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On expected number of maximal points in
polytopes
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We answer an old question: what are possible growth rates of the expected number of vector-maximal points in a
uniform sample from a polytope.
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1 introduction
1.1 setup
We consider the following setup

• Fix a closed convex polyhedral cone K with nonempty interior in d-dimensional Euclidean space
V = Rd;

• The cone K defines a partial ordering on V : for x, y ∈ V ,

x >K y iff x− y ∈ K

(we say that x dominates y or that y is dominated by x).

• a point x ∈ X is said to be K-maximal, or simply maximal if there are no further point x′ ∈ X
dominating x.

(We will be using notation
maxK(X).

for the set of maximal points in a set X ⊂ V .)

• Assume further that a convex (compact) polyhedron P is given, and that
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• X is a uniform size n sample from P .

The following question arises in various contexts:

Question 1 Given P and K, find the expected size

Mn = E|maxK(X)|

of K-maximal elements in X , as a function of the sample size n = |X|.
I will not try to survey here all situations where computing Mn can be useful, just mention some

keywords – multicriterial optimization, geometric algorithms, convex hulls – and refer the reader to [6, 8,
4, 5, ?]

1.1.1 Convention
We will use f ≈ g as a synonym for

f

g
→ c, 0 < c <∞.

1.2 what was known so far
The Question 1 was addressed by many authors having different applications in mind; consequently, they
arrived at partial answers. Two of the possible setting studied most occupy in some sense opposite corners
of the space of all problems:

• If P is the unit square, and K is the positive quarter plane (in d = 2), the number of maximal point
is the same as the number of records in an iid sample, i.e. harmonic number

Hn =
n∑
i=1

1
i
.

More generally, in higher dimensions, if P is the unit cube, and K is the positive orthant (“Pareto
cone”), the problem still is essentially combinatorial, and the expected number of maximal elements
is the incomplete polyzeta: thus, in dimension d, the expected number of maximal elements is

Mn =
1
n

∑
1≤i1≤·≤···≤id−1≤n

1
i1i2 · · · id−1

.

(this result was first established, it seems, in [2], and reproduced by many authors).

• If the polyhedron P is in general position with respect to the cone K (meaning: all flats spanned
by facets of K and P intersect transversally), then

Mn ≈ nf/d

where f is the dimension of maxK(P ) [3].

The situations described above are in some sense the most degenerate and most generic ones, respec-
tively. In the former case, all faces of P are parallel to some faces of K. Generically, a small perturbation
would lead to a K,P being in general position. Intermediate situations are relevant, however: for exam-
ple, if P is given as a set of solution of a system of linear inequalities P = {Ax ≤ b}, the sparsity of the
matrix A would lead to a problem intermediate between the those above.
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Figure 1: Generic deformations of the polyhedron P : in a smooth 1-dimensional family, typical representative has
polynomial growth (Mn ≈ n0 on the left; Mn ≈ n1/2 on the right), and has logarithmic terms for exceptional values
of parameter (Mn ≈ log n for the middle display).

1.3 gap problem
It has been noticed [8] that there is a certain gap in the possible asymptotic behaviors of Mn as a function
of n, at least in dimension 2: if the expected number grows faster than log(n), then it is asymptotically
Ω(
√
n). This, clearly, motivates the problem:

Question 2 What are the possible asymptotics of Mn, at least for convex polyhedral K,P (and uniform
sample from P )?

In other words, what else, beyond observed so far behaviorsMn ≈ nf/d; Mn ≈ logd−1(n) can happen
within our polyhedral setup?

In this work we answer both Questions, 1 and 2.

1.3.1 acknowledgment
I was told about the gap problem by Mordecai Golin during AofA’06; many thanks!

2 main result
Consider the set of points

∆ = {(m, c) ∈ Z2, 0 ≤ c ≤ m ≤ d}.

We will call a pair (r, µ), r > 0, µ ∈ N admissible, if the intersection of the ray

c = rm,m ≥ 0

with the set ∆ contains at least at least mu points (beyond the origin). In particular, in an admissible pair
(r, µ), r is rational.

Theorem 1 The expected number of maximal elements Mn = E(maxK(X)) with respect to a convex
closed polyhedral cone K, where X is the uniform sample from polyhedral P ⊂ V of size n, satisfies

Mn ≈ n1−r logµ−1(n), (1)

for some admissible pair (r, µ). For any admissible (r, µ), there exists a pair (P,K) satisfying (1).
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Figure 2: Asymptotics of Mn in dimensions 2,3.

2.1 examples
1. For d = 2, the Figure 2.1 shows all possible alternatives: the point (m, c) = (1, 1) corresponds to
Mn ≈ n0 (compare Fig. 1.2, left); the point (2, 2) correspond to Mn ≈ log n (Fig. 1.2, middle)
and the point (2, 1) corresponds to Mn ≈ n1/2. In particular, one can see the “gap”.

2. For d = 3, asymptotic growth rates for Mn are

• Mn ≈ n1−r, r = 1/3, 1/2, 2/3;

• Mn ≈ logν(n), ν = 0, 1, 2.

3. For illustrative purposes, some examples in dimension 8: The three segments illustrate the following

m

c

Figure 3: Asymptotics of Mn in dimension 8.

asymptotics (bottom-to-top):

• Mn ≈ n7/8;

• Mn ≈ n3/4 log3(n);
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• log7(n).

Remark: In generic situation (when all faces of P are transversal to all faces of K), all multiplicities µ
are equal to 0.

2.2 specific polytopes and cones
The general result of the previous section depends, of course, on the results describing the asymptotics of
Mn for specific instances of (P,K). To describe those, we will need to define flags and their spectra.

Consider the (ranked) face poset of the polytope P : its elements are faces of P of all dimensions
ordered by inclusion (thus the maximal face is of dimension d, the polytope P itself, then the facets of P
of dimension d− 1 and so on. We will denote the set of faces of dimension l as Pl.

Flags are the chains of adjoining proper faces of P :

F = (f1, f2, . . . , fl) : f1 ⊂ f2 ⊂ . . . ⊂ fl, fi ∈ Pdi ; dl < d.

A flag if full if it has length d, i.e. it includes facets of all dimensions between 0 and d− 1.

Figure 4: A flag.

We associate to each face f of P its deficiency δ(f): it is just the dimension of the intersection

(K + x) ∩ P

for a (relative) interior point x ∈ f . One can easily check that the deficiency is well-defined, i.e. does not
depend on particular point in the relative interior of a face.

Deficiencies in a flag do not decrease:

δ(f1) ≤ δ(f2), f1 ⊂ f2.

Definition: The spectrum of a flag F = (f1 ⊂ f2 ⊂ . . . ⊂ fl) is the multiset

σ(σ) =
{
c(f1)
m(f1)

,
c(f2)
m(f2)

, . . . ,
c(fl)
m(fl)

}
(where elements are counted with multiplicities), where

c(fi) = codim(fi) = d− dim(fi)
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Figure 5: Deficiencies of some of the facets for polytope on Figure 2.2; the deficiencies of the facets in the flag on
Figure 2.2 are equal to (0, 1, 2), and its spectrum is {13} (1 with multiplicity 3).

is the codimension of a face, and
m(fi) = d− δ(fi)

is its codeficiency.

Definition: For a flag F define its leading exponent to be

r(F) = min{r : r ∈ σ(F)},

the smallest number in the flag spectrum. The multiplicity µ(F) is the multiplicity of r(F) in σ(F).
The spectra of flags are crucial for us due to our second main result,

Theorem 2 The asymptotics of Mn, as n→∞ is given by

Mn ≈ n1−r∗ logµ−1(n), (2)

where r∗ = minF r(F) is the smallest of the leading exponents of flags, and µ is the largest multiplicity
of r∗ among all the flags.

Remark: It is immediate that extending a flag only increases its spectra, and thus can lead only to faster
growing terms in (2). Hence to analyze the leading asymptotics of Mn it is enough to consider only full
flags.

Remark: In fact, the entire asymptotic expansion of Mn is governed by the spectra of flags. Essentially,
for each pair (c(F),m(F)) such that r = c/m occurs in the flag spectrum with multiplicity µ contributes
to the asymptotic expansion of Mn an asymptotic series∑

0≤l;0≤ν<µ

al,νn
1−(c+l)/m logν(n).

We will not go into details, postponing a detailed exposition of this (and all the remaining) topics to a
separate paper.

3 techniques
The techniques are a melange of Fubini theorem, an elementary version of resolution of singularities
and some fairly standard results from the theory of generalized functions. We will not even attempt to
present any details of the proofs (which, while not complicated, would require quite a bit of supporting
machinery), but rather will sketch the major steps and outline main constructions.
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3.1 Fubini
We will denote by λ the Lebesgue measure on V , and by |P | = λ(P ) the volume of the polytope P .

For a point x ∈ P , denote by
u(x) = |P |−1λ(K + x ∩ P )

the probability that a random point from P dominates x.

Lemma 1 The function u is piece-wise polynomial in V : there exists a polyhedral subdivision of P
(spline subdivision) such that the restriction of u to each of its polyhedra is polynomial.

We will use the following formula which is a more or less straightforward corollary of Fubini and a
formula for Mn implied by conditioning on the positions of a point in X and finding the probability that
this point is maximal:

Lemma 2
Mn = n

∫
(1− t)n−1dB(t), (3)

where
B(t) = |P |−1λ{x ∈ P : u(x) ≤ t}, (4)

is the probability that M evaluated at a random point in P is ≤ t.

The advantage of using (3 is the decoupling of geometry: we can concentrate now on the properties of
the function B(t). Indeed, Karamata-type Tauberian theorems would translate the asymptotics of B near
zero into the the asymptotics of Mn, n→∞.

To analyze B near 0, we need to analyze u near the points where u vanishes. This can be done locally.

3.2 resolution of singularities
The domains where u is polynomial can adjoin the faces of P in rather intricate fashion. Hence a resolu-
tion of P would be helpful. In particular, it would be convenient to arrive at the domain with controlled
singularities, specifically, with normal intersections (where each face of codimension k is adjoined to at
most k faces of codimension 1).

To do so we resolve the singularities of P (i.e. its faces of codimension 2 and higher), in such a way
that all facets (independently of their dimensions) would lift to faces of dimension (d− 1) in the resolved
polytope, the flags of length 2 (pairs of incident facets) would lift to faces of dimension (d−2) and so on,
with full flags corresponding to the vertices in the resolution.

The easiest way to visualize such a resolution is as follows:
For each face f l of dimension l < d of the polytope P consider the εl+1-tube T (f) around this face (i.e.

the set of all points in P at the distance at most εl+1 from the affine subspace (of dimension l) spanned by
f l. For small enough ε this tubes intersect transversally, and only if the corresponding faces adjoin.

Let Pε be the complement to the union of these tubes,

Pε = P − ∪l<d ∪f l⊂P T (f).

It is immediate that the facets of Pε are in one-to-one correspondence with flags of P .
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Figure 6: Resolution of vertices: non-simple vertex becomes (topologically) simple after the resolution. Vertices of
the resolved polytope correspond to the flags of the original polytope P : one such pair, flag↔ vertex, is shown.

Proposition 1 The (topological) polyhedron Pε resolves P : there exists a (natural) mapping π : Pε → P
which is a diffeomorphism on the interior of Pε taking each codimension 1 facet of Pε to the corresponding
facet of P . (More generally, the faces of Pε of codimension k correspond to flags in P of length k.)
Further, the polyhedron Pε is a manifold with corners: locally, it is diffeomorphic to an open ball at the
origin in Rd intersected with s ≤ d halfspaces x1 ≥ 0, . . . , xs ≥ 0.

Also, the resolution moves the boundaries between the spline domains away from the vertices of Pε:

Proposition 2 The boundaries between polyhedra of the spline subdivision lift to subvarieties (with cor-
ners) of Pε which do not contain the vertices of Pε.

3.3 Gelfand-Leray forms and elementary Laplace integrals
Using the proposition 1 we can localize the integral (4). Indeed, we can represent

B(t) = |P |−1

∫
P

1(u(x) < t)dλ (5)

as

|P |−1

∫
Pε

1(π∗u(x) < t)dρ (6)

= |P |−1
∑
F

∫
Pε

φF (y)1(π∗u < t)dρ. (7)

Here ρ = π∗λ is the pull-back of the Lebesgue measure (possible as π is a diffeomorphism onto the
interior of P ), and ∑

F
φF = 1, φF ≥ 0

is the partition of unity such that φF = 0 outside of the small vicinity of the stratum of Pε corresponding
to flag F .

The advantage of the decomposition (7) stems from the following
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Lemma 3 Let y be an interior point of a s-dimensional facet of Pε corresponding to a flag F = (f1 ⊂
f2 ⊂ . . . ⊂ fl). In particular, one can choose a coordinate system centered at y such that near the origin,
the polyhedron Pε is given by {y1 ≥ 0, . . . , yl ≥ 0}. Then

• the density of ρ behaves as
dρ

dλ
(y) = Uρ(y)

s∏
1

yci−1
i ,

and the lift of the function u behave

π∗u(y) = Uu(y)
s∏
1

ymii .

Here ci = c(fi) andmi = m(fi), and Uρ, Uu are nonvanishing functions, Uρ smooth, and Uu continuous
and smooth in vicinities of the vertices of Pε.

Now we could apply directly the results of [1], expressing the asymptotics of the “elementary Laplace
integral” ∫

y≥0

U(y)e−t
Q
i y
mi
i yc1−1

1 · . . . · ycs−1
s dy1 . . . dys,

or, more directly, can analyze the poles of the Mellin transform∫
y

(π∗u(y))zyc1−1
1 · . . . · ycs−1

s dy1 . . . dys

and apply the results of [10] relating them to the Laplace integrals. One can then see that the leading terms
of the asymptotics come from vicinities of the vertices of Pε, leading to Theorem 2.

4 concluding remarks
• The main results of this note give an algorithm of computing the asymptotics of Mn, in the poly-

hedral setup. The method requires, on its face, to enumerate and to analyze all the flags of a
polyhedron, the number of which grows superexponentially with the dimension. There are obvious
shortcuts, and a more efficient way to find the growth rates of Mn might be quite feasible.

• What happens if the cone K is not polyhedral but rather semi-algebraic? A lot of the elements of
the proofs survive; but some auxiliary results (especially Lemma 3) would need some rethinking.
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