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Degree distribution in random planar graphs
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We prove that for each k ≥ 0, the probability that a root vertex in a random planar graph has degree k tends to a
computable constant dk, and moreover that

P
k dk = 1. The proof uses the tools developed by Giménez and Noy

in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis
of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the
root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in
the singular expansions of interest, which allow us to use transfer theorems in order to get an explicit expression for
the probability generating function p(w) =

P
k dkwk. From the explicit expression for p(w) we can compute the dk

to any degree of accuracy, and derive asymptotic estimates for large values of k.
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1 Introduction
In this paper all graphs are simple and labelled with labels {1, 2, . . . , n}. As usual, a graph is planar
if it can be embedded in the plane without edge crossings. A planar graph together with a particular
embedding in the plane is called a map. There is a rich theory of counting maps, and part of it is needed
later on. However, in this paper we consider planar graphs as combinatorial objects, regardless of how
many non-equivalent topological embeddings they may have.

Random planar graphs were introduced by Denise et al. (7), and since then they have been widely
studied. Let us first recall the probability model. Let Gn be the family of (labelled) planar graphs with
n vertices. A random planar graph Rn is a graph drawn from Gn with the uniform distribution, that is,
all planar graphs with n vertices have the same probability of being chosen. As opposed to the classical
Erdős-Rényi model, we cannot produce a random planar graph by drawing edges independently. In fact,
our analysis of random planar graphs relies on exact and asymptotic counting.

Several natural parameters defined on Rn have been studied, starting with the number of edges, which
is probably the most basic one. Partial results where obtained in (7; 12; 21; 5), until it was shown by
Giménez and Noy (13) that the number of edges in random planar graphs obeys asymptotically a normal
limit law with linear expectation and variance. The expectation is asymptotically κn, where κ ≈ 2.21326
is a well-defined analytic constant. This implies that the average degree of the vertices is 2κ ≈ 4.42652.
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McDiarmid et al. (18) showed that with high probability a planar graph has a linear number of vertices
of degree k, for each k ≥ 1. Our main result is that for each k ≥ 1, the expected number of vertices
of degree k is asymptotically dkn, for computable constants dk ≥ 0. This is equivalent to saying that
the probability that a fixed vertex, say vertex 1, has degree k tends to a limit dk as n goes to infinity. In
Theorem 6.9 we show that this limit exists and we give an explicit expression for the probability generating
function

p(w) =
∑
k≥1

dkw
k,

from which the coefficients dk can be computed to any degree of accuracy. Moreover, we show that p(w)
is indeed a probability generating function, that is,

∑
dk = 1.

The proof is based on a detailed analysis of the generating functions involved in counting planar graphs,
as developed in (13), where the long standing problem of counting planar graphs asymptotically was
solved. However, in this case we need to keep track of the degree of a root vertex, and this makes the
analysis considerably more difficult.

Here is a sketch of the paper. After some preliminaries, we obtain the degree distribution in simpler
families of planar graphs: outerplanar graphs (Section 3) and series-parallel graphs (Section 4). These
results are interesting on their own and pave the way to the more complex analysis of general planar
graphs. We remark that the degree distribution in these simpler cases has been obtained independently in
(3) using different techniques.

In Section 5 we compute the generating function of 3-connected maps taking into account the degree
of the root, which is an essential piece in proving the main result. We rely on a classical bijection between
rooted maps and rooted quadrangulations (6; 19), and again the main difficulty is to keep track of the root
degree. The task is completed in Section 6, which contains the analysis for planar graphs. First we have to
obtain a closed form for the generating function B•(x, y, w) of rooted 2-connected planar graphs, where
x marks vertices, y edges, and w the degree of the root: the main problem we encounter here is solving a
differential equation involving algebraic functions and other functions defined implicitly. The second step
is to obtain singular expansions of the various generating functions near their dominant singularities; this
is particularly demanding, as the coefficients of the singular expansions are rather complex expressions.
Finally, using a technical lemma on singularity analysis and composition of singular expansions, we
are able to work out the asymptotics for the generating function C•(x, y, w) of rooted connected planar
graphs, and from this the probability generating function can be computed exactly. We also compute the
degree distribution for 3-connected and 2-connected planar graphs, and for planar graphs according to the
edge density.

For each of the three families studied we obtain an explicit expression for the probability generating
function p(w) =

∑
k≥1 dkw

k, of increasing complexity. Theorems 3.2, 4.3 and 6.9 give the exact ex-
pressions in each case. The following tables show the approximate values for small values of k, and the
asymptotic behaviour for large k. It is worth noticing that the shape of the asymptotic estimates for planar
graphs agrees with the general pattern for the degree distribution in several classes of maps (15), where
maps are counted according to the number of edges.

McDiarmid and Reed (17) have shown that the maximum degree in random planar graphs is Θ(log n).
From the asymptotic results in Theorem 6.9 we are led to conjecture that if ∆n denotes the maximum
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d1 d2 d3 d4 d5 d6

Outerplanar 0.1365937 0.2875331 0.2428739 0.1550795 0.0874382 0.0460030
Series-Parallel 0.1102133 0.3563715 0.2233570 0.1257639 0.0717254 0.0421514
Planar 0.0367284 0.1625794 0.2354360 0.1867737 0.1295023 0.0861805

Tab. 1: Degree distribution for small degrees.

Outerplanar c · k1/4e
√

kqk q ≈ 0.3808138

Series-Parallel c · k−3/2qk q ≈ 0.7504161

Planar c · k−1/2qk q ≈ 0.6734506

Tab. 2: Asymptotic estimates of dk for large k. The constants c and q in each case are defined analytically.

degree in random planar graphs, then the expected value is asymptotically

E∆n ∼
log n

log(1/q)
,

where q is as in Theorem 6.9. We remark that an analogous result holds for planar maps (11), counted
according to the number of edges.

Let us mention that in a companion paper (8), we prove a central limit theorem for the number of
vertices of degree k in outerplanar and series-parallel graphs, together with strong concentration results.
It remains an open problem to show that this is also the case for planar graphs. Our results in the present
paper show that the degree distribution exists and can be computed explicitly. For lack of space we omit:
proofs; the coefficients of singular expansions; and the degree distribution for 2-connected graphs in each
case, as well as for 3-connected planar graphs.

2 Preliminaries
For background on generating functions associated to planar graphs, we refer to (13) and (4), and to (20)
for a less technical description. For background on singularity analysis of generating functions, we refer
to the (9) and to the forthcoming book by Flajolet and Sedgewick (10).

For each class of graphs under consideration, cn and bn denote, respectively, the number of connected
and 2-connected graphs on n vertices. For the three graphs classes under consideration, outerplanar,
series-parallel, and planar, we have both for cn and bn estimates of the form

c · n−αρ−nn!, (1)

where c, α and ρ are suitable constants (4; 13). For outerplanar and series-parallel graphs we have α =
−5/2, whereas for planar graphs α = −7/2. A general methodology for graph enumeration explaining
these critical exponents has been developed in (14).
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We introduce the exponential generating functions C(x) =
∑
cnx

n/n! and B(x) =
∑
bnx

n/n!. Let
Ck be the exponential generating function (GF for short) for rooted connected graphs, where the root bears
no label and has degree k; that is, the coefficient [xn/n!]Ck(x) equals the number of rooted connected
graphs with n + 1 vertices, in which the root has no label and has degree k. Analogously we define Bk

for 2-connected graphs. Also, let

B•(x,w) =
∑

Bk(x)wk, C•(x,w) =
∑

Ck(x)wk.

Notice that C•(x, 1) = C ′(x).
A basic property shared by the classes of outerplanar, series-parallel and planar graphs is that a con-

nected graph G is in the class if and only if the 2-connected components of G are also in the class. As
shown in (13), this implies the basic equation

C ′(x) = eB′(xC′(x))

between univariate GFs. If we introduce the degree of the root, then the equation becomes

C•(x,w) = eB•(xC′(x),w). (2)

The reason is that only the 2-connected components containing the root vertex contribute to its degree.
Our goal in each case is to estimate [xn]Ck(x), since the limit probability that a given fixed vertex has

degree k is equal to

dk = lim
n→∞

[xn]Ck(x)
[xn]C ′(x)

. (3)

A first observation is that the asymptotic degree distribution is the same for connected members of a class
than for all members in the class. Let G(x) be the GF for all members in the class, and let Gk(x) be the
GF of all rooted graphs in the class, where the root has degree k. Then we have

G(x) = eC(x), Gk(x) = Ck(x)eC(x).

The first equation is standard, and in the second equation the factor Ck(x) corresponds to the connected
component containing the root, and the second factor to the remaining components. The functions G(x)
and C(x) have the same dominant singularity. Given the singular expansions of G(x) and C(x) at the
dominant singularity in each of the cases under consideration, it follows that

lim
n→∞

[xn]Gk(x)
[xn]G′(x)

= lim
n→∞

[xn]Ck(x)
[xn]C ′(x)

.

Hence, in each case we only need to determine the degree distribution for connected graphs. A more
intuitive explanation is that the largest component in random planar graphs eats up almost everything: the
expected number of vertices not in the largest component is constant (16).

Another observation is that d0 = 0 and d1 = ρ, where ρ is the constant appearing in the estimate (1) for
cn; as we are going to see, ρ is the radius of convergence of C(x). Indeed, there are no vertices of degree
zero in a connected graph, and the proportion of rooted connected graphs in which the root has degree one
is n(n− 1)cn−1/ncn ∼ ρ.
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The general approach we use for computing the dk is the following. Let f(x) = xC ′(x) and let
H(z) = eB•(z,w), where w is considered as a parameter. Let also ρ be the radius of convergence of C(x),
which is the same as that of f(x). According to (2) we have to estimate [xn]H(f(x)), and this will depend
on the behaviour of H(z) at z = f(ρ). In the outerplanar and series-parallel cases, H(z) turns out be
analytic at f(ρ), whereas in the planar case we have a critical composition scheme, that is, the dominant
singularity of H(z) is precisely f(ρ). This is a fundamental difference and we have to use different tools
accordingly. Another difference is that B• is much more difficult to determine for planar graphs.

3 Outerplanar graphs
We start by recalling some results from (4). From the equivalence between rooted 2-connected outerplanar
graphs and polygon dissections where the vertices are labelled 1, 2, . . . , n in clockwise order (see Section
5 in (4) for details), we have the explicit expression

B′(x) =
1 + 5x−

√
1− 6x+ x2

8
.

The radius of convergence of B(x) is 3 − 2
√

2, the smallest positive root of 1 − 6x + x2 = 0. The
radius of convergence of C(x) is ρ = ψ(τ), where ψ(u) = ue−B′(u), and τ is the unique positive root
of ψ′(u) = 0. Notice that τ satisfies τB′′(τ) = 0. The approximate values are τ ≈ 0.17076 and
ρ ≈ 0.13659. We also need the fact that ψ is the functional inverse of xC ′(x), so that τ = ρC ′(ρ).

Let

D(x) =
1 + x−

√
1− 6x+ x2

4
(4)

and let Dk(x) = x(2D(x) − x)k−1 (Dk is the ordinary GF for polygon dissections in which the root
vertex has degree k). Then we have

Bk =
1
2
Dk, k ≥ 2, B1 = x.

By summing a geometric series we have an explicit expression for B•, namely

B•(x,w) = xw +
∞∑

k=2

x

2
(2D(x)− x)k−1wk = xw +

xw2

2
2D(x)− x

1− (2D(x)− x)w
. (5)

Our goal is to analyze B•(x,w) and C•(x,w) = exp(B•(xC ′(x), w)). For this we need the following
technical lemma.

Lemma 3.1 Let f(x) =
∑

n≥0 anx
n/n! denote the exponential generating function of a sequence an of

non-negative real numbers and assume that f(x) has exactly one dominating square-root singularity at
x = ρ of the form

f(x) = g(x)− h(x)
√

1− x/ρ,

where g(x) and h(x) are analytic at x = ρ and f(x) has an analytic continuation to the region {x ∈ C :
|x| < ρ + ε} \ {x ∈ R : x ≥ ρ} for some ε > 0. Further, let H(x, z) denote a function that is analytic
for |x| < ρ+ ε and |z| < f(ρ) + ε such that Hz(ρ, f(ρ)) 6= 0. Then the function

fH(x) = H(x, f(x))
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has a power series expansion fH(x) =
∑

n≥0 bnx
n/n! and the coefficients bn satisfy

lim
n→∞

bn
an

= Hz(ρ, f(ρ)). (6)

Applying the previous lemma with f(x) = B′(x) and H(x, z) = xw+ xw2

2
4z−3x

1−(4z−3x)w , we obtain the
following.

Theorem 3.2 Let dk be the limit probability that a vertex of a connected outerplanar graph has degree
k. then

p(w) =
∑
k≥1

dkw
k = ρ · ∂

∂x
eB•(x,w)

∣∣
x=ρC′(ρ) ,

where B• is given by Equations (4) and (5).
Moreover p(1) = 1, so that the dk are indeed a probability distribution and we have asymptotically, as

k →∞
dk ∼ c1k

1/4ec2
√

kqk,

where c1, c2 are suitable constants, and q = 2D(τ)− τ ≈ 0.3808138.

4 Series-parallel graphs
First we recall the necessary results from (4). The radius of convergence of C(x) is, as for outerplanar
graphs, ρ = ψ(τ), where ψ(u) = ue−B′(u), and τ is the unique positive root of ψ′(u) = 0. Again we
have that ψ is the functional inverse of xC ′(x), so that τ = ρC ′(ρ), and τ satisfies τB′′(τ) = 0. The
approximate values are τ ≈ 0.12796 and ρ ≈ 0.11021.

In order to study 2-connected series-parallel graphs, we need to consider series-parallel networks, as
in (4). We recall that a network is a graph with two distinguished vertices, called poles, such that the
multigraph obtained by adding an edge between the two poles is 2-connected. Let D(x, y, w) be the
exponential GF of series-parallel networks, where x, y, w mark, respectively, vertices, edges, and the
degree of the first pole. Define S(x, y, w) analogously for series networks. Then we have

D(x, y, w) = (1 + yw)eS(x,y,w) − 1
S(x, y, w) = (D(x, y, w)− S(x, y, w))xD(x, y, 1),

The first equation reflects the fact that a network is a parallel composition of series networks, and the
second one the fact that a series network is obtained by connecting a non-series network with an arbitrary
network (see (22) for details); the factor D(x, y, 1) appears because we only keep track of the degree of
the first pole.

Remark. For the results of the present section, we do not need to take into account the number of edges
and we could set y = 1 everywhere. However, in the case of planar graphs we do need the GF according
to all three variables and it is convenient to present already here the full development. In the proof of the
main result of this section, Theorem 4.3, we just set y = 1.
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Set E(x, y) = D(x, y, 1), the GF for series-parallel networks without marking the degree of the root,
which satisfies (see (4)) the equation

log
(

1 + E(x, y)
1 + y

)
=

xE(x, y)2

1 + xE(x, y)
. (7)

It follows that

log
(

1 +D(x, y, w)
1 + yw

)
=
xE(x, y)D(x, y, w)

1 + xE(x, y)
. (8)

We also have the following relation between the Bk and S.

Lemma 4.1
w
∂B•(x, y, w)

∂w
=
∑
k≥1

kBk(x, y)wk = xyweS(x,y,w).

¿From the previous equation it follows that

B•(x, y, w) = xy

∫
eS(x,y,w)dw. (9)

Our next task is to get rid of the integral and to expressB• in terms ofD. Recall thatE(x, y) = D(x, y, 1).

Lemma 4.2 The generating function of rooted 2-connected series-parallel graphs is equal to

B•(x, y, w) = x

(
D(x, y, w)− xE(x, y)

1 + xE(x, y)
D(x, y, w)

(
1 +

D(x, y, w)
2

))
.

Theorem 4.3 Let dk be the limit probability that a vertex of a connected series-parallel graph has degree
k. then

p(w) =
∑
k≥1

dkw
k = ρ · ∂

∂x
eB•(x,1,w)

∣∣
x=ρC′(ρ) ,

where B• is given by Lemma 4.2 and Equations (8) and (7).
Moreover p(1) = 1, so that the dk are indeed a probability distribution and we have asymptotically, as

k →∞,
dk ∼ c · k−3/2qk,

where c is a positive constant and

q =
(
(1 + 1/(τE(τ, 1))) e−1/τE(τ,1) − 1

)−1

≈ 0.7504161.

5 Quadrangulations and 3-connected planar graphs
The goal of this section is to find the generating function of 3-connected planar graphs according to the
degree of the root. This is an essential ingredient in the next section.

First we work out the problem for simple quadrangulations, which are in bijection with 3-connected
maps. In order to do that we must revisit the classical work of Brown and Tutte (6) on 2-connected (non-
separable) maps. Finally, using the fact that a 3-connected planar graph has a unique embedding, we finish
the job.
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5.1 Simple quadrangulations
A rooted quadrangulation is a planar map where every face is a quadrangle, and with a distinguished
directed edge of the external face, which is called the root edge of the quadrangulation. The root vertex of
the quadrangulation is the first vertex of the root edge. A diagonal is an internal path of length 2 joining
two opposite vertices of the external face. A quadrangulation is simple if it has no diagonal, every cycle
of length 4 other than the external one defines a face, and it is not the trivial map reduced to a single
quadrangle. In Section 5 of (19) it is shown how to count simple quadrangulations. Here we extend this
result to count them also according to the degree of the root vertex.

A quadrangulation is bipartite and connected, so if we fix the colour of the root vertex there is a unique
way of 2-colouring the vertices. We call the two colours black and white, and we assume the root is black.
Diagonals are called black or white, according to the colour of the external vertices they join.

Let F (x, y, w) be the GF of rooted quadrangulations, where the variables x, y andw mark, respectively,
the number of black vertices minus one, the number of white vertices minus one, and the degree of the
root vertex minus one. Generating functions for maps are always ordinary, since maps are unlabelled
objects.

The generating functions FN , FB and FW are associated, respectively, to quadrangulations with no
diagonal, to those with at least one black diagonal (at the root vertex), and to those with at least one whit
diagonal (not at the root vertex). By planarity only one of the two kinds of diagonals can appear in a
quadrangulation; it follows that

F (x, y, w) = FN (x, y, w) + FB(x, y, w) + FW (x, y, w).

A quadrangulation with a diagonal can be decomposed into two quadrangulations, by considering the
maps to the left and to the right of this diagonal. This gives raise to the equations

FB(x, y, w) = (FN (x, y, w) + FW (x, y, w))
F (x, y, w)

x
,

FW (x, y, w) = (FN (x, y, w) + FB(x, y, w))
F (x, y, 1)

y
.

In the second case, only one of the two quadrangulations contribute to the degree of the root vertex; this
is the reason why the term F (x, y, 1) appears. The x and the y in the denominators appear because the
three vertices of the diagonal are common to the two quadrangulations. Since we are considering vertices
minus one, we only need to correct the colour that appears twice at the diagonal. Incidentally, no term w
appears in the equations for the same reason.

Let us write F = F (x, y, w) and F (1) = F (x, y, 1). From the previous equations we deduce that

F = FN + FB + FW = (FN + FB)(1 +
F

x
),

F = FN + FB + FW = (FN + FW )(1 +
F (1)
y

),

so that

F + FN = (FN + FB) + (FN + FW ) = F

(
1

1 + F
x

+
1

1 + F (1)
y

)
,
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and finally

FN = F

(
1

1 + F
x

+
1

1 + F (1)
y

− 1

)
. (10)

Now we proceed to count simple quadrangulations. We use the following combinatorial decomposition
of quadrangulations with no diagonals in terms of simple quadrangulations: all quadrangulations with no
diagonals, with the only exception of the trivial one, can be decomposed uniquely into a simple quadran-
gulation q and as many quadrangulations as internal faces q has (replace every internal face of q by its
corresponding quadrangulations)

Let
Q(x, y, w) =

∑
i,j,k

qi,j,kx
iyjwk,

be the GF of simple quadrangulations, where x, y and w have the same meaning as for F . [Note: In (19)
this GF is called Q∗N .] We translate the combinatorial decomposition of simple quadrangulations into
generating functions as follows.

FN (x, y, w)− xyw =
∑
i,j,k

qi,j,kx
iyj

(
F

xy

)k (
F (1)
xy

)i+j−1−k

=
∑
i,j,k

qi,j,k
xy

F (1)

(
F (1)
y

)i(
F (1)
x

)j (
F

F (1)

)k

=

=
xy

F (1)
Q

(
F (1)
y

,
F (1)
x

,
F

F (1)

)
, (11)

where we are using the fact that a quadrangulation counted by qi,j,k has i + j + 2 vertices, i + j − 1
internal faces, and k of them are incident to the root vertex.

At this point we change variables as X = F (1)/y, Y = F (1)/x and W = F/F (1). Then Equa-
tions (10) and (11) can be rewritten as

xy

F (1)
Q(X,Y,W ) = FN − xyw = F

(
1

1 + F
x

+
1

1 + F (1)
y

− 1

)
− xyw,

Q(X,Y,W ) = XYW

(
1

1 +WY
+

1
1 +X

− 1
)
− F (1)w. (12)

The last equation would be an explicit expression of Q in terms of X,Y,W if it were not for the term
F (1)w = F (x, y, 1)w. In (19) it is shown that

F (1) =
RS

(1 +R+ S)3
, (13)

where R = R(X,Y ) and S(X,Y ) are algebraic functions defined by

R = X(S + 1)2, S = Y (R+ 1)2. (14)

Hence it remains only to obtain an expression for w = w(X,Y,W ) to obtain an explicit expression for
Q. This done in the next subsection.
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5.2 Rooted non-separable planar maps

In (6), the authors studied the generating function h(x, y, w) of rooted non-separable planar maps where
x, y and w count, respectively the number of vertices minus one, the number of faces minus one, and the
valency (number of edges) of the external face. [Note: In (6) the variable z is used instead of w.] There
is a bijection between rooted quadrangulations and non-separable rooted planar maps: black and white
vertices in the quadrangulation correspond, respectively, to faces and vertices of the map; quadrangles
become edges; and the root vertex becomes the external face, and its degree becomes its valency). As a
consequence h(y, x, w) = wF (x, y, w), where the extra factor w appears because in F we are counting
the degree of the root vertex minus one. It follows that Equation (3.9) from (6) becomes

(1− w)(1− yw)wF = −w2F 2 + (−xw + wF (1))wF + xw2(x(1− w) + F (1))

By dividing both sides by F (1)2, and rewriting in terms ofX = F (1)/y, Y = F (1)/x andW = F/F (1),
we obtain

(1− w)
(

1
F (1)

− w

X

)
wW = −w2W 2 +

(
1− 1

Y

)
w2W +

w2

Y

(
1
X

(1− w) + 1
)
,

(1− w)(X − wF (1))wW
XF (1)

=
w2(−XYW 2 +XYW −XW + 1− w +X

XY
,

Y (1− w)(X − wF (1))W = wF (1)(−XYW 2 +XYW −XW + 1− w +X). (15)

Observe that this is a quadratic equation in w. Solving for w in (15) and using (13) and (14) we get (the
plus sign is because T • has positive coefficients in coming Theorem 5.1)

w =
−w1(R,S,W ) + (R−W + 1)

√
w2(R,S,W )

2(S + 1)2(SW +R2 + 2R+ 1)
, (16)

where w1(R,S,W ) and w2(R,S,W ) are polynomials given by

w1 =−RSW 2 +W (1 + 4S + 3RS2 + 5S2 +R2 + 2R+ 2S3 + 3R2S + 7RS) (17)

+ (R+ 1)2(R+ 2S + 1 + S2),

w2 =R2S2W 2 − 2WRS(2R2S + 6RS + 2S3 + 3RS2 + 5S2 +R2 + 2R+ 4S + 1) (18)

+ (R+ 1)2(R+ 2S + 1 + S2)2.

The reason we choose to write w as a function of (R,S,W ) instead of (X,Y,W ) will become clear later
on.

Thus, together with Equations (12) and (13), we have finally obtained an explicit expression for the gen-
erating function Q(X,Y,W ) of simple quadrangulations in terms of W and algebraic functions R(X,Y )
and S(X,Y ).
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5.3 3-connected planar graphs
Let T •(x, z, w) be the GF of 3-connected planar graphs, where one edge is taken as the root and given
a direction, and where x counts vertices, z counts edges, and w counts the degree of the tail of the root
edge. Now we relate T • to the GF Q(X,Y,W ) of simple quadrangulations.

By the bijection between simple quadrangulations and 3-connected planar maps, and using Euler’s
relation, the GF xwQ(xz, z, w) counts rooted 3-connected planar maps, where z marks edges (we have
added an extra term w to correct the ‘minus one’ in the definition of Q).

By Whitney’s theorem 3-connected planar graphs have a unique embedding on the sphere. As noticed
in (1), the are two ways of rooting an embedding of a directed edge-rooted graph in order to get a rooted
map, since there are two ways of choosing the root face adjacent to the root edge. It follows that

T •(x, z, w) =
xw

2
Q(xz, z, w). (19)

Theorem 5.1 The generating function of directed edge-rooted 3-connected planar graphs, where x, z, w
mark, respectively, vertices, edges, and the degree of the root vertex, is equal to

T • =
x2z2w2

2

 1
1 + wz

+
1

1 + xz
− 1−

(u+ 1)2
(
−w1(u, v, w) + (u− w + 1)

√
w2(u, v, w)

)
2w(vw + u2 + 2u+ 1)(1 + u+ v)3

 ,

(20)
where u and v are algebraic functions defined by

u = xz(1 + v)2, v = z(1 + u)2, (21)

and w1(u, v, w) and w2(u, v, w) are given by (17) and (18) replacing R,S,W by u, v, w, respectively.

6 Planar graphs
6.1 2-connected planar graphs
Let B•(x, y, w), the generating function of rooted 2-connected planar graphs taking into account the
degree of the root. As for series series-parallel graphs we have to work with networks.

Let T •(x, z, w) be the GF for directed edge-rooted 3-connected planar maps as in the previous section.
As in Section 4, we denote by D(x, y, w) and S(x, y, w), respectively, the GFs of (planar) networks and
series networks, with the same meaning for the variables x, y and w.

Lemma 6.1 We have

D(x, y, w) = (1 + yw) exp
(
S(x, y, w) +

1
x2D(x, y, w)

T •
(
x,E(x, y),

D(x, y, w)
E(x, y)

))
− 1

S(x, y, w) = xE(x, y) (D(x, y, w)− S(x, y, w)) ,

where E(x, y) = D(x, y, 1) is the GF for planar networks (without marking the degree of the root).

As in Lemma 4.1, and for the same reason, we have

w
∂B•(x, y, w)

∂w
= xyw exp

(
S(x, y, w) +

1
x2D(x, y, w)

T •
(
x,E(x, y),

D(x, y, w)
E(x, y)

))
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Lemma 6.2 The generating function of rooted 2-connected planar graphs is equal to

B•(x, y, w) = x

(
D − xED

1 + xE

(
1 +

D

2

))
−1 +D

xD
T •(x,E,D/E)+

1
x

∫ D

0

T •(x,E, t/E)
t

dt, (22)

where for simplicity we let D = D(x, y, w) and E = E(x, y).

In order to get a full expression for B•(x, y, w), it remains to compute the integral in the formula of the
previous lemma.

Lemma 6.3 Let T •(x, z, w) be the GF of 3-connected planar graphs as before. Then∫ w

0

T •(x, z, t)
t

dt = −x
2(z3xw2 − 2wz − 2xz2w + (2 + 2xz) log(1 + wz))

4(1 + xz)

− uvx

2(1 + u+ v)3

(
w(2u3 + (6v + 6)u2 + (6v2 − vw + 14v + 6)u+ 4v3 + 10v2 + 8v + 2)

4v(v + 1)2

+
(1 + u)(1 + u+ 2v + v2)(2u3 + (4v + 5)u2 + (3v2 + 8v + 4)u+ 2v3 + 5v2 + 4v + 1)

4uv2(v + 1)2

−
√
Q(2u3 + (4v + 5)u2 + (3v2 − vw + 8v + 4)u+ 5v2 + 2v3 + 4v + 1)

4uv2(v + 1)2

+
(1 + u)2(1 + u+ v)3 log(Q1)

2v2(1 + v)2

+
(u3 + 2u2 + u− 2v3 − 4v2 − 2v)(1 + u+ v)3 log(Q2)

2v2(1 + v)2u

)
,

where the expressions Q, Q1 and Q2 are given by

Q = u2v2w2 − 2uvw(u2(2v + 1) + u(3v2 + 6v + 2) + 2v3 + 5v2 + 4v + 1)

+ (1 + u)2(u+ (v + 1)2)2

Q1 =
1

2(wv + (u+ 1)2)2(v + 1)(u2 + u(v + 2) + (v + 1)2)
(
−uvw(u2 + u(v + 2) + 2v2 + 3v + 1)

+(u+ 1)(u+ v + 1)
√
Q+ (u+ 1)2(2u2(v + 1) + u(v2 + 3v + 2) + v3 + 3v2 + 3v + 1

)
Q2 =

−wuv + u2(2v − 1) + u(3v2 + 6v + 2) + 2v3 + 5v2 + 4v + 1−
√
Q

2v(u2 + u(v + 2) + (v + 1)2)

Combining Lemmas 6.2 and 6.3 we can produce an explicit (although quite long) expression for
B•(x, y, w) in terms of D(x, y, w), E(x, y), and the algebraic functions u(x, y), v(x, y). This is needed
in the next section for computing the singular expansion of B•(x, y, w) at its dominant singularity.

6.2 Singular expansions
In this section we find singular expansions of T •(x, z, w), D(x, y, w) and B•(x, y, w) at their dominant
singularities. As we show here, these singularities do not depend on w and were found in (1) and (13).
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However the coefficients of the singular expansions do depend on w, and our task is to compute them
exactly in each case.

What is needed in the next section is the singular expansion for B•, but to compute it we first need the
singular expansions of u, v, T • and D (for u and v compare also with (2) and (1)).

Lemma 6.4 Suppose that x and w are sufficiently close to the positive real axis and that |w| ≤ 1. Then
the dominant singularity z = τ(x) of T •(x, z, w) does not depend on w. The singular expansion at τ(x)
is

T •(x, z, w) = T0(x,w) + T2(x,w)Z2 + T3(x,w)Z3 +O(Z4), (23)

where Z =
√

1− z/τ(x), and the expressions for the Ti are analytic functions of x and w.

Similary we get an alternate expansion in the variable x.

Lemma 6.5 Suppose that z and w are sufficiently close to the positive real axis and that |w| ≤ 1. Then
the dominant singularity x = r(z) of T •(x, z, w) does not depend on w. The singular expansion at r(z)
is

T •(x, z, w) = T̃0(z, w) + T̃2(z, w)X2 + T̃3(x,w)X3 +O(X4). (24)

Using Lemma 6.1 and the previous result we obtain the following.

Lemma 6.6 Suppose that y and w are sufficiently close to the positive real axis and that |w| ≤ 1. Then
the dominant singularity x = R(y) of D(x, y, w) does not depend on w. The singular expansion at R(y)
is

D(x, y, w) = D0(y, w) +D2(y, w)X2 +D3(y, w)X3 +O(X4), (25)

where X =
√

1− x/R(y), and the Di are analytic functions.

And finally from Lemmas 6.2 and 6.3 we obtain the singular expansion for B•, which is the essential
piece in our analysis.

Lemma 6.7 Suppose that y andw are sufficiently close to the positive real axis and that |w| ≤ 1. Then the
dominant singularity x = R(y) of B•(x, y, w) does not depend on w, and is the same as for D(x, y, w).
The singular expansion at R(y) is

B•(x, y, w) = B0(y, w) +B2(y, w)X2 +B3(y, w)X3 +O(X4), (26)

where X =
√

1− x/R(y), and the Bi are analytic functions.

6.3 Degree distribution for planar graphs
The following is the analogous of Lemma 3.1. The difference now is that we are composing two singular
expansions and, moreover, they are of type 3/2.

Lemma 6.8 Let f(x) =
∑

n≥0 anx
n/n! denote the exponential generating function of a sequence an of

non-negative real numbers and suppose that f(x) has exactly one dominating singularity at x = ρ of the
form

f(x) = f0 + f2X
2 + f3X

3 +O(X4),
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where X =
√

1− x/ρ, and has an analytic continuation to the region {x ∈ C : |x| < ρ + ε} \ {x ∈
R : x ≥ ρ} for some ε > 0. Further, let H(x, z, w) denote a function that has a dominant singularity at
z = f(ρ) > 0 of the form

H(x, z, w) = h0(x,w) + h2(x,w)Z2 + h3(x,w)Z3 +O(Z4),

where w is considered as a parameter, Z =
√

1− z/f(ρ), the functions hj(x,w) are analytic in x, and
H(x, z, w) has an analytic continuation. . .

Then the function
fH(x) = H(x, f(x), w)

has a power series expansion fH(x) =
∑

n≥0 bnx
n/n! and the coefficients bn satisfy

lim
n→∞

bn
an

= −h2(ρ,w)
f0

+
h3(ρ,w)
f3

(
−f2
f0

)3/2

. (27)

Applying the previous lemma with H(x, z, w) = xeB•(z,1,w) and f(x) = xC ′(x), we obtain:

Theorem 6.9 Let dk be the probability that a vertex of a connected planar graph has degree k. Then

p(w) =
∑
k≥1

dkw
k = −eB0(1,w)−B0(1,1)B2(1, w)

+ eB0(1,w)−B0(1,1) 1 +B2(1, 1)
B3(1, 1)

B3(1, w),

where Bj(y, w), j = 0, 2, 3 are the analytic functions given in Lemma 6.7.
Moreover, p(1) = 1, so that the dk are indeed a probability distribution and we have asymptotically, as

k →∞,
dk ∼ ck−1/2qk,

where c is a positive constant and q ≈ 0.6734506.
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