− qk−1))2

− q2−2k(1 + 3q2k−2 − 3qk−1 + qk − 3q2k−1 + q2k)
p2(1− z(1− qk−1))

]
.
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Extracting the coefficient of zn in this and then simplifying leads to

[zn]
∂2

∂u2
F (z, 1) = 2

∑
k≥1

[
(qk−1 − 1)2

p2q2k−2
(1− qk)n − 1 + 3q2k−2 − 3Qk−1 + qk − 3q2k−1 + q2k

p2q2k−2
(1− qk−1)n

−
(
n+ 2
n

)
(1− qk−1)n − 1− 3qk−1 + 2qk

pqk−1
(n+ 1)(1− qk−1)n

]
=

2
(Q− 1)2

n∑
i=3

(
n

i

)
(−1)i

Qi − 1
1−Qi−2︸ ︷︷ ︸

(a)

+
4Q

(Q− 1)2

n∑
i=3

(
n

i

)
(−1)i

Qi − 1
Qi−1 − 1︸ ︷︷ ︸

(b)

(2.3)

+
2n

Q− 1

n∑
i=3

(
n

i

)
(−1)i

Qi

1−Qi−1︸ ︷︷ ︸
(c)

+
(
n(3Q− 1)
Q− 1

− n2

) n∑
i=3

(
n

i

)
(−1)i

Qi

Qi − 1︸ ︷︷ ︸
(d)

+
2Q2

(Q− 1)2
− 2nQ(Q+ 1)

(Q− 1)2
− n2Q(3Q2 − 7Q− 6)

2(Q− 1)2(Q+ 1)
+
n3Q(2Q2 − 2Q− 1)

(Q− 1)2(Q+ 1)
− n4Q2

2(Q2 − 1)︸ ︷︷ ︸
(e)

.

Now Rice’s method can again be used to approximate the alternating sums. First we deal with part (a)
by considering the poles of the function [n; z]f(z) with f(z) = Qz−1

1−Qz−2 . This function has a double pole
at z = 2 and a simple pole at z = 1. For the double pole we expand to two terms about ε = 0 where
ε = z − 2. This gives

f(z) =
Qε+2 − 1
1−Qε

∼
Q2(1 + εL+ 1

2ε
2L2)− 1

−εL(1 + 1
2εL)

∼
−1 +Q2 + 1

2εL−Q
2 1

2εL+Q2εL

−εL

and

[n; z − 2] ∼ −n(n− 1)
4

(2
ε
− 3 + 2Hn−2

)
.

Since Hn−2 ∼ γ + log n− 3
2n −

13
12n2 as n→∞, the asymptotic residue is

[ε−1]
2

(Q− 1)2
n(n− 1)

4εL

(2
ε
− 3 + 2γ + 2 log n− 3

n
− 13

6n2

)(
− 1 +Q2 +

1
2
εL−Q2 1

2
εL+Q2εL

)
=

1
2L(Q− 1)2

(
2n2 log n(Q2 − 1) + n2(Q2L+ L+ 3− 3Q2 + 2γQ2 − 2γ)− 2n log n(Q2 − 1)

− n(Q2L+ L+ 6− 6Q2 + 2γQ2 − 2γ) +
5
6

(Q2 − 1)
)
.

For the simple pole we let ε = z − 1 and get a residue of 2nQ
(Q−1)2 .

Now we look at the alternating sum labelled (b) which has a double pole at z = 1 and a simple pole at
z = 2. By expanding around ε := z − 1 we find that the residue for the double pole is:

n log n
4Q

L(Q− 1)
+

4nQ
L(Q− 1)2

(
(Q− 1)(γ − 1) +QL− L(Q− 1)

2

)
− 2Q
L(Q− 1)

.
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For the simple pole the residue is

−2n2Q(Q+ 1)
(Q− 1)2

+
2nQ(Q+ 1)

(Q− 1)2
.

For the sum in (c) the double pole is also at z = 1 but this time there are two simple poles, at z = 0 and
z = 2. For the double pole, we compute a residue of

−2Qn2 log n
L(Q− 1)

− 2n2Q

L(Q− 1)

(
γ − 1 +

L

2

)
+

nQ

L(Q− 1)
+

Q

6L(Q− 1)
.

The simple poles contribute −2nQ
(Q−1)2 and n3Q2

(Q−1)2 −
n2Q2

(Q−1)2 respectively. The double pole for (d) is at
z = 0, and it contributes a residue of

n2 log n
1
L

+ n2
( γ
L

+
1
2

)
+ n log n

1− 3Q
L(Q− 1)

+ n

(
1

2L
+
(
γ +

L

2

) 1− 3Q
L(Q− 1)

)
− 1

12L
+

1− 3Q
2L(Q− 1)

.

The simple poles at z = 1 and z = 2 contribute

− n3Q

Q− 1
+
n2Q(3Q− 1)

(Q− 1)2
and

n4Q2

2(Q2 − 1)
+

n3Q2(1− 2Q)
(Q− 1)2(Q+ 1)

+
n2Q2(3Q− 1)

2(Q− 1)2(Q+ 1)

respectively. The higher order terms in all the above sums cancel out with the terms in (e). The cancella-
tions leave us with a second factorial moment of

n2 2L+ 3− 4Q+Q2

2L(Q− 1)2
+ n

8QL− 2L− 5Q2 + 4Q+ 1
2L(Q− 1)2

+
2Q2L− 3Q2 − 1 + 4Q

L(Q− 1)2
.

To calculate the dominant terms of the variance we must add to this the expected value given in (1.1) and
subtract the square of the expected value. In squaring the expected value, a further possible contribution
to the constant term of the variance will arise from the product of the terms of order n and of order 1/n in
the mean. However, computations show that the coefficient of the term of order 1/n in the mean is actually
zero in this case. Squaring the expectation yields

n2 2L+ 3− 4Q+Q2

2L(Q− 1)2
+ n

8QL− 2L− 5Q2 + 4Q+ 1
2L(Q− 1)2

+
2Q2L− 3Q2 − 1 + 4Q

L(Q− 1)2

+
(
n
( 1
L

+
1

1−Q

)
+

1
L

+
Q

1−Q

)
−
(
n
( 1
L

+
1

1−Q

)
+

1
L

+
Q

1−Q

)2

,

which simplifies to the expression given in (1.4).
But we also get a further nonzero contribution to the n2 term when we square the fluctuations of the

expected value. To calculate this additional term, we make use of a paper by Prodinger ([Pro04]) which
explains how to calculate this ‘zeroth’ Fourier coefficient of the square. We consider the function

δE1(x) =
1
L

∑
k 6=0

χkΓ(−1− χk)e2kπix. (2.4)
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The same function appears on page 5 of [Pro04] (where it is called σ(x)), but in that paper it is assumed
that Q = 2 whereas we deal with the more general geometric case. We find two expressions for

I1 :=
1

2πi

∫ 1
2+i∞

1
2−i∞

F (z)dz, where F (z) :=
−L

eLz − 1
z2Γ(−1− z)Γ(−1 + z).

Shifting left and collecting residues gives one form for I1, and summing the negative residues right of the
line < = 1

2 gives another. Equating these two expressions leaves us with

∑
k 6=0

χk(−χk)Γ(−1−χk)Γ(−1+χk) =
L

2(1−Q)
+

QL2

(Q− 1)2
+2L

∑
l≥2

l(−1)l

(Ql − 1)(l + 1)(l − 1)
+L log 2−L

2
−1.

This is exactly what we need, since squaring the function in (1.2) will give us the left-hand side, except
for a factor of L2. Thus dividing through by L2 gives the result:

[δ2E1]0 =
Q

2L(1−Q)
+

Q

(Q− 1)2
+

2
L

∑
l≥2

l(−1)l

(Ql − 1)(l + 1)(l − 1)
+

log 2
L
− 1
L2
.

This is the ‘zeroth’ coefficient of the Fourier series – which when multiplied by n2 contributes to the main
term in the variance.

2.4 As Q→ 1

It is well known that as q → 1 samples of geometric variables tend in behaviour to that of a permutation
of n numbers. It is interesting to let Q→ 1 in our results and compare this to the permutations case. For
permutations, the average number of places before the maximum and the second moment are

1
n

n∑
k=1

(k − 1) =
n− 1

2
and

1
n

n∑
k=1

(k − 1)2 =
n2

3
− n

2
+

1
6

respectively. Thus the variance is n2

12 −
1
12 , which is also obtained by taking the limit as Q → 1 of the

main term in the variance in Theorem 2.

2.5 The fluctuations in the variance.
It is possible to compute the fluctuations in the variance explicitly; we now do this in the case of the
fluctuations involving the largest term n2 of the variance. To do this we need to look at two possible
sources, namely fluctuations occurring in the second factorial moment calculations and those fluctuations
from the expected value which, when squared, will involve an n2 term.

We start with the latter. (A simpler example of this type was dealt with in [Pro04] and called [σ2
0 ]k.)

When the expectation is squared, so are its fluctuations and as we saw above the complex powers in some
of these terms cancel and contribute to [δ2E1]0. However, most of the pairs of complex powers do not
cancel and lead to terms of the form χjχkΓ(−1 − χk)Γ(−1 − χj) for j 6= 0 and j 6= k. Consider the
function

F (z) :=
L

eLz − 1
z(−z + χk)Γ(−χk − 1 + z)Γ(−1− z).
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The residue at χj is

−4j(k − j)π2

L2
Γ(−1− χj)Γ(−1− χk−j) = χjχk−jΓ(−1− χj)Γ(−1− χk−j).

The residue at both z = 0 and z = χk is χkΓ(−1 − χk). Again we write I1 in two different ways and
then compare them. For the first, we shift the line of integration to the left and add the above residues,
giving

I1 =
1

2πi

∫
(− 1

2 )

F (z)dz + 2χkΓ(−1− χk) +
∑

j 6=0;j 6=k

χjχk−jΓ(−1− χk)Γ(−1− χk−j).

We then rewrite 1
eLz−1

as −1− 1
e−Lz−1

and change the variable z to z + χk. This means that

I1 = LI2 −
1

2πi

∫
(− 1

2 )

F (−z)dz + 2χkΓ(−1− χk) +
∑

j 6=0;j 6=k

χjχk−jΓ(−1− χk)Γ(−1− χk−j),

where the integral on the right hand side is also equal to I1 and

I2 :=
1

2πi

∫
(− 1

2 )

z(z + χk)Γ(−1 + z)Γ(−1− z − χk).

By shifting the line of integration to the right, the residues at z = 1 and z = −χk + l; l ≥ 1 give us

I2 = −(1 + χk)Γ(−2− χk)−
∑
l≥1

(−1)ll
(l + 1)!

(l − χk)Γ(l − 1− χk).

For the other version of I1, we shift the line of integration to the right and take negative residues at
z = χk + 1 and z = l, l ≥ 1 so that

I1 =
−L

1−Q
(1 + χk)Γ(−2− χk) +

∑
l≥1

Ll(−1)l

(l + 1)!(Ql − 1)
(l − χk)Γ(l − 1− χk).

Equating these two forms for I1 leads to the contribution to the order n2 fluctuations from the squaring of
the expected value, namely

1
L

(1 +χk)Γ(−2−χk)
Q+ 1
Q− 1

+
1
L

∑
l≥1

(−1)ll
(l + 1)!

(l−χk)Γ(l− 1−χk)
Ql + 1
Ql − 1

− 2χk
L2

Γ(−1−χk). (2.5)

The other contributions come from the terms in (2.3) which produce an order n2 fluctuation – i.e., (a),
(c), and part of (d). The residues from (a) and (c) are

2n2(Q+ 1)
L(1−Q)

∑
k 6=0

Γ(−2− χk)e2kπi logQ n and
2n2Q

L(1−Q)

∑
k 6=0

Γ(−1− χk)e2kπi logQ n. (2.6)

The quadratic part of (d) gives
−n2

L

∑
k 6=0

Γ(−χk)e2kπi logQ n. (2.7)

We add together (2.5), (2.6), and (2.7) to obtain n2δv(x), as given in Theorem 2.
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