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Let σ be a random permutation chosen uniformly over the symmetric group Sn. We study a new ”process-valued”
statistic of σ, which appears in the domain of computational biology to construct tests of similarity between ordered
lists of genes. More precisely, we consider the following ”partial sums”:

Y (n)
p,q = card{1 ≤ i ≤ p : σi ≤ q} for 0 ≤ p, q ≤ n

We show that a suitable normalization of Y (n) converges weakly to a bivariate tied down brownian bridge on [0, 1]2,
i.e. a continuous centered gaussian process X∞

s,t of covariance:

E
ˆ
X∞

s,tX
∞
s′,t′

˜
= (min(s, s′)− ss′)(min(t, t′)− tt′)

Keywords: Weak convergence, Bivariate Brownian bridge, Random permutations

1 Introduction
On the one hand, random permutations appear as a natural model for data in various topics, such as
analysis of algorithms, statistical mechanics, or genomic statistics. On the other hand, from the math-
ematical point of view, various parameters of random permutations have been studied in combinatorics
and probability, like the distribution of the lengths of cycles, the repartition of the eigenvalues on the unit
circle([Wie00]), or the length of large monotonic subsequences (see [BDJ99, AD99]). The description of
the typical behaviour of these statistics provide powerful tools for applications, like the construction of
statistical tests, or precise analysis of the execution time of algorithms. A lot of examples of permutations
statistics and their application to analysis of algorithms can be found all along the book [FS].

The purpose of this paper is to describe a new ”process-valued” statistic of random permutations, re-
cently introduced in the context of computational biology ([YBSS06]) to extract information from the
large amounts of data produced by the microarray technology. Roughly speaking, a DNA microarray
provides, for a given list of genes (say 1, . . . n), an ordering (i.e., a permutation) τ1, . . . , τn, of the genes
by their expression level in a given experimental condition. Here, the typical value of n is 1000. In
[YBSS06], the following problem is addressed: being given two such orderings τ and τ ′ corresponding
to two classes of experiences (say on healthy and sick patients), is it possible to quantify the similarity
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between them? To measure this similarity, the following numbers are introduced: for each p ≤ n, let Op
be the number of genes i ∈ J1, nK that appear in the first p ranks of both lists. Then, an heuristic which
appears to be efficient on applications is the following: measuring ”how far” the list (Op)p=1..n is from its
expected value on independant permutations allows to compute a relevant ”similarity score” between the
lists. We will not discuss what ”how far” means here: complex heuristics arguments are used in [YBSS06]
to compute the final score from the values (Op). Instead we will give a mathematical description of the
expected behaviour of the process (Op) (which in [YBSS06] was obtained by simulations) when n is
large, under the assumption that both lists are uniform independant random permutations.

More precisely, let n be a positive integer, and let Sn denote the symmetric group on J1, nK. Let
σ = (σ1, . . . , σn) be a random permutation chosen uniformly on Sn (i.e. such that for all ν in Sn,
P(σ = ν) = 1/n!). From σ, we contruct the following random variable Y (n):

Y (n)
p,q = card{i ≤ p : σi ≤ q} = card (σ(J1, pK) ∩ J1, qK) (0 ≤ p, q ≤ n)

Remark that if σ = τ ′ ◦ τ−1, Y (n)
p,p is exactly the number Op. More, if I = Jp, p′K and J = Jq, q′K are two

integer sub-intervals of J1, nK, one deduces from Y (n) the cardinality of σ(I) ∩ J as follows :

|σ(I) ∩ J | = Y
(n)
p′,q′ − Y

(n)
p′,q−1 − Y

(n)
p−1,q′ + Y

(n)
p−1,q−1

The maximum deviation of the previous quantity from its typical value over all possible choices of inter-
vals I and J is called the discrepancy of the permutation σ:

disc(σ) = max
I,J

{∣∣∣∣|σ(I) ∩ J | − |I||J |
n

∣∣∣∣}
This quantity and its applications to pseudo-random permutations have been studied in detail by Cooper
(see [Coo04]). Our purpose here is to study a related but rather different object. We investigate the
asymptotic behaviour of the discrepancy process of the permutation σ, which is the process defined over
J0, nK2 as:

Z(n)
p,q = Y (n)

p,q − E
[
Y (n)
p,q

]
where we will see that E

[
Y

(n)
p,q

]
= pq

n .

In this purpose, we define the normalized discrepancy process (X(n)
s,t )0≤s,t≤1 as follows:

• for s, t ∈ [0, 1] such that sn and st are integers, put X(n)
s,t =

Z
(n)
sn,tn√
n

=
Y

(n)
sn,tn − stn√

n

• complete the process (X(n)
s,t ) in such a way that it is continuous and affine on each closed ”lattice triangle”

of vertices
{

( kn ,
l
n ), (k+1

n , ln ), (k+1
n , l+1

n )
}

or
{

( kn ,
l
n ), ( kn ,

l+1
n ), (k+1

n , l+1
n )
}

Our main result is the following theorem:

Theorem 1 The normalized discrepancy process (X(n)
s,t )s,t∈[0,1]2 converges, in the sense of weak conver-

gence on C([0, 1]2) to a process X∞s,t. This process has the law of a bivariate tied down brownian bridge,
which is a centered continuous gaussian process on [0, 1]2 of covariance:

E
[
X∞s,tX

∞
s′,t′
]

= (min(s, s′)− ss′)(min(t, t′)− tt′)
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Remark that this limit is natural, in view of the ”permutational symmetry” of the model: the bivariate
tied down Brownian Bridge is one of the simplest cases of continuous bivariate processes with exchange-
able increments, according to the complete classification of the paper [Kal88]. However, our approach to
identify the limit and show the convergence is elementary and does not involve the theory of exchangeable
random variables.

The rest of the paper is organised as follows: in section 2, we compute the first moments of Y , in
section 3, we recall the some facts about the theory of bivariate continuous processes, in section 4, we
give a key theorem (Theorem 4) on product moments from which we deduce tightness, and in section 5,
we compute the finite-dimensional limit laws.

2 First moments.
We begin with the first order moments of Y (n): expectation and variance.

Since Y (n)
p,q =

p∑
i=1

1σi≤q , the linearity of expectation gives:

E[Yp,q] =
p∑
i=1

E [1σi≤q] =
p∑
i=1

P (σi ≤ q) =
pq

n
(1)

Indeed, for any fixed i, the uniform measure on Sn for σ induces the uniform measure on {1, . . . , n} for
σi, so P (σi ≤ q) = q

n .
In the same spirit, we can get the second order moment:

E[Y (n)
p,q

2
] =

p∑
i=1

p∑
j=1

E
[
1σi≤q , σj≤q

]
=

∑
i 6=j

P (σi ≤ q and σj ≤ q) +
∑
i

P (σi ≤ q)

= p(p− 1)× q(q − 1)
n(n− 1)

+ p× q

n

The variance follows:

VAR[Y (n)
p,q ] = E[Y (n)

p,q

2
]− E[Y (n)

p,q ]2

=
pq(n− p)(n− q)

n2(n− 1)

Remark that if p = sn and q = tn, the variance grows linearly with n, which justifies the normalization
factor 1/

√
n we chose for X(n).

3 Continuous random processes
In this section, we recall some facts about the theory of continuous random processes on [0, 1]2. The
material of this section is taken from [BW71], wich generalises to a multidimensional time the classical
tightness criterion of [Bil68].
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Let C = C
(
[0, 1]2,R

)
be the space of continous functions on the unit square, equipped with the uniform

norm ‖f‖∞ = maxs,t |f(s, t)|, and the induced Borel σ − field.
We recall that a family (µi)i∈I of probability measures on C is said to be tight if for every ε > 0 there

exists a compact set K ⊂ C such that µi(K) ≥ 1− ε for all i. We say that a family of processes is tight if
the family of their laws is tight.

The following theorem is a classical result:

Theorem 2 (Prohorov) Let P , Pn be probability measures on C. If the finite-dimensional distributions
of Pn converge weakly to those of P , and if (Pn)n≥0 is tight, then (Pn) converges weakly to P .

In order to formulate the next theorem, we need some definitions. A bloc B is a subset of [0, 1]2 of the
form (s, s′]× (t, t′]. Its area (s′ − s)(t′ − t) will be denoted A(B). Given a bloc B and an element X of
C let

X(B) = X(s′, t′) +X(s, t)−X(s, t′)−X(s′, t)

be the increment of X around B.
Then we have the following:

Theorem 3 (Tightness criterion, [BW71]) Let W (n)
s,t be a sequence of random processes in C such that

for all n ≥ 0 on has: P
(
W

(n)
s,0 = 0 for all s ∈ [0, 1]

)
= 1.

Suppose that there exist real numbers β1, β2, γ1, γ2 and c > 0 such that for all blocs B and C one has
for all n ≥ 0:

E
[
|W (n)(B)|γ1 |W (n)(C)|γ2

]
≤ cA(B)β1A(C)β2

with β1 + β2 > 1 and γ1 + γ2 > 0.
Then the sequence of processes X(n) is tight.

4 Product moments
In this section, we generalize the computation we made for the second order moment to any product
moment. We begin with a lemma.

Lemma 1 Let 0 ≤ a1 ≤ a2 ≤ . . . ≤ ak ≤ n be k integers, and b1, b2, . . . bk be k distinct values in
J1, nK. Then:

P (σb1 ≤ a1, σb2 ≤ a2, . . . , σbk ≤ ak) =
a1(a2 − 1)(a3 − 2) . . . (ak − k + 1)
n(n− 1)(n− 2) . . . (n− k + 1)

Proof: The law of σbi+1 given the values σb1 , . . . σbi is the uniform law on J1, nK \ {σb1 , . . . σbi}. Thus
we have:

P
(
σbi+1 ≤ ai+1 |σb1 ≤ a1, σb2 ≤ a2, . . . , σbi ≤ ai

)
=
ai+1 − i
n− i

and the lemma follows. 2
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Theorem 4 Let 0 ≤ p1 ≤ p2 ≤ . . . ≤ pk ≤ n, 0 ≤ q1 ≤ q2 ≤ . . . ≤ qk ≤ n and 0 ≤ α1, . . . αk be
integers. Let π ∈ Sk be a permutation of J1, kK. For 1 ≤ i ≤ k, define: Ii = {i} × J1, αiK and put

I =
k⋃
i=1

Ii.

To any partition P of I , associate the following numbers ri(P ) and si(P ) defined for 1 ≤ i ≤ k:

ri(P ) = card{S ∈ P : S ∩ (I1 ∪ . . . ∪ Ii−1) 6= ∅} (2)
si(P ) = card{S ∈ P : S ∩ (Iπ−1

1
∪ . . . ∪ Iπ−1

i−1
) 6= ∅} (note that r1(P ) = s1(P ) = 0 ) (3)

Then we have:

E
[
Y (n)
p1,qπ1

α1
Y (n)
p2,qπ2

α2
. . . Y (n)

pk,qπk

αk
]

=
∑
P

k∏
i=1

si+1(P )−1∏
j=si(P )

(qi − j)
(n− j)

ri+1(P )−1∏
j=ri(P )

(pi − j) (4)

where the sum is taken over all partitions P of I .

The meaning of this theorem is the following: for each generic position of the points (i.e., for each
permutation π), and each α1, . . . αk, the associated product moment is a computable rational function in
n and the pi, qi. For example, let us compute E

[
Y

(n)
p,q Y

(n)
p′,q′

]
for p < p′, q < q′. In this case, I has

cardinality two, and there are two partitions to consider. The partition with one equivalency class gives
the term pq

n , whereas the one with two classes gives pq(p′−1)(q′−1)
n(n−1) . Hence we have:

E
[
Y (n)
p,q Y

(n)
p′,q′

]
=
pq

n
+
pq(p′ − 1)(q′ − 1)

n(n− 1)
(5)

In the case where p < p′ and q′ < q, one gets:

E
[
Y (n)
p,q Y

(n)
p′,q′

]
=
pq′

n
+
pq′(p′ − 1)(q − 1)

n(n− 1)
(6)

We now prove the theorem. Proof Proof of Theorem 4: Since Y (n)
p,q =

∑
i≤p

1σi≤q we have:

E
[
Y (n)
p1,qπ1

α1
Y (n)
p2,qπ2

α2
. . . Y (n)

pk,qπk

αk
]

=
p1∑

i
(1)
1 =1

. . .

p1∑
i
(1)
α1 =1︸ ︷︷ ︸

α1 sums

p2∑
i
(2)
1 =1

. . .

p2∑
i
(2)
α2 =1︸ ︷︷ ︸

α2 sums

. . .

pk∑
i
(k)
1 =1

. . .

pk∑
i
(k)
αk

=1︸ ︷︷ ︸
αk sums

P
(
σ
i
(l)
j
≤ qπl for all l and j ≤ αl

)

Now, fix a choice of indices (i(l)j )l≤k,j≤αl . This induces a partition P of I: (l, j) and (k,m) are in

the same class if and only if i(l)j = i
(k)
m . Let r = card(P ) be the number of classes in P . We define the

following quantities:
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• For each class U ∈ P , let
c(U) = min{i, U ∩ Ii 6= ∅}.

Define (θ(i), i = 1..r) as the only non-decreasing sequence of numbers such that the following
equality between multisets holds :

{{c(U), u ∈ P}} = {{θ(1), . . . , θ(r)}}.

In the same way, define
d(U) = min{i, U ∩ Iπ−1

i
6= ∅}

and let (µ(i), i = 1..r) be the only non-decreasing sequence of numbers such that

{{d(U), u ∈ P}} = {{µ(1), . . . , µ(r)}}

• For U ∈ P , let vU be the common value of the indices on the class U .

Since the qi form an increasing sequence, the strongest condition imposed on the value of σ on a class U
is to be ≤ qd(U). Hence we have:

P
(
σ
i
(l)
j
≤ ql for all l and j ≤ αl

)
= P

(
σvU ≤ qd(U) for all U

)
From Lemma 1 and the definition of the µ(i), we have:

P
(
σvU ≤ qd(U) for all U

)
=
qµ(1)(qµ(2) − 1) . . . (qµ(r) − r + 1)

n(n− 1) . . . (n− r)
(7)

Now, if the partition P is fixed, the number of possible choices of indices corresponding to P is
pθ(1)(pθ(2) − 1) . . . (pθ(r) − r + 1). Indeed, this corresponds to the choice of the values vU , with the
constraint vU ≤ pc(U). Thus the quantity (7) appears exactly pθ(1)(pθ(2) − 1) . . . (pθ(r) − r + 1) times,
and we have:

E
[
Y (n)
p1,q1

α1
Y (n)
p2,q2

α2
. . . Y (n)

pk,qk

αk
]

=
∑
P

r∏
j=1

(pθ(j) − j + 1)
(qµ(j) − j + 1)
n− j + 1

(8)

In this last formula, we have to identify the values of the θ(j) and µ(j). But, from the definition of ri(P )
and c(U), we have:

card{U ∈ P, c(U) = j − 1} = rj(P )− rj−1(P )

from which we deduce:

{i, θ(i) = j} =

t
j∑
i=1

ri(P ),
j+1∑
i=1

ri(P )− 1

|

(9)

A similar argument shows that

{i, µ(i) = j} =

t
j∑
i=1

si(P ),
j+1∑
i=1

si(P )− 1

|

(10)

Putting together Equations (8), (9), and (10) gives Equation (4). 2

In order to apply the tightness criterion (Theorem 3), we now prove the following theorem:
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Theorem 5 There exists a constant c > 0 such that for every n, and for every blocs B and C, one has:

E
[
Z(n)(B)

2
Z(n)(C)

2
]
≤ cn2A(B)A(C)

The proof of the theorem needs the following lemma, which will be proved in section 5.

Lemma 2 For every ε ∈
(
0, 1

2

)
and every r ≥ 0, there exists a constant c such that for all n ≥ 0 and for

all bloc B, one has:
E
[
Z(n)(B)

2r
]
< cnr+ε

Proof Proof of Theorem 5:
Up to lower error terms, we can assume that B and C are ”lattice blocs”, i.e. B = (p1n ,

q1
n ] × (p2n ,

q2
n ]

and C = ( r1n ,
s1
n ]× ( r2n ,

s2
n ], where pi, qi, ri, si are integers.

Then, the quantity E
[
Z(n)(B)

2
Z(n)(C)

2
]

can be expanded as a finite sum involving only product
moments of blocs of order less than four. From here, we have to distinguish a finite number of cases,
depending on the respective positions of the blocs (corresponding to different values of the permutation π
in Theorem 4). For each of these cases, we obtain from Theorem 4:

E
[
Z(n)(B)

2
Z(n)(C)

2
]

=
P (p1, q1, p2, q2, r1, r2, s1, s2)

Q(n)

were P and Q are polynomials.
Since the expectancy vanishes for pi = qi or ri = si, there exists a polynomial R such that:

E
[
Z(n)(B)

2
Z(n)(C)

2
]

= (q1 − p1)(q2 − p1)(s1 − r1)(s2 − t2)
R(p1, q1, p2, q2, r1, r2, s1, s2)

Q(n)
(11)

= n4A(B)A(C)
R(p1, q1, p2, q2, r1, r2, s1, s2)

Q(n)
(12)

Now, by the Cauchy-Schwartz inequality and the lemma, we have, for some fixed ε < 1
2 and c > 0:

E
[
Z(n)(B)

2
Z(n)(C)

2
]
≤
(
E
[
Z(n)(B)

4
]

E
[
Z(n)(C)

4
])1/2

≤ c2n2+ε (13)

Equations (12) and (13) implie that:

n2A(B)A(C)R(p1, q1, p2, q2, r1, r2, s1, s2) ≤ c2Q(n)nε (14)

Thus, if deg(R) denotes the total degree of the polynomial R, we have: deg(R) + 2 ≤ deg(Q).
This implies that for pi, qi, ri, si ∈ J0, nK the quantity

R(p1, q1, p2, q2, r1, r2, s1, s2)n2

Q(n)

is uniformly bounded. This and Equation (12) complete the proof of the theorem. 2

From the last theorem and the tightness criterion (Theorem 3), we have:

Corollary 1 The sequence of processes X(n)
(s,t)∈[0,1]2 is tight.



Random permutations and their discrepancy process 465

5 Finite-dimensional laws.
In this section, we compute the finite dimensional laws, and we prove Lemma 2. Our approach is the
following: compute discrete probabilities and prove a local limit law by the use of Stirling’s formula.

Let 1 ≤ p ≤ q ≤ n and 1 ≤ l ≤ m ≤ n. Let us consider the random vector A(n) = (A(n)
i )1≤i≤4 ∈ R4

defined by:

A
(n)
1 = Y (n) ([1, p]× [1, l])

A
(n)
2 = Y (n) ([1, p]× [l + 1,m])

A
(n)
3 = Y (n) ([p+ 1, q]× [1, l])

A
(n)
4 = Y (n) ([p+ 1, q]× [l + 1,m])

The vector A(n) counts the number of points in the four regions described in Figure (1).

p q

l

m

1
1 n

n
A

(n)
2 A

(n)
4

A
(n)
3

A
(n)
1

Fig. 1: The four regions involved in the definition of A(n)

We have the following lemma.

Lemma 3 Let k1, k2, k3, k4 be integers. Then:

P
(
A(n) = (k1, k2, k3, k4)

)
=
(

p

k1, k2

)(
q − p
k3, k4

)(
n− q

l − k1 − k3,m− l − k2 − k4

)(
n

l,m− l

)−1

(15)

Proof: All the permutations such that A = (k1, k2, k3, k4) can be constructed as follows:

• choose the k1 numbers in J1, pK whose images will be in J1, lK, and the k2 ones whose images will
be in Jl + 1,mK. This corresponds to the first multinomial coefficient in Equation (15).

• do the analogue for the intevals Jp + 1, qK and Jq + 1, nK. This corresponds to the next two multi-
nomial coefficients.

• choose the effective values of the images among the l!(m− l)!(n−m− l)! possible choices.
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Since the probability of any given permutation is 1
n! , the lemma is proved. 2

Fix 0 ≤ a ≤ a+ b ≤ 1, and 0 ≤ c ≤ c+ d ≤ 1, and put:

p = an

q = (a+ b)n
l = cn

m = (c+ d)n

Then one has E [A] = (acn, adn, bcn, bdn). Let us put:

k1 = acn+ α1

√
n

k2 = adn+ α2

√
n

k3 = bcn+ α3

√
n

k4 = bdn+ α4

√
n

where α1, α2, α3, α4 are fixed in a given compact set K of R4. From now on, we will use the notation
OK instead of O when the involved constant depends only on K.

Then one has the following lemma:

Lemma 4

P (A = (k1, k2, k3, k4)) =
(2πn)−2

Σ
e−Q(α1,α2,α2,α4)

(
1 +OK

(
1√
n

))
(16)

where Q is a positive quadratic form of the αi, and Σ = abcd(1− a− b)(1− c− d).

Proof: We recall Stirling’s formula:

n! =
(n
e

)n√
2πn

(
1 +O

(
1
n

))
Then an easy calculation leads to:

P (A = (k1, k2, k3, k4)) =
(2πn)−2

Σ

∏
(X,Y )∈J+

(
X

Y

)Y ∏
(X,Y )∈J−

(
X

Y

)−Y (
1 +OK

(
1√
n

))

where J+ designates the set of all pairs of variables (X,Y ) such that
X!
Y !

appears in one of the first three
multinomials of Equation (15), and J− is the analogue for the fourth one.

Now, if X = An and Y = Bn+ ε
√
n, one has:(

X

Y

)Y
=

(
A

B

)Y ( 1
1 + εB−1n−1/2

)Bn+ε
√
n

=
(
A

B

)Y
exp

(
ε
√
n+

ε2B−1

2

)(
1 +OK

(
1√
n

))
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Now the lemma follows from the following observations:

• The product of all terms of the form
(
A
B

)Y
equals 1. Indeed, among the 12 elements in J+ ∪ J−,

A/B takes each of the value c−1, d−1, (1− c− d)−1 exactly four times, and the sum of contri-
butions vanishes in each case (for example, the value A/B = c−1 appears with the exponent
k1 + k3 + (l − k1 − k3)− l = 0).

• The product of the terms of the form exp (ε
√
n) equals 1. Indeed, the sum of the values of ε over

all pairs is 0.

2

A slight modification of the last proof leads to the proof of Lemma 2, that we sketch now.

Proof Proof of Lemma 2 (sketch): Let us fix ε < 1/2. We first prove that there exist positive constants
D,D′ such that for all α, β ∈ [0, 1], one has:

P
(
Z(n)

αn,βn = n
1
2+ε
)
≤ De−D

′n2ε

This follows from these two obervations:

• One can assume that min(αn, βn, (1−α)n, (1− β)n) ≥ n 1
2+ε (otherwise the probability is zero).

• It is easily checked from the proof of the last lemma that if the αi go to infinity with n slower than
nε, and if min(an, bn, cn, dn, (1− a− b)n, (1− c− d)n) ≥ n

1
2 , then Equation (16) is still valid,

with uniform error term.

Now, fix n, α, and β and let p(k) = P
(
Z(n)

αn,βn = k
)
. Then, Equation (15) and the study of the

difference p(k + 1) − p(k) show that the function k 7→ p(k) is decreasing on Jk0, nK, for some k0 =
k0(n) = O(1).

Hence, for n large enough, one has, for every k ≥ n 1
2+ε : p(k) ≤ p(n 1

2+ε) This implies:

E
[
Z(n)

αn,βn
2r
]
≤

∑
k≤n

1
2 +ε

p(k)k2r +
∑

k>n
1
2 +ε

p(k)k2r

≤ nr+2ε + n2r+1e−D
′n2ε

≤ D′′nr+2ε

where D′′ only depends on r and ε. This proves the lemma. 2

Since the error term in Lemma 4 is uniform on compact sets, the limit density is the density of a
probability measure, and the local limit law implies the limit in distribution. Thus we have proved:

Theorem 6 The random vector 1√
n

(A − E [A]) converges in distribution to a quadrivariate gaussian
vector of covariance Q.

Corollary 2 The vector (X(n)
s,t , X

(n)
s′,t′) converges in distribution to a centered gaussian vector of covari-

ance:
E
[
X∞s,tX

∞
s′,t′
]

= (min(s, s′)− ss′)(min(t, t′)− tt′)



468 Guillaume Chapuy

Proof: Here again, we have to distinguish cases, depending on the respective positions of s, s′t, t′. In each
case, (X(n)

s,t , X
(n)
s′,t′) is a linear combination of A1, A2, A3, A4, so Theorem 6 implies that it converges to

a gaussian vector.
Then all we have to do is determine the covariance. From Equations (5) and(1), one has, for p < p′ and

q < q′:

E
[
X

(n)
p/n,q/n, X

(n)
p′/n,q′/n

]
=
pq(n− p′)(n− q′)

n3(n− 1)

and taking a limit concludes the proof in the case s < s′, t < t′.
The other case is analogue, using Equations (6) and(1). 2

The next corollary will be our final step:

Corollary 3 (Finite-dimensional laws) Let k, l ≥ 2 be integers.
Then for all 0 = s0 < s1 < . . . < sk < 1 and 0 = t0 < t1 < . . . < tl < 1, the vector(
X

(n)
ti,sj

)
1≤i≤k , 1≤j≤l

converges in distribution to a centered gaussian vector T of covariance

E[Ti,i′Tj,j′ ] = (min(ti, ti′)− titi′)(min(sj , sj′)− sjsj′)

Proof: We prove by induction on k+ l that the corollary holds, with a local limit law (i.e. convergence of
the discrete probability function to the density, uniformly on compact sets).

The case k + l ≤ 4 is known from Lemma 4.
Let k and l such that k + l > 4, and assume that the result is true for every k′ and l′ such that

k′ + l′ < k + l. By symmetry, we can assume that k > 2.
Let us define:

Mi,j = Z(n) ([si, si+1]× [tj , tj+1]) for 0 ≤ i < k, 0 ≤ j < l

L1,j = M0,j +M1,j + . . .+Mk−2,j for 0 ≤ j < l

L2,j = Mk−1,j

Then we have the two following facts, the second being a consequence of the induction hypothesis:

• the law of (L2,j)0≤j<l given (Mi,j)0≤i<k−1,0≤j<l depends only on (L1,j)0≤j<l.

• both vectors (Li,j)1≤i≤2,0≤j<l and (Mi,j)0≤i<k−1,0≤j<l have a gaussian local limit law.

Expressing the density function of (Mi,j)0≤i<k,0≤j<l from these two facts easily shows that it has a
gaussian local limit law, and concludes the induction. 2

From Corollaries 1, 3 and the Prohorov theorem (Theorem 2), we have proved Theorem 1.
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