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The height of watermelons with wall
Extended Abstract

Thomas Feierl†

Fakultät für Mathematik, Universität Wien, Nordbergstr. 15, A-1090 Wien, Austria

We derive asymptotics for the moments of the height distribution of watermelons with p branches with wall. This
generalises a famous result by de Bruijn, Knuth and Rice [2] on the average height of planted plane trees, and a result
by Fulmek [6] on the average height of watermelons with two branches.
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1 Introduction
The model of vicious walkers was introduced by Fisher [4]. He gave a number of applications in physics,
such as modelling wetting and melting processes. In general, the model of vicious walkers is concerned
with p random walkers on a d-dimensional lattice. In the lock step model, at each time step all of the
walkers move one step in any of the allowed directions, such that at no time any two random walkers
share the same lattice point.

A configuration that attracted much interest amongst mathematical physicists and combinatorialists is
the watermelon configuration, which is a special case of the two dimensional vicious walker model. See
Figure 1 for an example of a watermelon, where, for the moment, the broken line labelled 13 should be
ignored. This configuration can be studied with or without presence of an impenetrable wall, and with
or without deviation. We proceed with a description of p-watermelons of length 2n with wall (without
deviation), which is the model underlying this paper. Consider the lattice in R2 spanned by the two
vectors (1, 1) and (1,−1). At time zero the walkers are located at the points (0, 0), (0, 2), . . . , (0, 2p −
2). The allowed directions for the walkers are given by the vectors (1, 1) and (1,−1). Further, the
horizontal line y = 0 is an impenetrable wall, that is, no walker is allowed to cross the x-axis. The
walkers may now simultaneously move one step in one of the allowed directions, but such that at no time
two walkers share the same place. Additionally we demand that after 2n steps all walkers are located at
(2n, 0), (2n, 2), . . . , (2n+ 2p− 2).

Tracing the paths of the vicious walkers through the lattice we obtain a set of non-intersecting lattice
paths with steps in the set {(1, 1), (1,−1)}. In the case of watermelons without deviation, the i-th lattice
path, also called i-th branch, starts at (0, 2i) and ends at (2n, 2i). Further, it is seen that the bottom most
path is a Dyck path, so that the 1-watermelons with wall correspond to Dyck paths.
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Fig. 1: Example of a 4-watermelon of length 18 with wall and height 13

Since Fisher’s introduction [4] of the vicious walkers model numerous papers on this subject have
appeared. While early results mostly analyse vicious walkers in a continuum limit, there are nowadays
many results for certain configurations directly based on the lattice path description above. For example,
Guttmann, Owczarek and Viennot [9] related the star and watermelon configurations to the theory of
Young tableaux and integer partitions, and re-derived results for the total number of stars and watermelons
without wall. Later, Krattenthaler, Guttmann and Viennot [12] proved new, exact as well as asymptotic,
results for the number of certain vicious walkers with wall. Recently, Krattenthaler [11] analysed the
number of contacts of the bottom most walker in the case of watermelons with wall, continuing earlier
work by Brak, Essam and Owczarek [15].

In 2003, Bonichon and Mosbah [1] presented an algorithm for uniform random generation of water-
melons. Amongst other things they used their generator for obtaining experimental results on the height
of watermelons. Here, the height of a watermelon is defined as the smallest number h such that the upper
most branch does not cross the horizontal line y = h. See Figure 1 for an example with four branches and
height 13.

As already mentioned, watermelons with one branch are simply Dyck paths. It is well-known that these
are in bijection with planted plane trees, and that under this bijection the height of a Dyck path corresponds
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to the height of the corresponding tree. The asymptotic behaviour of the average height of planted plane
trees was determined by de Bruijn, Knuth and Rice [2], that is, they solved the average height problem for
1-watermelons with wall. Recently, Fulmek [6] extended their reasoning and determined the asymptotic
behaviour of the average height of 2-watermelons with wall.

In this paper we rigorously analyse the height of p-watermelons of length 2n with wall, and obtain
asymptotics for all moments of the height distribution as n → ∞. In particular, we show that the s-th
moment behaves like κsns/2 + κs−1n

(s−1)/2 +O(ns/2−1 + np/2−p
2

log n) as n→∞ for some explicit
numbers κs and κs−1, see Theorem 1 at the end of this extended abstract. The nature of our result explains
the somewhat inconclusive predictions in [1]. To be more specific, the formulas for the constants κs and
κs−1 that we find are sums involving coefficients in the Laurent expansion of certain Dirichlet series. It
is unlikely that there is any noteworthy simplification in these expressions.

The proof of our result can be summarised as follows. As a first step, we represent the total number
of watermelons and the number of watermelons with height restriction in terms of certain determinants
(see Lemma 5), the entries being sums of binomial coefficients. From these determinants we then obtain
an exact expression for the s-th moment of the height distribution. After normalisation we may apply
Stirling’s formula and obtain an expression that can be asymptotically evaluated using Mellin transform
techniques (see Lemma 8). This kind of approach goes back to de Bruijn, Knuth and Rice [2]. Fulmek [6]
adopted their approach for the asymptotic analysis of 2-watermelons. The new objects which arise here
(and, in general, when extending this approach to the asymptotic analysis of p-watermelons) are certain
multidimensional Dirichlet series (instead of Riemann’s zeta function as in [2]). An additional complica-
tion with which one has to cope is the increasing number of cancellations of leading asymptotic terms that
one encounters in the calculations while the number p of branches becomes bigger. Thus, while a brute
force approach will eventually produce a result for any fixed p (this is, in essence, what Fulmek does for
p = 2), the main difficulty that we have to overcome in order to arrive at an asymptotic result for arbitrary
p is to trace the roots of these cancellations. We accomplish this with the help of Lemma 9. It allows us
to exactly pin down which cancellations take place and to extract explicit formulas for the first two terms
which survive the cancellations. The multidimensional Dirichlet series which arise in our analysis are
the subject of the subsequent section. What we need is information on their poles. This information is
obtained with the help of a relation that generalises the reciprocity law for Jacobi’s theta functions (see
Lemma 2). We note that our definition of these Dirichlet series differs slightly from Fulmek’s defini-
tion, which makes the analysis somewhat easier. We mention that small modifications immediately yield
analogous results for p-watermelons with a horizontal wall positioned at some negative integer. Also, the
moments for the height distribution of watermelons without wall can be asymptotically determined in a
completely analogous fashion.

The paper is organised as follows. The second section contains information on the analytic character
of certain multidimensional Dirichlet series that is crucial for the proof of our main result. The third, and
last, section contains the main result, see Theorem 1 at the end of that section.

We present all lemmas together with a rough sketch of their proofs, omitting technical details. Complete
proofs will be contained in the full paper [3].

We close this section by fixing some notation. Vectors are denoted using bold face letters and are
assumed to be p-dimensional row vectors. Further, we make use of the 1-norm and the 2-norm of vectors,
viz, |w|1 = w0 + · · · + wp−1 and |w|22 = w2

0 + · · ·w2
p−1. Finally, we define vw = vw0

0 . . . v
wp−1
p−1 . The

relation v ≥ w is to be understood component-wise.
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2 Some multidimensional Dirichlet series
In this section we study the multidimensional Dirichlet series

Za(z) =
∑
m 6=0

ma0
0 . . .m

ap−1
p−1

(m2
0 + · · ·+m2

p−1)z
=
∑
m 6=0

ma

|m|2z2
,

where m = (m0, . . . ,mp−1) ranges over Zp \ {0}, for a = (a0, . . . , ap−1) ∈ Zp, a ≥ 0. Our goal is to
establish the analytic continuation of Za(z) to a meromorphic function and the determination of its poles.
Also, we need information on the growth of Za(z) as |z| → ∞ in some vertical strip.

It follows from the definition that Za0,...,ap−1(z) = Zaσ(0),...,aσ(p−1)(z) for every permutation σ ∈ Sp.
If p = 1 then

Za(z) = 2 [a even] ζ(2z − a),

where [Statement] is Iverson’s notation, that is

[Statement] =

{
1 if ’Statement’ is true,
0 otherwise.

(1)

If ap−1 is odd, the definition shows that Za0,...,ap−2,ap−1(z) = 0. Consequently, we may assume that the
parameters a0, . . . , ap−1 are even.

The analytic continuation of Za(z) is accomplished very much in the spirit of one of Riemann’s meth-
ods for the zeta function (see, e.g., [16, Section 2.6]). In fact we have

(2πi)2|a|1

πz
Z2a(z)Γ(z) =

∫ ∞
0

tz−1

p−1∏
j=0

ϑ2aj (t)

− [a = 0]

 dt, (2)

where ϑa(t) = θa(0, it) and where

θa(x, y) =
∂a

∂xa
θ(x, y) = (2πi)a

∞∑
n=−∞

nae2πi(xn+n2y/2)

is the a-th derivative with respect to x of θ(x, y) =
∑
n e

2πi(xn+n2y/2), a variant of one of Jacobi’s theta
functions. Here, Equation (2) is obtained by substitution of Euler’s integral for the gamma function and
the series definition for Z2a on the left hand side of this equation followed by interchanging summation
and integration as well as a change of variables in the integral.

We are now going to extract information on the poles of Z2a(z) from the integral (2). This task is
accomplished with the help of a generalised reciprocity relation (see Corollary 1), which is a consequence
of the following two lemmas. This relation generalises the famous reciprocity law satisfied by Jacobi’s
theta functions, and is proved following along the lines of the proof of the reciprocity law in [13, Section
2.3].

Lemma 1 Let (fa(x, y))a≥0 be a sequence of functions which are entire with respect to x for every fixed
y with =(y) > 0.

If (fa(x, y))a≥0 satisfies the conditions
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(i) fa(x+ 1, y) = fa(x, y)

(ii) fa(x− y, y) = e2πi(x−y/2)
a∑
k=0

(
a
k

)
fk(x, y)

then we have

fa(x, y) =
a∑
k=0

(
a

k

)
c
(k)
0 (y)

(2πi)a−k
θa−k(x, y), (3)

where

c
(k)
0 (y) =

∫ 1

0

fk(x, y)dx

is the constant term in the Fourier expansion of the function x 7→ fa(x, y).

Lemma 2 We have

ba/2c∑
k=0

(
a

2k

)
(2k)!
k!

πk
(y
i

)a−k+1/2

θa−2k(x, y) = e−iπx
2/y

a∑
k=0

(
a

k

)
(−x)kik−a(2π)kθa−k

(
x

y
,−1

y

)
.

(4)

Proof Proof (Sketch): The claim can be proved by an application of Lemma 1 to the functions

fa(x, y) =
∑
n

(
−x+ n

y

)a
e−iπ(x+n)2/y, a ≥ 0.

2

Putting a = 0 in Equation (4), we obtain the reciprocity law for the theta function, viz,√
y

i
θ(x, y) = e−iπx

2/yθ

(
x

y
,−1

y

)
.

Corollary 1 The functions ϑa(y) = θa(0, iy), a ≥ 0, satisfy the relation

ϑa(y) = ia
ba/2c∑
k=0

(
a

2k

)
(2k)!
k!

πk
(

1
y

)a−k+1/2

ϑa−2k

(
1
y

)
, y > 0. (5)

Proof: The corollary follows from Equation (4) upon setting x = 0 and replacing y by i/y. 2

We can now state the main result of this section.
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Lemma 3 The function Z2a(z) can be analytically continued to a meromorphic function having a single
pole of order 1 at z = p

2 + |a|1 with residue

Res
z= p

2 +|a|1
Z2a(z) =

πp/2

Γ
(
p
2 + |a|1

) (p−1∏
i=0

(2ai)!
4aiai!

)
. (6)

Furthermore, for any non-negative integer k we have

Z2a(−k) =

{
−1 if a = 0 and k = 0,
0 otherwise.

Proof Proof (Sketch): Consider again Equation (2). After splitting the integral above into two parts, one
over [0, 1] and one over [1,∞), an application of our generalised reciprocity relation (5) as well as some
simple manipulations yield

(2πi)2|a|1

πz
Z2a(z)Γ(z) = − [a = 0]πz

z
+

(−π)|a|1
∏p−1
j=0

(2aj)!
aj !

z − p
2 − |a|1

+
∫ ∞

1

tz−1

p−1∏
j=0

ϑ2aj (t)

− [a = 0]

 dt

+
∫ ∞

1

t−z−1

p−1∏
j=0

ϑ2aj

(
1
t

)− (−π)|a|1
(
p−1∏
i=0

(2ai)!
ai!

)
tp/2+|a|1

 dt,

where the integrals above represent entire functions with respect to s. The claims are now easily obtained
from this expression. 2

We close this section with a result on the growth of Z2a(σ+ it) as |t| → ∞, which can be proved with
the help of [5, Prop. 5].

Lemma 4 For σ ∈ R fixed we have the estimate

Z2a(σ + it) = O
(
eε|t|

)
, |t| → ∞, (7)

for any ε > 0.

3 The moments of the height distribution
We denote by M (p)

2n,h the number of p-watermelons with wall with length 2n and height strictly smaller

than h. Further, we write M (p)
2n for the total number of p-watermelons with length 2n. Note that M (p)

2n =
M

(p)
2n,h for h ≥ n+ 2p− 1 and M (p)

2n,h = 0 for h < 2p.
As Bonichon and Mosbah [1], we consider the random variable “height” on the set of p-watermelons

with wall of length 2n endowed with the uniform probability measure. The goal of this paper is to
obtain an asymptotic expression for the s-th moment m

(p)
s (n) of this random variable as the length of the

watermelons tends to infinity. Clearly, we have

m(p)
s (n) =

1

M
(p)
2n

∑
h≥1

(hs − (h− 1)s)
(
M

(p)
2n −M

(p)
2n,h

)
, s ≥ 1. (8)
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For determining the asymptotics of m
(p)
s (n) we proceed as follows. First, we obtain determinantal

expressions for the quantities M (p)
2n,h and M (p)

2n . This is accomplished by an application of a theorem
by Lindström–Gessel–Viennot, respectively of a theorem by Gessel and Zeilberger. Second, we obtain
asymptotics for

M
(p)
2n,h and

∑
h≥1

(hs − (h− 1)s)
(
M

(p)
2n −M

(p)
2n,h

)
. (9)

The asymptotics for m
(p)
s (n) are then easily established. The main result is stated in Theorem 1 at the end

of this section.
We start with exact expressions for M (p)

2n,h and M (p)
2n .

Lemma 5 We have

M
(p)
2n = det

0≤i,j<p

((
2n

n+ i− j

)
−
(

2n
n− 1− i− j

))
(10)

and

M
(p)
2n,h = det

0≤i,j<p

(∑
m∈Z

(
2n

n+m(h+ 1) + i− j

)
−
(

2n
n+m(h+ 1)− 1− i− j

))
, h ≥ 0.

(11)

Proof Proof (Sketch): For h ≥ 2p both equations follow from a theorem by Lindström–Gessel–Viennot
(see [7, Corollary 3] or [14, Lemma 1]), respectively from a theorem of Gessel and Zeilberger [8]. To be
more specific, Equation (10) follows from the typeCp case of the main theorem in [8], while Equation (11)
follows from the type C̃p case.

The reader should observe that the entries of the determinant (10) are the numbers of lattice paths from
(0, 2i) to (2n, 2j) that do not cross the x-axis. On the other hand, the entries of the determinant (11) are
the numbers of lattice paths from (0, 2i) to (2n, 2j) that do not cross the x-axis and have height smaller
than h. These sums are obtained by a repeated reflection principle argument.

For 0 ≤ h < 2p it is seen that the right hand side of (11) is equal to zero, as is M (p)
2n,h. 2 We note that

∑
h≥1

(hs − (h− 1)s)
(
M

(p)
2n −M

(p)
2n,h

)
=

−
∑
h≥1

(hs − (h− 1)s)
∑
m 6=0

det
0≤i,j<p

((
2n

n+mi(h+ 1) + i− j

)
−
(

2n
n+mi(h+ 1)− 1− i− j

))
(12)

by (10) and (11), where the inner sum ranges over Zp \ {0}. We now aim at asymptotics for (9). The
basic approach to this is as follows. First, we divide the right hand side of (10) and (11) by

(
2n
n

)p
. The

resulting quotients are then approximated as n→∞ with the help of Stirling’s formula. It turns out to be
convenient to use these approximations in the following form.
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Lemma 6 For ε > 0 we have the asymptotic series expansion(
2n

2n+m−z
)(

2n
n

) ≈ e−m
2/n
∑
u≥0

(
− z√

n

)uφu( m√
n

)
+
u−1∑
k=0

∑
s>0

n−s
∑
r≤2s

Fr,s+r

(
2r

u− k

)
φk

(
m√
n

)(
m√
n

)2r+k−u


(13)

as n → ∞ uniformly for m ≤ n1/2+ε and z bounded. Here, the Fr,s+r are some constants the explicit
form of which is of no importance in the sequel, and φu(w) is defined by

e−(m−z)2/n = e−m
2/n
∑
k≥0

(−1)kφk

(
m√
n

)(
z√
n

)k
.

Hence, we have the explicit expression

φk(z) =
∑
m≥0

(−1)m

m!

(
m

k −m

)
(2z)2m−k, k ≥ 0. (14)

Asymptotics for M (p)
2n are now easily obtained.

Lemma 7 We have

M
(p)
2n = 4(p2)

(
p−1∏
i=0

(2i+ 1)!

)(
2n
n

)p
n−p

2 (
1 +O

(
n−1

))
as n→∞.

Proof: The determinant (10) can be evaluated to closed form, e.g., by means of [10, Theorem 30], and in
fact is given by

M
(p)
2n =

p−1∏
j=0

(
2n+2j
n

)(
n+2j+1

n

) .
From this closed form the asymptotics for M (p)

2n,∞,1 can easily be derived.
For a comprehensive discussion and references of this counting problem we refer to [12, Section 4]. 2

Obtaining the asymptotics for (12) is much harder. It is here where we need the results of the previous
section. We begin with the following lemma.

Lemma 8 For a ∈ Zp, a ≥ 0, and k ∈ N define the function

gk,a(n) =
∑
h≥1

(h+ 1)k
∑

m∈(h+1)Zp
m 6=0

e−|m|
2
2/n

(
m√
n

)2a

. (15)
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For any fixed M > 0 we have

gk,a(n) = [p 6= k + 1] (ζ(p− k)− 1)

p−1∏
j=0

(2aj)!
4ajaj !

 (nπ)p/2

+[p = k + 1]

p−1∏
j=0

(2aj)!
4ajaj !

(γ − 1 +
1
2

(ψ(p/2 + |a|1) + log n)
)
πp/2 +

1
2
c2aΓ

(p
2

+ |a|1
)np/2

+ [p 6= k + 1]
1
2

Γ
(
k + 1

2
+ |a|1

)
Z2a

(
k + 1

2
+ |a|1

)
n(k+1)/2

−
(
Bk+1

(−1)k

k + 1
− 1
)

[a = 0] +O
(
n−M

)
(16)

as n → ∞, where c2a is the constant term in the Laurent expansion of Z2a(z) around its pole and
[Statement] is defined by (1).

Proof Proof (Sketch): By the harmonic sum rule, the Mellin transform g∗k,a(z) of gk,a(x−1) is seen to be

g∗k,a(z) =
∫ ∞

0

g(x−1)xz−1dx = (ζ(2z − k)− 1) Γ(z + |a|1)Z2a(z + |a|1).

The asymptotic expansion (16) is now obtained upon applying the inverse Mellin transform, pushing the
line of integration to the left and taking into account the residues of g∗k,a(z). The displacement of the
contour of integration is justified by well known bounds for the gamma and the zeta function together
with (7). 2 This last lemma enables us to determine the asymptotics for the non-normalised

average (12).

Lemma 9 The sum∑
h≥1

(hs − (h− 1)s)
(
M

(p)
2n −M

(p)
2n,h

)
=

−
∑
h≥1

(hs − (h− 1)s)
∑
m6=0

det
0≤i,j<p

((
2n

n+mi(h+ 1) + i− j

)
−
(

2n
n+mi(h+ 1)− 1− i− j

))

satisfies

∑
h≥1

(hs − (h− 1)s)
(
M

(p)
2n −M

(p)
2n,h

)
= 2−p

(
2n
n

)p
n−p

2

×

∑
a≥0

det
0≤i,j<p

(
(2i+ 2j + 2)!

(i+ j + 1− ai)! (2ai)!
(−4)ai

)
G̃s,a(n) +O

(
ns/2−1 + np/2−p

2
log n

) (17)
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as n→∞ for all fixed integers s, where

G̃s,a(n) = sg̃s−1,a(n)− 3
(
s

2

)
g̃s−2,a(n)

and where

g̃k,a(n) = [p 6= k + 1]
1
2

Γ
(
k + 1

2
+ |a|1

)
Z2a

(
k + 1

2
+ |a|1

)
n(k+1)/2−

(
Bk+1

(−1)k

k + 1
− 1
)

[a = 0]

+[p = k + 1]

p−1∏
j=0

(2aj)!
4ajaj !

(γ − 1 +
1
2

(ψ(p/2 + |a|1) + log n)
)
πp/2 +

1
2
c2aΓ

(p
2

+ |a|1
)np/2.

Here, the quantity c2a is defined in Lemma 8, and [Statement] is defined by (1).

Proof Proof (Sketch): We consider the more general sum

Dn(x,y, z) =
∑
h≥1

(hs − (h− 1)s)
∑

m∈(h+1)Zp
m 6=0

det
0≤i,j<p

((
2n

n+mi + xi − yj

)
−
(

2n
n+mi − z − xi − yj

))
.

We factor
(
2n
n

)
out of each row of the determinant above and apply the approximation (13) to all entries

of the determinant. This yields a polynomial PN (x,y, z). It is seen that this polynomial is divisible by ∏
0≤i<j<p

(xi − xj)(yi − yj)

 ∏
0≤i≤j<p

(z + xi + xj)(z + yi + yj)

 ,

and in fact is of the form

PN (x,y, z) =
∑

i,j,l≥0
ik+jk+lk even

xiyjz|l|

n(|i|+|j|+|l|)/2

∑
a≥0

qa,i,j,l
(
n−1

)
Gs,a(n)

 (18)

for some polynomials qa,i,j,l(n−1) in n−1. In principle, the lemma is proved upon inserting the asymp-
totic expansion (16) for gk,a(n) above, extracting the coefficient of

∏p−1
i=0 x

2i+1y2i+1 in PN (x,y, z) and
verifying that

∑
a≥0

qa,v,w,l
(
n−1

)(p−1∏
i=0

(2ai)!
4aiai!

)
= O

(
n−(|w|+|v|+|l|)/2

)
, n→∞. (19)

The verification of this last equation involves the Chu-Vandermonde summation formula. We want to
stress that this last fact implies that the first line of (16) does not contribute to the first two terms of the
asymptotic expansion (17). 2

Finally, we can state the main result of this paper.
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Theorem 1 The s-th moment of the height distribution of p-watermelons with wall satisfies

m(p)
s = − 2−p

2∏p−1
i=0 (2i+ 1)!

∑
a≥0

det
0≤i,j<p

(
(2i+ 2j + 2)! (−4)ai

(i+ j + 1− ai)! (2ai)!

)
G̃s,a(n)

+O
(
ns/2−1 + np/2−p

2
log n

)
(20)

as n→∞, where

G̃s,a(n) = sg̃s−1,a(n)− 3
(
s

2

)
g̃s−2,a(n)

and where

g̃k,a(n) = [p 6= k + 1]
1
2

Γ
(
k + 1

2
+ |a|1

)
Z2a

(
k + 1

2
+ |a|1

)
n(k+1)/2−

(
Bk+1

(−1)k

k + 1
− 1
)

[a = 0]

+[p = k + 1]

p−1∏
j=0

(2aj)!
4ajaj !

(γ − 1 +
1
2

(ψ(p/2 + |a|1) + log n)
)
πp/2 +

1
2
c2aΓ

(p
2

+ |a|1
)np/2.

Here, as before, c2a is the constant term in the Laurent expansion ofZ2a(z) around its pole and [Statement]
is defined by (1).

Proof: The theorem follows immediately from Lemma 7 and Lemma 9. 2 For example, our main

theorem yields the asymptotics

m
(1)
1 =

√
πn− 3

2
+O

(
n−1/2 log n

)
, n→∞,

m
(2)
1 = 2.57758 . . .

√
n− 3

2
+O

(
n−1/2

)
, n→∞,

m
(3)
1 = 3.20787 . . .

√
n− 3

2
+O

(
n−1/2

)
, n→∞,

m
(4)
1 = 3.74286 . . .

√
n− 3

2
+O

(
n−1/2

)
, n→∞.

Here, numerical approximations for the constants in last three asymptotics were obtained from the exact
expressions as given by the last theorem. The first two results are consistent with those in [2] and [6].
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