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In 1999, Chan proposed an algorithm to solve a given optimization problem: express the solution as the minimum
of the solutions of several subproblems and apply the classical randomized algorithm for finding the minimum of r
numbers. If the decision versions of the subproblems are easier to solve than the subproblems themselves, then a
faster algorithm for the optimization problem may be obtained with randomization. In this paper we present a precise
probabilistic analysis of Chan’s technique.
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1 Introduction
In [Cha99], Chan considers the following classical randomized algorithm for finding the minimum of r
numbers min{A[1], . . . , A[r]}:

Algorithm 1

Input: r
Output: min{A[1], . . . , A[r]}
randomly pick a permutation {i1, . . . , ir} of {1, . . . , r};
t :=∞ ;
for k = 1 to r do

if A[ik] < t then
t := A[ik];

end if;
end for;
return t;
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Randomization in the above algorithm ensures that the assignation step t := A[ik]; is executed only
a few number of times on average compared to the test A[ik] < t. In fact, we know that the expected
number of assignations is given by the rth harmonic number Hr, and hence that the algorithm runs in
time O(rD + ln rT ) expected time, where D and T are the complexities of respectively the decision and
assignation steps.

This can be useful in the context of minimization or maximization problems. It is often the case that
we can find more efficient algorithms for the decision version of the problem, i.e. answering for instance
whether the minimum value is greater than a given value t, than for the optimization version. Trans-
forming the decision algorithm into an optimization algorithm usually increases the complexity, typically
multiplying it by a factor (poly)logarithmic in the problem size.

Chan showed that if we have a method for dividing an optimization problem A into subproblems
A[1], A[2], . . . , A[r] of roughly equal sizes, and that the optimal value for A is defined as the minimum
value of the subproblems, then the above algorithm can be used as a method for solving an optimization
problem in randomized expected time O(D), where D is the time needed for solving the decision version
of problem A. So up to a constant factor, we solve the optimization problem as efficiently as the decision
problem. This is achieved simply by making recursive calls for the assignation steps in the algorithm
outlined above. Recursion stops as soon as the problem size drops below a given constant, at which point
we solve the problem directly.

More precisely, Chan proves the following Lemma. Reusing Chan’s notations, we define Π as the
problem space, and for a problem P ∈ Π, we denote by w(P ) ∈ R its solution, and by |P | its size (a
positive integer). It is further assumed that the solution of a problem of constant size can be computed in
constant time. The Lemma is given as follows. To compare with Chan [Cha99], we must set his parameter
α = 1/b.

Lemma 1.1 Let b > 1, λ > 0, and r be constants, and let D(.) be a function such that D(n)/nλ is
monotone increasing in n. Given any problem P ∈ Π, suppose that within D(|P |) time,

(i) we can decide whether w(P ) < t for any given t ∈ R, and
(ii) we can construct r subproblems P1, . . . , Pr ∈ Π, each of size at most d|P |/be, so that

w(P ) = min{w(P1), . . . , w(Pr)}.

Then for any problem P ∈ Π, we can compute the solution w(P ) in O(D(|P |)) time.

In [Cha99], Chan gives a suprisingly long series of geometric optimization problems where this technique
can be efficiently applied.

In this paper, we want to present a precise probabilistic analysis of Chan’s technique. First, we give
an exact expression for the dominant terms. Next, we provide successive contributions to the asymptotic
algorithm cost. The particularity of the associated recurrence is that it deals with the de operator. This
entails interesting analysis and convergence difficulties. The paper is organized as follows: section 2
summarizes the notations we need in the sequel and presents the main results. Section 3 is devoted to an
illustrative application: two-dimensional linear programming. Section 4 presents the probabilistic analysis
of the algorithm. A preliminary analysis of the fundamental recurrence is given in section 5 and a more
precise analysis is given in section 6, including the periodicities, the convergence conditions and some
numerical experiments. Section 7 concludes the paper.
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2 Notations and main results
We split the initial problem of size n into r subproblems of size roughly n/b: we assume that the size of
a subproblem is given by dn/be, with a constant factor b. Usually, r = b. In this case, there is of course
a small overlapping of subproblems, if n is not an exact power of b, but we will neglect this effect in the
analysis. D(P ) and T (P ) are now random variables. We also use the following notations:

• Pi: ith subproblem.

• w(Pi): value of Pi.

• Ii : [[w(Pi) is a record]], assumed to be iid random variables.

• D(P ): cost of decision: [[w(P ) ≤ t]], for some real t, assumed to be independent of w(P ) and to
depend only on the size n of P .

• T (P ): cost of computing w(P ), assumed to be independent of w(P ) and to depend only on the size
n of P .

• D(n) = E(D(P )), assumed to depend only on the size n of P .

• M(n) := E(T (P )), assumed to depend only on the size n of P .

• dn/be: size of a subproblem of a problem of size n.

• r: decomposition factor, usually large in most applications (but this is not crucial).

• D(n) = κ0n
λ(lnn)δ, λ ≥ 1. We assume δ is an nonnegative integer. We have chosen this form as

it is the most common one in many applications.

• V denotes the variance.

• G(n) := V(D(P )), assumed to depend only on the size n of P .

• C0 := logb(a) = ln a
ln b .

• C1 := a
bλ

;

• χk := 2πik
ln b , ξk := −2πik+ln a

ln b = C0 − χk.

In section 5 we prove the following preliminary result

Theorem 2.1 If
λ > C0,

then

M(n) ∼ κ1n
λ(lnn)δ

[
1

1− C1
− δ ln b

lnn
1

(1− C1)2
+O(1/ lnn2)

]
,

with
κ1 =

rκ0

bλ
.



Randomized Optimization: a Probabilistic Analysis 61

A more precise analysis is given in section 6, with the Mellin-Perron Lemma. We prove the following
results (∆1 and Z(s) are also defined in that section):

Theorem 2.2 The contribution to the mean M(n) due to C0 is given by

ψ0(n)− ψ0(n− 1)

with

ψ0(n) =
nC0+1[∆1 + rZ(C0)/a]

C0(C0 + 1) ln b
,

Theorem 2.3 The total contribution of ξk, k 6= 0 to the mean M(n) is given by

ψP (n)− ψP (n− 1)

with the Fourier series
ψP (n) = nC0+1

∑
k 6=0

αke
−χk lnn,

and

αk :=
∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

.

The conditions for absolute convergence of the series, for the shifting of integration line in some integrals
and the error terms are also detailed in section 6.

3 Illustration
Chan’s method has a lot of applications in the field of geometric optimization, a number of which are
given in his paper [Cha99]. We now describe a simple, illustrative example.

One of the most well-known geometric optimization problem is linear programming. Lots of con-
tributions have been made in the field of algorithms for linear programming (or more generally LP-type)
problems in the case where the number of constraints is n, but the number of variables is a constant. Many
of them are randomized incremental and consider each constraint in turn in random order. This is the case
of Seidel’s algorithm, for instance [Sei91]. Those algorithms have been improved, then generalized to
so-called LP-type problems, in which the fundamental structure of linear programs is preserved [SW92].

For the purpose of illustration, we will consider the application of Chan’s method to 2-dimensional
linear programming. The variables are x and y, and the set of constraints C is a set of lines. The goal is to
find a point (x, y) with minimum y above the lines in C. In order to apply Chan’s technique, we need two
ingredients: a decision algorithm, and a way of decomposing the problem into subproblems.

The decision problem asks whether the optimum point is above some given horizontal line of equation
y = t. Intersecting this line with the halfplanes above each line c ∈ C yields a set of horizontal halflines.
Depending on the slope of the line c, these halflines are either bounded to the left or to the right. The
decision algorithm proceeds by computing the maximum of the origins of halflines going to the right, and
the minimum of the origins of the lines going to the left. The answer to the decision problem is yes if
and only if the maximum is no greater than the minimum. This takes linear deterministic time, and the
variance of D(P ) is zero.
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y = t

Fig. 1: The decision algorithm: intersections of the constraints with the line of equation y = t yield a set of halflines
(dashed). We have A[i] < t iff the halflines have a common point.

Now we can decompose the problem as follows. Partition the set of constraints C in k equal-sized
groups {Ci}ki=1. We consider the r =

(
k
2

)
subproblems Pi defined by the unions Ci ∪ Cj , i 6= j. Hence

each subproblem has size d2n/ke and we set b = k/2. Since the optimal solution is defined by two
constraints, and each pair of constraints is in at least one subproblem, the optimum value is the maximum
of the optimal values of the r subproblems. Applying the above analysis with the following parameters:
κ0 = 1, λ = 1, δ = 0, r =

(
k
2

)
, b = k/2, a = Hr, κ1 = rκ0/b

λ = k − 1, κ1
1

1−C1
' k−1

1−2Hrk
yields

M(n) ∼ k − 1
1− 2H(k2)/k

n.

Note that k must be chosen so that C0 < 1. The first such value is k = 8, yielding C0 ' 0.98. A
better choice for k is one minimizing the constant in front of the linear term. This is k = 18, yielding
M(n) ∼ 45.145n.

4 Probabilistic analysis
4.1 Some useful results
• E(Ii) = P(Ii = 1) = 1

i , and Ii, Ij , i 6= j are independent (Records master theorem)

• Let us consider the fundamental recurrence,

M(n) = aM(dn/be) + f(dn/be), with f(n) = rD(n) = rκ0n
λ(lnn)δ, a ≥ 1, b > 1,M(1) = 1.

(1)
If

λ > C0,
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then, by Theorem 2.1

M(n) ∼ κ2n
λ(lnn)δ, with κ2 = κ1

1
1− C1

, κ1 =
rκ0

bλ
. (2)

4.2 The mean
We have

T (P ) =
r∑
1

IiT (Pi) +
r∑
1

D(Pi),

E(T (P )) =
r∑
1

1
i
E(T (Pi)) + rD(dn/be), b > 1,

M(n) = aM(dn/be) + rκ0dn/beλ(ln(dn/be))δ, (3)

with a = Hr =
r∑
1

1
i
. If r is large, then a ∼ ln r + γ.

Hence, if
λ > C0, (4)

then, by (2)
M(n) ∼ κ2n

λ(lnn)δ.

We usually have r ∼ b, so a < b and 0 < C0 < 1, hence (4) will be satified in this case. But (4) is
sufficient in the general case r 6= b.

4.3 The variance
We have

T (P )−M(n) =
r∑
1

[
IiT (Pi)−

1
i
M(dn/be)

]
+

r∑
1

[D(Pi)−D(dn/be].

Set
V (n) := E[T (P )−M(n)]2.

By our independence assumptions, this simplifies as

V (n) =
r∑
1

E
[
IiT (Pi)−

1
i
M(dn/be)

]2
+

r∑
1

E[D(Pi)−D(dn/be)]2.

Set
G(n) := V(D(P )) = E[D(P )−D(n)]2.

We have

E
[
IiT (Pi)−

1
i
M(dn/be)

]2
= E

[
1
i
T 2(Pi)−

1
i2
M2(dn/be)

]
= E

[
1
i
T 2(Pi)−

1
i
M2(dn/be)

]
+
(

1
i
− 1
i2

)
M2(dn/be),
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and
V(T (Pi)) = E

[
T 2(Pi)−M2(dn/be)

]
= V (dn/be).

Hence,

V (n) ∼ aV (dn/be)+(a−H(2)
r )M2(dn/be)+rG(dn/be) ∼ aV (dn/be)+a1n

2λ(lnn)2δ +rG(dn/be),

with
a1 := (Hr −H(2)

r )κ2
2/b

2λ.

If r is large, as
∑∞

1 1/i2 = π2/6, we have

a1 ∼ (ln r + γ − π2/6)κ2
2/b

2λ.

The behaviour of V (n) depends on the relative growth of n2λ and G(n).
The other moments can be computed, with some extra effort.
If r is large, the number of records is known to be Gaussian, and we conjecture that T (P ) should be

Gaussian.

4.4 Deeper tree
To enforce condition (4), we can use a tree of depth l,(i.e. if we compress l levels of recurrence into one),
we derive with large r,

M(n) = [ln rl + γ]M(dn/ble) + rlD(dn/ble).
So ã(l) = ln rl + γ,

we must have λ >
ln[l ln r + γ]

l ln b
. (5)

But the right-hand side of (5) is decreasing with l, so it is always possible to satisfy (5).
We obtain

κ̃1(l) = rlκ0/b
lλ,

κ̃2(l) = rlκ0/b
lλ 1

1− ã(l)/blλ
, (6)

M(l, n) ∼ κ̃2(l)nλ(lnn)δ.

For some parameters values, (6) possesses a minimum for some l∗. For instance, for r = 10, λ = 2, b = 2,
we have l∗ = 2.

5 Preliminary Analysis of (1), proof of theorem 2.1
Proceeding as in Bentley et al. [BHS80], Cormen et al. [CLR90], Flajolet and Sedgewick [FS96], with
more precision and details, we first assume that n is an exact power of b. We iterate (1) and obtain

M(n) = nlogb a +
logb n−1∑

0

ajf(n/bj+1). (7)
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Set k := logb n. We have

k−1∑
0

ajf(n/bj+1) = rκ0

k−1∑
0

aj
nλ

b(j+1)λ
(lnn− (j + 1) ln b)δ.

Set
C1 := a/bλ < 1,

by (4). This leads to

M(n) = nC0 + κ1n
λ

 ∞∑
j=0

Cj1(lnn− (j + 1) ln b)δ − Ck−1
1

∞∑
j=1

Cj1(lnn− k ln b− j ln b)δ


= nC0 + κ1n

λ

 ∞∑
j=0

Cj1

δ∑
u=0

(
δ

u

)
(lnn)δ−u(−(j + 1) ln b)u − Ck−1

1

∞∑
j=1

Cj1(−j ln b)δ

 .
We first obtain a dominant contribution

κ1n
λ(lnn)δ

[
1

1− C1
− δ ln b

lnn

(
C1

(1− C1)2
+

1
1− C1

)
+O(1/ lnn2)

]
= κ1n

λ(lnn)δ
[

1
1− C1

− δ ln b
lnn

1
(1− C1)2

+O(1/ lnn2)
]
. (8)

The next contribution, as Ck1 = nC0/nλ, is given by

nC0 − nC0κ1/C1(ln b)δ(−1)δ
δ∑

u=0

{
δ
u

}
u!Cu1

(1− C1)u+1
:= nC0C2, (9)

where
{
.
.

}
denotes the Stirling number of the second kind. For instance, δ = 3 leads to

nC0

[
1 + κ1(ln b)3

C2
1 + 4C1 + 1
(1− C1)4

]
.

If n is not a power of b, we must replace n/bj by nj such that nj = dnj−1/be, but, as shown in
[CLR90],

nj < n/bj +
b

b− 1
,

so
nλj < (n/bj)λ + (n/bj)λ−1C3λ+ . . . ,

for some constant C3, and the correction to (8) is less than

κ1n
λ(lnn)δ

C3λ

1− bC1

1
n
,

which is negligible with respect to the dominant contribution. Equ. (8) proves theorem 2.1.
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6 A more precise analysis of (1), proof of theorems 2.2, 2.3.
6.1 The analysis
We proceed now in the spirit of Flajolet and Golin [FG94] and Grabner and Hwang [GH05]. See also
many other examples in Flajolet et al. [FGKP94] and Panny and Prodinger [PP95]. Let the Dirichlet
generating function of ∆n defined as

W (s) :=
∞∑
1

∆n

ns
.

We have the Mellin-Perron Lemma: Assume that W (s) converges absolutely for <(s) > µ. Then,

ψ(n) :=
n

2πi

∫ µ+1+i∞

µ+1−i∞
W (s)ns

ds

s(s+ 1)
=
n−1∑
k=1

(n− k)∆k =
n−1∑
k=1

k∑
l=1

∆l. (10)

Here, we have

M(bm) = aM(m) + rD(m),
M(bm+ 1) = aM(m+ 1) + rD(m+ 1),

...
M(bm+ b) = aM(m+ 1) + rD(m+ 1),

M(bm+ b+ 1) = aM(m+ 2) + rD(m+ 2)
...

Of course, practically, if 2 ≤ m ≤ b, we should divide the set of tasks into m tasks of size 1, but, to
simplify, we use expression (1) for all cases.

Hence, with

∆m := M(m+ 1)−M(m),
Um := D(m+ 1)−D(m),

M(1) = 1,
∆1 = M(2)− 1 = a− 1 + rD(1),∆2 = 0, . . . ,∆b−1 = 0

we derive

∆bm = a∆m + rUm,

∆bm+1 = 0,
...

∆bm+b−1 = 0,
∆bm+b = a∆m+1 + rUm+1,

...
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So

W (s)−∆1 = a
W (s)
bs

+ r
Z(s)
bs

,

with

Z(s) :=
∞∑
1

Um
ms

.

As we will see, Z(s) converges absolutely for <(s) > λ. We have

W (s) =
∆1 + rZ(s)/bs

1− a/bs
.

Note that in [FG94] and [GH05], the authors use∇∆ instead of ∆ in order to obtain directly M(n) at the
end. But, here, it does not seem possible to apply this technique efficiently.

Now (10) leads to

ψ(n) =
n

2πi

∫ µ+1+i∞

µ+1−i∞

∆1 + rZ(s)/bs

1− a/bs
ns

ds

s(s+ 1)
=

n∑
k=2

[M(k)− 1]. (11)

and
M(n) = ψ(n)− ψ(n− 1).

Now

Um = κ0

[
mλ + λmλ−1 +

(
λ

2

)
mλ−2 + . . .

] [
lnm+ 1/m− 1/m2 + . . .

]δ − κ0m
λ(lnm)δ

= κ0

[
λmλ−1(lnm)δ + δmλ−1(lnm)δ−1 +

(
λ

2

)
mλ−2(lnm)δ +O

(
mλ−2(lnm)δ−1

)]
.

This leads to

Z(s) = κ0

[
λ(−1)δζδ/(s− λ+ 1) + δ(−1)δ−1ζ(δ−1)/(s− λ+ 1) +

(
λ

2

)
(−1)δζδ/(s− λ+ 2) + . . .

]
(12)

Now
ζ(s) =

1
s− 1

+ γ0 − γ1(s− 1) + . . .

where γi are Stieltjes constants. Hence the dominant singularity of (11) is at s = λ. So, by standard
arguments (see details in Flajolet and Golin [FG94] or Flajolet and Sedgewick [FS06]) , this leads to the
following contribution (conditions for shifting the line of integration are investigated below).

The dominant contribution to the mean M(n) is given by

ψD(n)− ψD(n− 1),

where

ψD(n) := rκ0n

[
λnλ(lnn)δ + δnλ(lnn)δ−1

bλλ(λ+ 1)(1− C1)

+
λδnλ(lnn)δ−1

bλλ(λ+ 1)

(
− C1 ln b

(1− C1)2
− 1
λ(1− C1)

− 1
(λ+ 1)(1− C1)

− ln b
1− C1

)]
. (13)
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ψ(n) = ψD(n) +O(nλ+1(lnn)δ−2)

After some algebra (we omit the details), this exactly leads to the dominant term (8). Of course, all (lnn)j

terms can be automatically computed.
The next singularity of (12) is at s = λ − 1. If λ − 1 > C0, the corresponding contribution to M(n),

of order nλ−1 can be computed as previously.
If λ is integer, the last useful terms of (12) correspond to ζi/(s) for some integer i. The singularity at

s = 1 should allow the shift of the line of integration to the left from 1 + ε to 1− ε, ε > 0. But the growth
property of Z(s) is related to the one of ζ(s). Let s = σ + it. Then (see Whittaker and Watson [WW27,
p. 275])

if σ > 1,|ζ(s)| = O(1),

if 1− δ ≤ σ ≤ 1 + δ, δ > 0,|ζ(s)| = O(|t|1−σ log |t|),
if 0 < σ < 1,|ζ(s)| = O(|t|1−σ),

if σ < 0,|ζ(s)| = O(|t|1/2−σζ(1− s)) = O(|t|1/2−σ).

So, with σ = 1, ∣∣∣∣ ζ(s)
s(s+ 1)

∣∣∣∣ = O(|t|−2 log |t|),

and the shift is allowed.
Let us now turn to the singularity of (11) with simple poles:

ξk :=
−2πik + ln a

ln b
= C0 − χk,

with
χk :=

2πik
ln b

,

To simplify the analysis, we will only consider the case δ = 0. The general more complicated case can be
analyzed similarly. We are now interested in the case σ = C0 − ε, ε > 0.

• If λ = 1,
|ζ(s− λ+ 1)| = O(|t|1−C0+ε),

the integrand of (11) is of order O(|t|1−C0+ε−2) = O(|t|−1−C0+ε) and we can safely shift the line
of integration from C0 + ε to C0 − ε.

• If λ = 2,

– if 0 < C0 − ε < 1
|ζ(s− λ+ 1)| = O(|t|1/2−C0+ε+1),

the integrand is of order O(|t|−1/2−C0+ε).
If 1/2 < C0 − ε < 1 then we can safely shift the line of integration to C0 − ε.
If 0 < C0 − ε < 1/2, we do not have convergence of (11) for s ∈ [C0 − ε+ iR . . . C0 − ε+
i∞] ∪ [C0 − ε− i∞ . . . C0 − ε− iR], R large and we cannot shift the line of integration.
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– if 1 < C0 − ε < 2 , the integrand is of order O(|t|−C0+ε) and we can safely shift the line of
integration to C0 − ε.

Let us now consider the contribution of the poles ξk. For k = 0, we get the following result, which proves
theorem 2.2:

The contribution to the mean M(n) due to C0 is given by

ψ0(n)− ψ0(n− 1)

with

ψ0(n) =
nC0+1[∆1 + rZ(C0)/a]

C0(C0 + 1) ln b
, (14)

This gives

ψ0(n)− ψ0(n− 1) ∼ C4n
C0 +O(nC0−1), with (15)

C4 =
nC0 [∆1 + rZ(C0)/a]

C0 ln b

For k 6= 0, we obtain the following result, which proves theorem 2.3:
The total contribution of ξk, k 6= 0 to the mean M(n) is given by

ψP (n)− ψP (n− 1)

with the Fourier series
ψP (n) = nC0+1

∑
k 6=0

αke
−χk lnn,

and

αk :=
∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

.

The growth order of the coefficients depends on λ.

• If λ = 1,
|αk| = O(|k|−1−C0),

and the series is absolutely convergent

• If λ = 2,

– if 0 < C0 < 1, then
|αk| = O(|k|−1/2−C0).

If C0 > 1/2, the series is absolutely convergent.
If C0 < 1/2, the series is not absolutely convergent.

– if 1 < C0 < 2, then
|αk| = O(|k|−C0),

the series is absolutely convergent.
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In the case of absolute convergence, we have uniform convergence of the Fourier series and ψP (n) is
continuous, non differentiable, and periodic, as in the average case analysis of Flajolet and Golin [FG94].

We must now carefully analyze the error term on ψP (n)−ψP (n− 1) due to the shift of the integration
line to C0 − ε. Indeed, we want to obtain an error at most O(nC0−γ), γ > 0, as (15) gives a contribution
of order nC0 . We start from (11), this gives

ψ(n)− ψ(n− 1) =
1

2πi

∫ +∞

−∞
nτ+itφ(t)

∆1 + rZ(v)/bv

(1− a/bv)v(v + 1)
dt,

with

τ = C0 + 1− ε, v = C0 − ε+ it,

φ(t) := 1− (1− 1/n)τ+it.

We must have ∫
|φ(t)|

∣∣∣∣ ∆1 + rZ(v)/bv

(1− a/bv)v(v + 1)

∣∣∣∣ dt = O(1/n1−β),

with 0 < β < 1, so that γ = ε− β > 0. Assume∣∣∣∣ ∆1 + rZ(v)/bv

(1− a/bv)v(v + 1)

∣∣∣∣ = O

(
1
|t|1+ν

)
.

Possible values of ν can be derived from above. After some algebra, we get

|φ(t)| = (2(1− cos[ln(1− 1/n)t])(1− τ/n) + τ2/n2)1/2.

We split the interval t ∈ [0 . . .∞] into [0 . . . n1−η],[n1−η . . .∞],0 < η < 1 (similarly for t ∈ [−∞ . . . 0]).
This gives a first bound

C5

∫ n1−η

0

t

n

dt

t1+ν
=

C5

nη+(1−η)ν for some constant C5,

hence a first parameter
β1 = 1− η − (1− η)ν.

The other bound is given by

C6

∫ ∞
n1−η

dt

t1+ν
=

C6

n(1−η)ν for some constant C6,

hence a second parameter
β2 = 1− (1− η)ν.

Note that β1 < β2, so we must have β2 < ε, or (1− η)ν > 1− ε. We can choose η as small as we want,
so we have the constraint ν > 1− ε. So

• If λ = 1, ν = C0 − ε, but this would impose C0 > 1, which is not allowed,
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• If λ = 2,

If 1/2 < C0 − ε < 1, ν = −1/2 + C0 − ε, so we must have C0 > 3/2.

If 0 < C0 − ε < 1/2, recall that we do not have convergence of ψP .

If 1 < C0 − ε < 2, ν = C0 − ε− 1, but this would impose C0 > 2, which is not allowed.

We must now analyze
ψP (n)− ψP (n− 1).

This would give

ψ̃P (n) = ψP (n)− ψP (n− 1) =
∑
k 6=0

[
nξk+1 − (n− 1)ξk+1

] ∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

=
∑
k 6=0

[
nC0+1e−χk lnn − (n− 1)C0+1e−χk ln(n−1)

] ∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

∼
∑
k 6=0

[
nC0+1e−χk lnn − nC0+1

(
1− C0 + 1

n

)
e−χk lnn

(
1 +

χk
n

)] ∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

∼ nC0
∑
k 6=0

e−χk lnn[C0 + 1− χk]
∆1 + rZ(ξk)/a
ξk(ξk + 1) ln b

+O(nC0−1)

= nC0ψ
(0)
P (n) +O(nC0−1),

with

ψ
(0)
P (n) :=

∑
k 6=0

e−χk lnn

[
∆1 + rZ(ξk)/a

ξk ln b

]
. (16)

One one side, |∆1/ξk| = O(1/k), on the other side, the contribution of Z(ξk) is such that

• If λ = 1, the coefficients of this series are of order k−C0 and we have no absolute convergence if
C0 < 1.

• If λ = 2 and 0 < C0 < 1 the coefficients of this series are of order k1/2−C0 and we do not have
absolute convergence.

• If λ = 2 and 1 < C0 < 2 the coefficients of this series are of order k1−C0 and we do not have
absolute convergence.

Nevertheless, in some cases, the numerical experiments give a rather good fit: see the next subsection.

6.2 Numerical experiments
We have made several numerical experiments. They are not related to particular examples, but only chosen
on order to give a flavour of different possible behaviours.



72 Jean Cardinal and Stefan Langerman and Guy Louchard

–3

–2

–1

0

1

2

3

1 1.2 1.4 1.6 1.8 2

(a) ψ(0)
P (i) in function of logb i
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(b) (M(i)− (8))/(0.9iC0 ) in function of logb i

–3

–2

–1

0

1

2

3

1 1.2 1.4 1.6 1.8 2

(c) ψ(0)
P (i) and (M(i) − (8))/(0.9iC0 ) in function of

logb i
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(d) (ψP (i)− ψP (i− 1))/iC0 (circle) and ψ(0)
P (i) (line)

in function of logb i

Fig. 2: Case 1
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(a) ψ(0)
P (i) in function of logb i

–1.5

–1

–0.5

0

0.5

1

1.5

2

1 1.2 1.4 1.6 1.8 2

(b) (M(i)− (8)−16iC0 )/(5/2iC0 ) in function of logb i
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(c) ψ(0)
P (i) and (M(i)−(8)−16iC0 )/(5/2iC0 ) in func-

tion of logb i

Fig. 3: Case 2
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(a) ψ(0)
P (i) in function of logb i
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(b) (M(i)− (8)− 48iC0 )/(2iC0 ) in function of logb i
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(c) ψ(0)
P (i) and (M(i)−(8)−48iC0 )/(2iC0 ) in function

of logb i

Fig. 4: Case 3
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Case 1 : κ0 = 1, r = 2, λ = 1, b = 2, δ = 0. In that case, ψP is convergent, the shift is allowed, but the
error term should be too large. This leads to a = 3/2, κ1 = 1, C0 = 0.58 . . . , C1 = 0.75 . . . , C4 =
0.04 . . . , C2 = −3. We let n = 1 . . . 217. ψ(0)

P (i) in function of logb i is given in Figure 2(a).
(M(i) − (8))/(0.9iC0) in function of logb i, i = 216 . . . 217, is given in Figure 2(b), the constants
0, 0.9 are chosen to give the best fit, but we have no justification up to now. Both functions are
given in Figure 2(c). The fit is rather good. A comparison between (ψP (n)−ψP (n− 1))/nC0 and
ψ

(0)
P (n) is given in Figure 2(d), they are undistinguishable.

Case 2 : κ0 = 1, r = 2, λ = 1, b = 2, δ = 1 leads to a = 3/2, κ1 = 1, C0 = 0.58 . . . , C1 =
0.75 . . . , C4 = 20.1 . . . , C2 = 12.1 . . .. We let n = 1 . . . 217. ψ(0)

P (i) in function of logb i is given
in Figure 3(a).
(M(i) − (8) − 16iC0)/(5/2iC0) in function of logb i, i = 216 . . . 217, is given in Figure 3(b), the
constants 16, 5/2 are chosen to give the best fit, but again we have no justification up to now. Both
functions are given in Figure 3(c).

Case 3 : κ0 = 1, r = 10, λ = 2, b = 2, δ = 1 leads to a = 2.92 . . . , κ1 = 5/2, C0 = 1.55 . . . , C1 =
0.73 . . . , C4 = 32.7 . . . , C2 = 25.1 . . .. We let n = 1 . . . 217.ψ(0)

P (i) in function of logb i is given
in Figure 4(a). (M(i)−(8)−48iC0)/(2iC0) in function of logb i, i = 216 . . . 217, is given in Figure
4(b), the constants 48, 2 are chosen to give the best fit, but again we have no justification up to now.
Both functions are given in Figure 4(c).

7 Conclusion
Two problems remain open:

• Even when we have no proved absolute convergence for ψ(0)
P (n), the series appear to converge in

some cases, with a rather good behaviour either with respect to ψP (n)−ψP (n− 1) or with respect
to the observed M(i). What are the specific conditions for that?

• How to derive the constants leading to the best fits?

H.K. Hwang suggested to use the subdivision

b(n+ j)/bc, j = 0 . . . b− 1,

which indeed covers exactly [1 . . . n]. But now the records probabilities are different from 1/i, they
depend on the size of each subproblem (two different sizes), which themselves depend on n and j. We do
not have a constant a anymore. And we rarely know the distribution of T (P ).
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