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Tail Bounds for the Wiener Index of Random
Trees
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Upper and lower bounds for the tail probabilities of the Wiener index of random binary search trees are given. For
upper bounds the moment generating function of the vector of Wiener index and internal path length is estimated. For
the lower bounds a tree class with sufficiently large probability and atypically large Wiener index is constructed. The
methods are also applicable to related random search trees.
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1 Introduction and results
The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices
of the graph. The distance between two vertices is defined as the minimum number of edges connecting
them. The index was introduced by the chemist Wiener in 1947, in order to study relations between
organic compounds and the index of their molecular graphs. For trees the Wiener index has been studied
by discrete mathematicians and chemists, cf. the survey of (DEG01).

For random tree models comparatively little is known about the Wiener index. (EMMS94) studied the
average Wiener index of simply generated families of trees and showed that the average is asymptotically
Kn5/2, where K is a constant depending on the simply generated family and n→∞ denotes the number
of nodes. For some of these families (ordinary rooted trees, rooted labeled trees and rooted binary trees)
they also gave exact formulæ for the expected Wiener index. (Jan03) proved a limit law for the Wiener
index of these tree classes and identified the limit as a functional of the Brownian excursion. (FJ07)
studied the right tail of this limit. Average Wiener indices of some other tree classes were computed by
(Wag06; Wag07).
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In this paper we present tail bounds for the Wiener index Wn of random binary search trees with n
internal nodes. The average Wiener index of random binary search trees was derived in (HN02),

EWn = 2n2Hn − 6n2 + 8nHn − 10n+ 6Hn, (1)

where Hn denotes the harmonic number Hn =
∑n
j=1 1/j. In (Nei02) the Wiener index of random binary

search trees and random recursive trees was studied with respect to limit laws. By setting up a bivariate
distributional recurrence for the Wiener index and the internal path length techniques from the contraction
method could be used. For the tail bounds of the present paper we also use this recursive description: We
denote by (Wn, Pn) the vector of Wiener index and internal path length of the random binary search tree
with n internal nodes, and by In and Jn = n− 1− In the cardinalities of the left and right subtree of the
root. Then, In and Jn are uniformly distributed on {0, . . . , n− 1}. We have the recurrence,(

Wn

Pn

)
d=
[

1 n− In
0 1

](
WIn

PIn

)
+
[

1 n− Jn
0 1

](
W ′Jn

P ′Jn

)
+
(

2InJn + n− 1
n− 1

)
, (2)

where (Wi, Pi), (W ′j , P
′
j), 0 ≤ i, j ≤ n − 1, In are independent and L(W ′j , P

′
j) = L(Wj , Pj). For the

rescaled quantities Y0 = (0, 0) and

Yn =
(
Wn − EWn

n2
,
Pn − EPn

n

)
, n ≥ 1,

a bivariate limit law and convergence of the covariance matrix has been shown, see (Nei02).
Here, we present the following tail bounds:

Theorem 1.1 Let L0
.= 5.0177 be the largest root of eL = 6L2 and c = (L0 − 1)/(24L2

0)
.= 0.0066.

Then we have for every t > 0 and every n ≥ 0

P
(
Wn − EWn

n2
≥ t
)
≤


exp(−t2/36), for 0 ≤ t ≤ 8.82,
exp(−t2/96), for 8.82 < t ≤ 48L0,
exp(−ct2), for 48L0 < t ≤ 24L2

0,
exp(−t(log t− log(4e)), for 24L2

0 < t.

The same bound applies to the left tail.

We denote iterated logarithms by log(k) n, i.e., log(1) n := log n and log(k+1) n := log(log(k) n) for
k ≥ 1.

Theorem 1.2 For all t > 0 and all n ≥ 0 we have

P (|Wn − EWn| ≥ tEWn) ≤ exp
(
−2t log n

(
log(2) n+ log t− log(2e) + o(1)

))
,

where the o(1) is with respect to n→∞ and can also explicitly be bounded.

Furthermore we have a lower bound on the tail probabilities of Wn:

Theorem 1.3 For all fixed t > 0 and all sufficiently large n we have

P (Wn − EWn > tEWn) ≥ exp
(
−8t log n

(
log(2) n+O

(
log(3) n

)))
.
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To derive upper tail bounds in Section 2 we estimate the moment generating function E exp〈s,Yn〉,
s ∈ R2, from above, see Proposition 2.1, so that tail bounds can be obtained by Chernoff’s bounding
technique. The bounds for E exp〈s,Yn〉 are proved by induction on n using recurrence (2) for the
induction step. For this, we extend the analysis of the tails of the Quicksort complexity as given in
(Rös91) and refined in (FJ02) to our two-dimensional setting. Note that the second component of Yn is
distributed as the normalized number of key comparisons used by Quicksort.

Another approach to tail bounds is via the method of bounded differences. A Doob martingale on Wn

can be defined via an appropriate filtration and its martingale differences can be estimated. We extended
earlier analysis of (MH96) for the Quicksort complexity to the Wiener index but do not discuss this here
since the resulting bounds we obtained are not tighter than the ones found by the approach presented.
However, details of the application of the method of bounded differences to our problem can be found in
the dissertation of (AK06), where also proofs that we omit subsequently are worked out.

In Section 3 we prove Theorem 1.3. For this we construct a class of binary search trees having atypically
large Wiener indices and show that the random binary search tree is in that class with sufficiently large
probability. This construction also builds upon the analysis of (MH96) for lower tail bounds for Pn.

The methods used are applicable to related random search trees such as random (point) quad trees or
random m-ary search trees and depend on a precise expansion of the average Wiener index of the tree.

2 The upper bound
Our tail bounds in Theorem 1.1 are based on the following estimate.

Proposition 2.1 Let L0 be as in Theorem 1.1 and s ∈ R2. Then for every n ≥ 1

E exp〈s,Yn〉 ≤


exp

(
9‖s‖2

)
, for 0 ≤ ‖s‖ ≤ 0.49,

exp(24‖s‖2), for 0.49 < ‖s‖ ≤ L0,
exp(4e‖s‖), for L0 < ‖s‖.

To scetch the proof we introduce the following notation: We set wn = EWn and pn = EPn. Further-
more, for 1 ≤ i ≤ n− 1 and j = j(i) = n− i− 1 we denote

a(1)
n (i) =

[
(i/n)2 i(n− i)/n2

0 i/n

]
,

a(2)
n (i) = a(1)

n (j),

C(1)
n (i) =

1
n2

(wi + (n− i)pi + wj + (n− j)pj − wn + 2ij + n− 1) ,

C(2)
n (i) =

1
n

(pi + pj − pn + n− 1)

and Cn(i) = (C(1)
n (i), C(2)

n (i)). With this notation the recurrence for Yn induced by recurrence (2) reads

Yn
d= A(1)

n YIn +A(2)
n Y′Jn

+ bn, n ≥ 1, (3)

with (
A(1)
n , A(2)

n ,bn
)

=
(
a(1)
n (In), a(2)

n (In),Cn(In)
)
,
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where Yi, Y′j , 0 ≤ i, j ≤ n− 1, In are independent and L(Y′j) = L(Yj).

We collect some useful but technical estimates. We denote by AT the transpose of a matrix A and set
‖A‖op := sup‖x‖=1 ‖Ax‖.

Lemma 2.2 Let U be uniformly distributed on [0, 1] and couple In, n ≥ 1, to U by setting In = bUnc.
Then we have for all n ≥ 1,∥∥∥A(1)T

n A(1)
n

∥∥∥
op

+
∥∥∥A(2)T

n A(2)
n

∥∥∥
op
− 1 < −U(1− U).

Lemma 2.3 We have
sup
n≥0

max
1≤i≤n−1

‖Cn(i)‖ = 1.

Proof of Proposition 2.1: The assertion follows from the next result by choosing L = ‖s‖: For every
L > 0, denote

KL =

 9, for L ≤ 0.49,
24, for 0.49 < L ≤ L0,
4eL/L2, for L0 < L.

Then
E exp〈s,Yn〉 ≤ exp

(
KL‖s‖2

)
, (4)

for every ‖s‖ ≤ L, n ≥ 0. This will be proved by induction on n. For n = 0 we have Y0 = (0, 0) and the
assertion is true. Assume the assertion is true for some L > 0, ‖s‖ ≤ L and every 0 ≤ i ≤ n− 1. Then,
conditioning on In = bUnc = i and using the distributional recurrence (3) we obtain for j = n − i − 1
and ‖s‖ ≤ L,

E exp 〈s,Yn〉 =
1
n

n−1∑
i=0

exp 〈s,Cn(i)〉E exp
〈
s, a(1)

n (i)Yi

〉
E exp

〈
s, a(2)

n (i)Yj

〉
≤ 1
n

n−1∑
i=0

exp 〈s,Cn(i)〉 exp
(
KL

∥∥∥a(1)
n (i)T s

∥∥∥2

+KL

∥∥∥a(2)
n (i)T s

∥∥∥2
)

(5)

≤ 1
n

n−1∑
i=0

exp

(
〈s,Cn(i)〉+KL‖s‖2

2∑
r=1

∥∥∥a(r)
n (i)Ta(r)

n (i)
∥∥∥

op

)

= E exp

(
〈s,bn〉+KL‖s‖2

2∑
r=1

∥∥∥A(r)T
n A(r)

n

∥∥∥
op

)
≤ E exp

(
〈s,bn〉+KL‖s‖2(1− U(1− U))

)
(6)

= E exp
(
〈s,bn〉 −KL‖s‖2U(1− U)

)
exp

(
KL‖s‖2

)
.

For (5) we applied the induction hypothesis, using

‖a(r)
n (i)T s‖ ≤ ‖a(r)

n (i)Ta(r)
n (i)‖1/2op ‖s‖ ≤ ‖s‖ ≤ L,
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since ‖a(r)
n (i)Ta(r)

n (i)‖op ≤ 1 for r = 1, 2, 0 ≤ i ≤ n− 1, and for (6) we applied Lemma 2.2. Hence the
proof is completed by showing that

sup
n≥0

E exp
(
〈s,bn〉 −KL‖s‖2U(1− U)

)
≤ 1.

We consider the cases L ≤ 0.49 and L ≥ 0.49 separately.

L ≤ 0.49: The Cauchy-Schwarz inequality yields

E exp
(
〈s,bn〉 −KL‖s‖2U(1− U)

)
≤ E exp (2 〈s,bn〉)1/2 E exp

(
−2KL‖s‖2U(1− U)

)1/2
,

thus it suffices to prove

E exp (2 〈s,bn〉) E exp
(
−2KL‖s‖2U(1− U)

)
≤ 1.

With ‖bn‖∞ ≤ 1 by Lemma 2.3 and E 〈s,bn〉 = 0 we obtain

E exp (2 〈s,bn〉) = E

(
1 + 2 〈s,bn〉+

∞∑
k=2

(2 〈s,bn〉)k

k!

)

= 1 + E 〈s,bn〉2
∞∑
k=2

2k 〈s,bn〉k−2

k!

≤ 1 + ‖s‖2
∞∑
k=2

2k(1/2)k−2

k!

= 1 + ‖s‖24(e− 2). (7)

With KL = 9 we have

E exp
(
−2KL‖s‖2U(1− U)

)
≤ 1− 3‖s‖2 +

27
5
‖s‖4, (8)

using exp(−x) ≤ 1− x+ x2/2 for x ≥ 0. Furthermore, one easily checks that for ‖s‖ ≤ 0.49 we have

(
1 + ‖s‖24(e− 2)

)(
1− 3‖s‖2 +

27
5
‖s‖4

)
≤ 1.

Thus (7) and (8) yield that (4) is true for ‖s‖ ≤ L ≤ 0.49 with KL = 9.

L > 0.49: Again, with ‖bn‖∞ ≤ 1 we obtain

E exp
(
〈s,bn〉 −KL‖s‖2U(1− U)

)
≤ exp(‖s‖)E exp

(
−KL‖s‖2U(1− U)

)
.

It is proved in Section 4 of (FJ01) that the right hand side of this inequality is smaller than 1 if 0.42 ≤
‖s‖ ≤ 2 and KL = 24, respectively if 2 ≤ ‖s‖ ≤ L and KL = 4eL/L2. Thus for KL = 24L2 ∨ 4eL/L2
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we have E exp〈s,Yn〉 ≤ exp(KL‖s‖2), for every ‖s‖ ≤ L, n ≥ 0. Since 24L2 ≥ 4eL/L2 for L ≤ L0

and 24L2 ≤ 4eL/L2 for L > L0, this completes the proof.

Proof of Theorem 1.1: By standard arguments using Markov’s inequality and Proposition 2.1, cf. the
proof of Theorem 3.6 in (AKN04).

Proof of Theorem 1.2: Choose tn = twn/n
2 = 2t log n+O(1) in Theorem 1.1.

3 The lower bound
In this section we prove Theorem 1.3. The Wiener index of a binary search tree of order n is rather large,
if it has two subtrees which have a large distance from each other and which both have large sizes. Based
on this observation we define for every fixed t > 0 a class of binary search trees of order n. Every tree in
that class has two subtrees with sufficiently large distance from each other and large sizes, such that con-
ditioned on the event that the random binary search tree is in that class, the event {Wn− EWn > tEWn}
has probability tending to 1, as n→∞. Moreover the probability that the random binary search tree is in
that class is at least as large as the bound stated in Theorem 1.3.

Proof of Theorem 1.3: To define the eventA that the random binary search tree is in the above mentioned
class, we denote for fixed t > 0

λ :=
log(3) n

log(2) n
, κ := 8 + 24λ, k := bκt log nc, s :=

⌊
λn

t log n

⌋
.

We number nodes in the (complete) binary tree as follows. The root has number 1 and we count level by
level from left to right, cf. figure 1. We denote by Si the size of the subtree rooted at node i and set Si = 0
if node i does not belong to the binary search tree. Note that by our count node 2m + 1 is the second
leftmost node on level m.

Let A be the event that S2 = b(n+ 1)/2c and that S2m+1 ≤ s− 1, for 2 ≤ m ≤ k, see figure 1. Thus
under event A we have S3 = d(n− 3)/2e and S2k ≥ n/2− (k − 1)s. Having two large subtrees this far
away from each other will yield that Wn is sufficiently large. First note that

P(A) ≥ 1
n

(
s

(n+ 1)/2

)k−1

≥ 1
n

( s
n

)k−1

= exp(−(k − 1) log(n/s)− log n)

≥ exp
(
−8t log n

(
log(2) n+O

(
log(3) n

)))
. (9)

From now on, we will assume w.l.o.g. that n is even. The distance between two nodes in a tree is the
number of edges connecting them. From this point of view the Wiener index of a tree can be calculated
by counting how often each edge is passed when summing up all node distances. In our notation the
incoming edge of node i is passed Si(n− Si) times. Thus

Wn =
∑
i∈N

Si(n− Si),
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Fig. 1: Under event A we have subtree sizes S3 = d(n − 3)/2e and S2m+1 ≤ s − 1, for 2 ≤ m ≤ k, thus
S2k ≥ n/2− (k − 1)s.

where exactly n− 1 of these summands are nonzero. We set

W ′n =
k∑

m=1

S2m(n− S2m).

and W ′′n = Wn −W ′n and estimate W ′n and W ′′n separately under event A. By construction, W ′n is the
number of passings of the edges above the nodes 2m, 1 ≤ m ≤ k. For (s2, . . . , sk) ∈M = {1, . . . , s}k−1

let A(s2, . . . , sk) be the event that S3 = d(n+ 1)/2e and that S2m+1 = sm − 1, for 2 ≤ m ≤ k. Thus

A =
⋃

(s2,...,sk)∈M

A(s2, . . . , sk).

We denote σ1 = 0 and σm = σm−1 + sm for 2 ≤ m ≤ k. Then (m − 1) ≤ σm ≤ (m − 1)s and under
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event A(s2, . . . , sk) we have

W ′n =
k∑

m=1

(n
2

+ σm

)(n
2
− σm

)
=

k∑
m=1

(
n2

4
− σ2

m

)
≥ kn2

4
− s2

k∑
m=1

(m− 1)2

≥ kn2

4

(
1− 4

3
k2s2

n2

)
≥
(

(1 + 3λ)2t log n− 1
4

)
n2

(
1− 4

3
κ2λ2

)
= 2tn2 log n

(
1 + 3λ− 1

8t log n

)(
1− 4

3
κ2λ2

)
≥ 2t (1 + λ)n2 log n, (10)

for sufficiently large n. For the last inequality in line (10) we use(
1 + 3λ− 1

8t log n

)(
1− 4

3
κ2λ2

)
≥ (1 + 2λ)

(
1− 4

3
κ2λ2

)
≥ 1 + λ,

for sufficiently large n.
In order to estimate W ′′n under event A(s2, . . . , sk) via Chebychev’s inequality, we will use

E (W ′′n |A(s2, . . . , sk)) ≥ wn/2−1 +
(n

2
+ 1
)
pn/2−1 (11)

+ wn/2−σk
+
(n

2
+ σk

)
pn/2−σk

(12)

+
k∑

m=2

(wsm−1 + (n− sm + 1)psm−1) . (13)

This inequality is valid, since the right hand side is the expected number of passings of all edges belonging
to subtrees rooted at either node 3 (the summands in line (11)) or node 2k (the summands in line (12)) or
node 2m + 1, 2 ≤ m ≤ k, (the summands in line (13)). With H` ≥ log ` we get for ` ≤ n

w` + (n− `)p` ≥ 2`2 log `− 6`2 + o(`2) + (n− `) (2` log `− 4`)
≥ n(2` log `− 6`+ o(`)).

Thus

E (W ′′n |A(s2, . . . , sk)) ≥ 2n
(n

2
− 1
)

log
(n

2
− 1
)

+ 2n
(n

2
− σk

)
log
(n

2
− σk

)
+

k∑
m=2

2n(sm − 1) log(sm − 1)− 6n2 + o(n2)

≥ 2n(n− σk − 1) log
(n

2
− σk

)
+ 2n(k − 1)(ŝ− 1) log(ŝ− 1)− 6n2 + o(n2),

by convexity of x 7→ x log x, where ŝ = 1/(k − 1)
∑k
m=2 sm. With σk = (k − 1)ŝ ≤ (k − 1)s we have

(n− σk − 1) log
(n

2
− σk

)
≥ (n− (k − 1)ŝ− 1)

(
log n+ log

(
1− 2(k − 1)s

n

)
− log 2

)
= n log n− (log 2)n− (k − 1)ŝ log n+ o(n).



316 Tämur Ali Khan and Ralph Neininger

Together this yields

E (W ′′n |A(s2, . . . , sk))

≥ 2n2 log n− 2n(k − 1)(ŝ− 1) log
(

n

ŝ− 1

)
− (6 + 2 log 2)n2 − 2n(k − 1) log n+ o(n2)

≥ 2n2 log n− 2n(k − 1)(s− 1) log
(

n

s− 1

)
− (6 + 2 log 2)n2 + o(n2)

= 2n2 log n− 2κλn2 log
(
t log n
λ

)
− (6 + 2 log 2)n2 + o(n2)

≥ 2n2 log n− (16 + o(1))n2 log(3) n,

for all sufficiently large n, where we use that x 7→ x log(n/x) is increasing for 0 < x < n/e. Similarly
to (13) we have

Var(W ′′n |A(s2, . . . , sk)) = Var
(
Wn/2−1 +

(n
2

+ 1
)
Pn/2−1

)
+ Var

(
Wn/2−σk

+
(n

2
+ σk

)
Pn/2−σk

)
+

k∑
m=2

Var (Wsm−1 + (n− sm + 1)Psm−1) .

For ` ≤ n,

Var (W` + (n− `)P`) = Var(W`) + (n− `)2Var(P`) + 2(n− `)Cov(W`, P`)

≤ O(`4) + n2O(`2) + 2nO(`3),

since Var(Wn) = O(n4) and Cov(Wn, Pn) = O(n3), as shown in (Nei02), and Var(Pn) = O(n2).
Thus

Var(W ′′n |A(s2, . . . , sk)) = O(n4)

and hence by Chebychev’s inequality

P
(
W ′′n ≥ 2n2 log n− 17n2 log(3) n |A(s2, . . . , sk)

)
→ 1 as n→∞. (14)

This convergence is uniform over all (s2, . . . , sk) ∈M . For sufficiently large n,

2t(1 + λ)n2 log n+ 2n2 log n− 17n2 log(3) n > (1 + t) EWn. (15)
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Using estimates (9), (10), (14) and (15) we get

P(Wn > (1 + t) EWn)
≥ P(Wn > (1 + t) EWn |A)P(A)

=
∑

(s2,...,sk)∈M

P(Wn > (1 + t) EWn |A(s2, . . . , sk))P(A(s2, . . . , sk))

≥
∑

(s2,...,sk)∈M

P(W ′′n > 2n2 log n− 17n2 log(3) n |A(s2 . . . , sk))P(A(s2, . . . , sk))

= (1 + o(1))P(A)

= exp
(
−8t log n

(
log(2) n+O

(
log(3) n

)))
.

This completes the proof.
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1991.

[Wag06] Stephan G. Wagner. A class of trees and its Wiener index. Acta Appl. Math., 91(2):119–132,
2006.

[Wag07] Stephan G. Wagner. On the average Wiener index of degree-restricted trees. Australas. J.
Combin., 37:187–203, 2007.


	Introduction and results
	The upper bound
	The lower bound



