On expected number of maximal points in polytopes

DMTCS proc. AH, 2007, 247-258

Yu. Baryshnikov^{1†}

¹Mathematical Sciences, Bell Laboratories, Murray Hill, NJ, USA

revised January 19, 2008,

We answer an old question: what are possible growth rates of the expected number of vector-maximal points in a uniform sample from a polytope.

Keywords: -

1 introduction

1.1 setup

We consider the following setup

- Fix a closed convex polyhedral cone K with nonempty interior in d-dimensional Euclidean space $V = \mathbb{R}^d$;
- The cone K defines a partial ordering on V: for $x, y \in V$,

$$x >_K y$$
 iff $x - y \in K$

(we say that x dominates y or that y is dominated by x).

• a point $x \in X$ is said to be *K-maximal*, or simply *maximal* if there are no further point $x' \in X$ dominating x.

(We will be using notation

$$max_K(X)$$
.

for the set of maximal points in a set $X \subset V$.)

 $\bullet\,$ Assume further that a convex (compact) polyhedron P is given, and that

[†]Suppoorted in part by ARO

• X is a uniform size n sample from P.

The following question arises in various contexts:

Question 1 Given P and K, find the expected size

$$M_n = \mathbb{E}|\max_K(X)|$$

of K-maximal elements in X, as a function of the sample size n = |X|.

I will not try to survey here all situations where computing M_n can be useful, just mention some keywords – multicriterial optimization, geometric algorithms, convex hulls – and refer the reader to [6, 8, 4, 5, ?]

1.1.1 Convention

We will use $f \approx g$ as a synonym for

$$\frac{f}{g} \to c, 0 < c < \infty.$$

1.2 what was known so far

The Question 1 was addressed by many authors having different applications in mind; consequently, they arrived at partial answers. Two of the possible setting studied most occupy in some sense opposite corners of the space of all problems:

• If P is the unit square, and K is the positive quarter plane (in d=2), the number of maximal point is the same as the number of records in an *iid* sample, i.e. *harmonic number*

$$H_n = \sum_{i=1}^n \frac{1}{i}.$$

More generally, in higher dimensions, if P is the unit cube, and K is the positive orthant ("Pareto cone"), the problem still is essentially combinatorial, and the expected number of maximal elements is the *incomplete polyzeta*: thus, in dimension d, the expected number of maximal elements is

$$M_n = \frac{1}{n} \sum_{1 \le i_1 \le \dots \le i_{d-1} \le n} \frac{1}{i_1 i_2 \dots i_{d-1}}.$$

(this result was first established, it seems, in [2], and reproduced by many authors).

• If the polyhedron P is in general position with respect to the cone K (meaning: all flats spanned by facets of K and P intersect transversally), then

$$M_n \approx n^{f/d}$$

where f is the dimension of $max_K(P)$ [3].

The situations described above are in some sense the most degenerate and most generic ones, respectively. In the former case, all faces of P are parallel to some faces of K. Generically, a small perturbation would lead to a K, P being in general position. Intermediate situations are relevant, however: for example, if P is given as a set of solution of a system of linear inequalities $P = \{Ax \leq b\}$, the sparsity of the matrix A would lead to a problem intermediate between the those above.

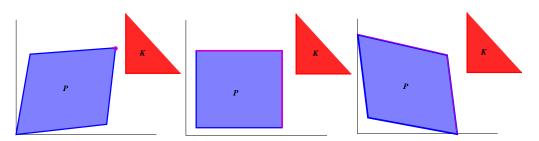


Figure 1: Generic deformations of the polyhedron P: in a smooth 1-dimensional family, typical representative has polynomial growth $(M_n \approx n^0)$ on the left; $M_n \approx n^{1/2}$ on the right), and has logarithmic terms for exceptional values of parameter $(M_n \approx \log n)$ for the middle display).

1.3 gap problem

It has been noticed [8] that there is a certain gap in the possible asymptotic behaviors of M_n as a function of n, at least in dimension 2: if the expected number grows faster than $\log(n)$, then it is asymptotically $\Omega(\sqrt{n})$. This, clearly, motivates the problem:

Question 2 What are the possible asymptotics of M_n , at least for convex polyhedral K, P (and uniform sample from P)?

In other words, what else, beyond observed so far behaviors $M_n \approx n^{f/d}$; $M_n \approx \log^{d-1}(n)$ can happen within our polyhedral setup?

In this work we answer both Questions, 1 and 2.

1.3.1 acknowledgment

I was told about the gap problem by Mordecai Golin during AofA'06; many thanks!

2 main result

Consider the set of points

$$\Delta = \{ (m, c) \in \mathbb{Z}^2, 0 < c < m < d \}.$$

We will call a pair $(r, \mu), r > 0, \mu \in \mathbb{N}$ admissible, if the intersection of the ray

$$c = rm, m > 0$$

with the set Δ contains at least at least mu points (beyond the origin). In particular, in an admissible pair (r, μ) , r is rational.

Theorem 1 The expected number of maximal elements $M_n = \mathbb{E}(\max_K(X))$ with respect to a convex closed polyhedral cone K, where X is the uniform sample from polyhedral $P \subset V$ of size n, satisfies

$$M_n \approx n^{1-r} \log^{\mu-1}(n),\tag{1}$$

for some admissible pair (r, μ) . For any admissible (r, μ) , there exists a pair (P, K) satisfying (1).

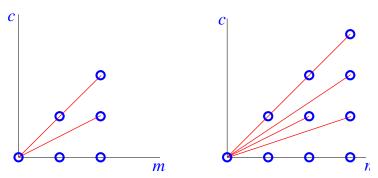


Figure 2: Asymptotics of M_n in dimensions 2,3.

2.1 examples

- 1. For d=2, the Figure 2.1 shows all possible alternatives: the point (m,c)=(1,1) corresponds to $M_n\approx n^0$ (compare Fig. 1.2, left); the point (2,2) correspond to $M_n\approx \log n$ (Fig. 1.2, middle) and the point (2,1) corresponds to $M_n\approx n^{1/2}$. In particular, one can see the "gap".
- 2. For d=3, asymptotic growth rates for M_n are
 - $M_n \approx n^{1-r}, r = 1/3, 1/2, 2/3;$
 - $M_n \approx \log^{\nu}(n), \nu = 0, 1, 2.$
- 3. For illustrative purposes, some examples in dimension 8: The three segments illustrate the following

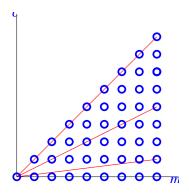


Figure 3: Asymptotics of M_n in dimension 8.

asymptotics (bottom-to-top):

- $M_n \approx n^{7/8}$;
- $M_n \approx n^{3/4} \log^3(n)$;

252

• $\log^7(n)$.

Remark: In generic situation (when all faces of P are transversal to all faces of K), all multiplicities μ are equal to 0.

2.2 specific polytopes and cones

The general result of the previous section depends, of course, on the results describing the asymptotics of M_n for specific instances of (P, K). To describe those, we will need to define *flags* and their *spectra*.

Consider the (ranked) face poset of the polytope P: its elements are faces of P of all dimensions ordered by inclusion (thus the maximal face is of dimension d, the polytope P itself, then the facets of P of dimension d-1 and so on. We will denote the set of faces of dimension l as \mathcal{P}_l .

Flags are the chains of *adjoining* proper faces of *P*:

$$\mathcal{F} = (f_1, f_2, \dots, f_l) : f_1 \subset f_2 \subset \dots \subset f_l, f_i \in \mathcal{P}_{d_i}; d_l < d.$$

A flag if full if it has length d, i.e. it includes facets of all dimensions between 0 and d-1.

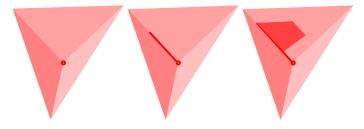


Figure 4: A flag.

We associate to each face f of P its *deficiency* $\delta(f)$: it is just the dimension of the intersection

$$(K+x)\cap P$$

for a (relative) interior point $x \in f$. One can easily check that the deficiency is well-defined, i.e. does not depend on particular point in the relative interior of a face.

Deficiencies in a flag do not decrease:

$$\delta(f_1) \leq \delta(f_2), f_1 \subset f_2.$$

Definition: The spectrum of a flag $F = (f_1 \subset f_2 \subset \ldots \subset f_l)$ is the multiset

$$\sigma(\sigma) = \left\{ \frac{c(f_1)}{m(f_1)}, \frac{c(f_2)}{m(f_2)}, \dots, \frac{c(f_l)}{m(f_l)} \right\}$$

(where elements are counted with multiplicities), where

$$c(f_i) = codim(f_i) = d - dim(f_i)$$

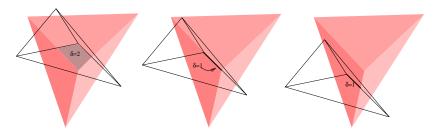


Figure 5: Deficiencies of some of the facets for polytope on Figure 2.2; the deficiencies of the facets in the flag on Figure 2.2 are equal to (0, 1, 2), and its spectrum is $\{1^3\}$ (1 with multiplicity 3).

is the codimension of a face, and

$$m(f_i) = d - \delta(f_i)$$

is its codeficiency.

Definition: For a flag \mathcal{F} define its leading exponent to be

$$r(\mathcal{F}) = \min\{r : r \in \sigma(\mathcal{F})\},\$$

the smallest number in the flag spectrum. The multiplicity $\mu(\mathcal{F})$ is the multiplicity of $r(\mathcal{F})$ in $\sigma(\mathcal{F})$. The spectra of flags are crucial for us due to our second main result,

Theorem 2 The asymptotics of M_n , as $n \to \infty$ is given by

$$M_n \approx n^{1-r_*} \log^{\mu-1}(n),$$
 (2)

where $r_* = \min_{\mathcal{F}} r(\mathcal{F})$ is the smallest of the leading exponents of flags, and μ is the largest multiplicity of r_* among all the flags.

Remark: It is immediate that extending a flag only increases its spectra, and thus can lead only to faster growing terms in (2). Hence to analyze the leading asymptotics of M_n it is enough to consider only full flags.

Remark: In fact, the entire asymptotic expansion of M_n is governed by the spectra of flags. Essentially, for each pair $(c(\mathcal{F}), m(\mathcal{F}))$ such that r = c/m occurs in the flag spectrum with multiplicity μ contributes to the asymptotic expansion of M_n an asymptotic series

$$\sum_{0 \le l; 0 \le \nu < \mu} a_{l,\nu} n^{1 - (c+l)/m} \log^{\nu}(n).$$

We will not go into details, postponing a detailed exposition of this (and all the remaining) topics to a separate paper.

3 techniques

The techniques are a melange of Fubini theorem, an elementary version of *resolution of singularities* and some fairly standard results from the theory of generalized functions. We will not even attempt to present any details of the proofs (which, while not complicated, would require quite a bit of supporting machinery), but rather will sketch the major steps and outline main constructions.

3.1 Fubini

We will denote by λ the Lebesgue measure on V, and by $|P| = \lambda(P)$ the volume of the polytope P. For a point $x \in P$, denote by

$$u(x) = |P|^{-1}\lambda(K + x \cap P)$$

the probability that a random point from P dominates x.

Lemma 1 The function u is piece-wise polynomial in V: there exists a polyhedral subdivision of P (spline subdivision) such that the restriction of u to each of its polyhedra is polynomial.

We will use the following formula which is a more or less straightforward corollary of Fubini and a formula for M_n implied by conditioning on the positions of a point in X and finding the probability that this point is maximal:

Lemma 2

$$M_n = n \int (1-t)^{n-1} dB(t), \tag{3}$$

where

$$B(t) = |P|^{-1} \lambda \{ x \in P : u(x) \le t \}, \tag{4}$$

is the probability that M evaluated at a random point in P is $\leq t$.

The advantage of using (3 is the decoupling of geometry: we can concentrate now on the properties of the function B(t). Indeed, Karamata-type Tauberian theorems would translate the asymptotics of B near zero into the the asymptotics of M_n , $n \to \infty$.

To analyze B near 0, we need to analyze u near the points where u vanishes. This can be done locally.

3.2 resolution of singularities

The domains where u is polynomial can adjoin the faces of P in rather intricate fashion. Hence a resolution of P would be helpful. In particular, it would be convenient to arrive at the domain with controlled singularities, specifically, with normal intersections (where each face of codimension k is adjoined to at most k faces of codimension 1).

To do so we resolve the singularities of P (i.e. its faces of codimension 2 and higher), in such a way that all facets (independently of their dimensions) would lift to faces of dimension (d-1) in the resolved polytope, the flags of length 2 (pairs of incident facets) would lift to faces of dimension (d-2) and so on, with full flags corresponding to the vertices in the resolution.

The easiest way to visualize such a resolution is as follows:

For each face f^l of dimension l < d of the polytope P consider the ϵ^{l+1} -tube T(f) around this face (i.e. the set of all points in P at the distance at most ϵ^{l+1} from the affine subspace (of dimension l) spanned by f^l . For small enough ϵ this tubes intersect transversally, and only if the corresponding faces adjoin.

Let P_{ϵ} be the complement to the union of these tubes,

$$P_{\epsilon} = P - \bigcup_{l < d} \bigcup_{f^l \subset P} T(f).$$

It is immediate that the facets of P_{ϵ} are in one-to-one correspondence with flags of P.

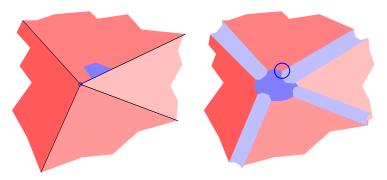


Figure 6: Resolution of vertices: non-simple vertex becomes (topologically) simple after the resolution. Vertices of the resolved polytope correspond to the flags of the original polytope P: one such pair, flag \leftrightarrow vertex, is shown.

Proposition 1 The (topological) polyhedron P_{ϵ} resolves P: there exists a (natural) mapping $\pi: P_{\epsilon} \to P$ which is a diffeomorphism on the interior of P_{ϵ} taking each codimension 1 facet of P_{ϵ} to the corresponding facet of P. (More generally, the faces of P_{ϵ} of codimension k correspond to flags in P of length k.) Further, the polyhedron P_{ϵ} is a manifold with corners: locally, it is diffeomorphic to an open ball at the origin in \mathbb{R}^d intersected with $s \leq d$ halfspaces $s_1 \geq 0, \ldots, s_s \geq 0$.

Also, the resolution moves the boundaries between the spline domains away from the vertices of P_{ϵ} :

Proposition 2 The boundaries between polyhedra of the spline subdivision lift to subvarieties (with corners) of P_{ϵ} which do not contain the vertices of P_{ϵ} .

3.3 Gelfand-Leray forms and elementary Laplace integrals

Using the proposition 1 we can localize the integral (4). Indeed, we can represent

$$B(t) = |P|^{-1} \int_{P} \mathbf{1}(u(x) < t) d\lambda \tag{5}$$

as

$$|P|^{-1} \int_{P_{\epsilon}} \mathbf{1}(\pi^* u(x) < t) d\rho \tag{6}$$

$$= |P|^{-1} \sum_{\mathcal{F}} \int_{P_{\epsilon}} \phi_{\mathcal{F}}(y) \mathbf{1}(\pi^* u < t) d\rho.$$
 (7)

Here $\rho = \pi^* \lambda$ is the pull-back of the Lebesgue measure (possible as π is a diffeomorphism onto the interior of P), and

$$\sum_{\mathcal{F}} \phi_{\mathcal{F}} = 1, \phi_{\mathcal{F}} \ge 0$$

is the partition of unity such that $\phi_{\mathcal{F}} = 0$ outside of the small vicinity of the stratum of P_{ϵ} corresponding to flag \mathcal{F} .

The advantage of the decomposition (7) stems from the following

Lemma 3 Let y be an interior point of a s-dimensional facet of P_{ϵ} corresponding to a flag $\mathcal{F} = (f_1 \subset f_2 \subset \ldots \subset f_l)$. In particular, one can choose a coordinate system centered at y such that near the origin, the polyhedron P_{ϵ} is given by $\{y_1 \geq 0, \ldots, y_l \geq 0\}$. Then

• the density of ρ behaves as

$$\frac{d\rho}{d\lambda}(y) = U_{\rho}(y) \prod_{i=1}^{s} y_{i}^{c_{i}-1},$$

and the lift of the function u behave

$$\pi^* u(y) = U_u(y) \prod_{1}^{s} y_i^{m_i}.$$

Here $c_i = c(f_i)$ and $m_i = m(f_i)$, and U_ρ , U_u are nonvanishing functions, U_ρ smooth, and U_u continuous and smooth in vicinities of the vertices of P_ϵ .

Now we could apply directly the results of [1], expressing the asymptotics of the "elementary Laplace integral"

$$\int_{y>0} U(y)e^{-t\prod_i y_i^{m_i}} y_1^{c_1-1} \cdot \dots \cdot y_s^{c_s-1} dy_1 \dots dy_s,$$

or, more directly, can analyze the poles of the Mellin transform

$$\int_{y} (\pi^* u(y))^z y_1^{c_1-1} \cdot \ldots \cdot y_s^{c_s-1} dy_1 \ldots dy_s$$

and apply the results of [10] relating them to the Laplace integrals. One can then see that the leading terms of the asymptotics come from vicinities of the vertices of P_{ϵ} , leading to Theorem 2.

4 concluding remarks

- The main results of this note give an algorithm of computing the asymptotics of M_n , in the polyhedral setup. The method requires, on its face, to enumerate and to analyze all the flags of a polyhedron, the number of which grows superexponentially with the dimension. There are obvious shortcuts, and a more efficient way to find the growth rates of M_n might be quite feasible.
- What happens if the cone K is not polyhedral but rather semi-algebraic? A lot of the elements of the proofs survive; but some auxiliary results (especially Lemma 3) would need some rethinking.

References

- [1] Arnold, V. I., Gusein-Zade, S. M., Varchenko, A. N. Singularities of differentiable maps. Vol. II. Monodromy and asymptotics of integrals. *Monographs in Mathematics*, 83. Birkhuser, Boston, MA, (1988).
- [2] Barndorff-Nielsen, O. and Sobel, M. On the distribution of the number of admissible points in a vector random sample. *Theory Probab. Appl.* 11 249–269. (1966)

- [3] Baryshnikov, Yu. M. Mathematical expectation of the number of variants that are nondominated with respect to a binary relation. *Automat. Remote Control* 46, no. 6, part 2, 774–779 (1985).
- [4] Bentley, J. L., Clarkson, K. L. and Levine, D. B. Fast linear expected-time algorithms for computing maxima and convex hulls. Algorithmica 9 168–183 (1993).
- [5] Bentley, J. L., Kung, H. T., Schkolnick, M. and Thompson, C. D. On the average number of maxima in a set of vectors and applications. *J. Assoc. Comput. Mach.* 25 536–543 (1978).
- [6] Buchta, C. On the average number of maxima in a set of vectors. *Inform. Process. Lett.* 33 63–65 (1989).
- [7] Golin, M. J. How many maxima can there be? *Comput. Geom.* 2 (1993), no. 6, 335–353.
- [8] Golin, M. J. Maxima in convex regions. *Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (Austin, TX, 1993)*, 352–360, ACM, New York, 1993.
- [9] Devroye, L. A note on finding convex hulls via maximal vectors. *Inform. Process. Lett.* 11 53–56 (1980).
- [10] Gelfand, I. M., Shilov G.E.Generalized Functions, vol. 1 Academic Press, San Diego (1964).