An extremal problem on potentially $K_{p,1,1}$-graphic sequences
Chunhui Lai

To cite this version:
Chunhui Lai. An extremal problem on potentially $K_{p,1,1}$-graphic sequences. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2005, 7, pp.75-80. hal-00959032
An extremal problem on potentially $K_{p,1,1}$-graphic sequences†

Chunhui Lai

Department of Mathematics, Zhangzhou Teachers College, Zhangzhou, Fujian 363000, P. R. of CHINA.
E-mail: zjlaichu@public.zzptt.fj.cn

A sequence S is potentially $K_{p,1,1}$ graphical if it has a realization containing a $K_{p,1,1}$ as a subgraph, where $K_{p,1,1}$ is a complete 3-partite graph with partition sizes $p, 1, 1$. Let $\sigma(K_{p,1,1}, n)$ denote the smallest degree sum such that every n-term graphical sequence S with $\sigma(S) \geq \sigma(K_{p,1,1}, n)$ is potentially $K_{p,1,1}$ graphical. In this paper, we prove that $\sigma(K_{p,1,1}, n) \geq 2\left\lfloor\left(\frac{(p+1)(n-1)+2}{2}\right)\right\rfloor$ for $n \geq p+2$. We conjecture that equality holds for $n \geq 2p+4$. We prove that this conjecture is true for $p = 3$.

AMS Subject Classifications: 05C07, 05C35

Keywords: graph; degree sequence; potentially $K_{p,1,1}$-graphic sequence

1 Introduction

If $S = (d_1, d_2, \ldots, d_n)$ is a sequence of non-negative integers, then it is called graphical if there is a simple graph G of order n, whose degree sequence $(d(v_1), d(v_2), \ldots, d(v_n))$ is precisely S. If G is such a graph then G is said to realize S or be a realization of S. A graphical sequence S is potentially H graphical if there is a realization of S containing H as a subgraph, while S is forcibly H graphical if every realization of S contains H as a subgraph. Let $\sigma(S) = d(v_1) + d(v_2) + \ldots + d(v_n)$, and $\lfloor x \rfloor$ denote the largest integer less than or equal to x. We denote $G + H$ as the graph with $V(G+H) = V(G) \cup V(H)$ and $E(G+H) = E(G) \cup E(H) \cup \{xy : x \in V(G), y \in V(H)\}$. Let K_k, and C_k denote a complete graph on k vertices, and a cycle on k vertices, respectively. Let $K_{p,1,1}$ denote a complete 3-partite graph with partition sizes $p, 1, 1$.

Given a graph H, what is the maximum number of edges of a graph with n vertices not containing H as a subgraph? This number is denoted $ex(n, H)$, and is known as the Turán number. This problem was proposed for $H = C_4$ by Erdős [3] in 1938 and in general by Turán [12]. In terms of graphic sequences, the number $2ex(n, H) + 2$ is the minimum even integer l such that every n-term graphical sequence S with

†Project Supported by NNSF of China(10271105), NSF of Fujian, Science and Technology Project of Fujian, Fujian Provincial Training Foundation for "Bai-Quan-Wan Talents Engineering", Project of Fujian Education Department and Project of Zhangzhou Teachers College.

1365–8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
\(\sigma(S) \geq l \) is forcibly \(H \)-graphical. Here we consider the following variant: determine the minimum even integer \(l \) such that every \(n \)-term graphical sequence \(S \) with \(\sigma(S) \geq l \) is potentially \(H \)-graphical. We denote this minimum \(l \) by \(\sigma(H, n) \). Erdős, Jacobson and Lehel [4] showed that \(\sigma(K_k, n) \geq (k-2)(2n-k+1)+2 \) and conjectured that equality holds. They proved that if \(S \) does not contain zero terms, this conjecture is true for \(k = 3, n \geq 6 \). The conjecture is confirmed in [5], [7], [8], [9] and [10].

Gould, Jacobson and Lehel [5] also proved that \(\sigma(pK_2, n) = (p-1)(2n-2)+2 \) for \(p \geq 2 \); \(\sigma(C_4, n) = 2\left(\frac{3n-1}{2}\right) \) for \(n \geq 4 \). Luo [11] characterized the potentially \(K_{r,s} \)-graphic. Here we consider the following variant: determine the minimum even \(n \) for \(K_{r,s} \)-graphical. We denote \(H, n \) by \(S \), and conjectured that equality holds. They proved that if \(S \) does not contain zero terms, this conjecture is true for \(k = 3, n \geq 6 \). The conjecture is confirmed in [5], [7], [8], [9] and [10].

Lai [13] gave sufficient conditions for a graphic sequence being potentially \(K_{r,s} \)-graphic, and determined \(\sigma(K_{r,s}, n) \) for \(r = 3, 4 \). Lai [6] proved that \(\sigma(K_4-e, n) = 2\left(\frac{3n-1}{2}\right) \) for \(n \geq 7 \). In this paper, we prove that \(\sigma(K_{p,1,1}, n) \geq 2\left(\left(p+1\right)(n-1)+2\right)/2 \) for \(n \geq p + 2 \). We conjecture that equality holds for \(n \geq 2p + 4 \). We prove that this conjecture is true for \(p = 3 \).

2 Main results.

Theorem 1 \(\sigma(K_{p,1,1}, n) \geq 2\left(\left(p+1\right)(n-1)+2\right)/2 \), for \(n \geq p + 2 \).

Proof: If \(p = 1 \), by Erdős, Jacobson and Lehel [4], \(\sigma(K_{1,1,1}, n) \geq 2n \). Then \(\sigma(K_{1,1,1}, n) \) is true.

If \(p = 2 \), by Gould, Jacobson and Lehel [5], \(\sigma(K_{2,1,1}, n) = \sigma(K_4-e, n) \geq \sigma(C_4, n) = 2\left(\frac{3n-1}{2}\right) \).

Then \(\sigma(K_{2,1,1}, n) \) is true. Then we can suppose that \(p \geq 3 \).

We first consider odd \(p \). If \(n \) is odd, let \(n = 2m + 1 \), by Theorem 9.7 of [2], \(K_{2m} \) is the union of one 1-factor \(M \) and \(m - 1 \) spanning cycles \(C_1^n, C_2^n, \ldots, C_{m-1}^{n-1} \). Let

\[
H = C_1^n \cup C_2^n \cup \ldots \cup C_{m-1}^{n-1} + K_1
\]

(1)

Then \(H \) is a realization of \(((n-1), p^{n-1}) \), where the symbol \(x^y \) stands for \(y \) consecutive terms \(x \). Since \(K_{p,1,1} \) contains two vertices of degree \(p+1 \) while \(((n-1), p^{n-1}) \) only contains one integer \(n-1 \) greater than degree \(p \), \(((n-1), p^{n-1}) \) is not potentially \(K_{p,1,1} \)-graphic. Thus

\[
\sigma(K_{p,1,1}, n) \geq (n-1) + p(n-1) + 2 = 2\left(\left(p+1\right)(n-1)+2\right)/2 \).
\]

(2)

Next, if \(n \) is even, let \(n = 2m + 2 \), by Theorem 9.6 of [2], \(K_{2m+1} \) is the union of \(m \) spanning cycles \(C_1^n, C_2^n, \ldots, C_{m}^{n-1} \). Let

\[
H = C_1^n \cup C_2^n \cup \ldots \cup C_{m-1}^{n-1} + K_1
\]

(3)

Then \(H \) is a realization of \(((n-1), p^{n-1}) \), and we are done as before. This completes the discussion for odd \(p \).

Now we consider even \(p \). If \(n \) is odd, let \(n = 2m + 1 \), by Theorem 9.7 of [2], \(K_{2m} \) is the union of one 1-factor \(M \) and \(m - 1 \) spanning cycles \(C_1^n, C_2^n, \ldots, C_{m-1}^{n-1} \). Let

\[
H = M \cup C_1^n \cup C_2^n \cup \ldots \cup C_{m-1}^{n-1} + K_1
\]

(4)

Then \(H \) is a realization of \(((n-1), p^{n-1}) \), and we are done as before.
An extremal problem on potentially $K_{p,1,1}$-graphic sequences

Next, if n is even, let $n = 2m + 2$, by Theorem 9.6 of [2], K_{2m+1} is the union of m spanning cycles C_1, C_2, \ldots, C_m. Let

$$C_1 = x_1x_2 \ldots x_{2m+1}x_1$$

$$H = (C_1^1 \cup C_2^1 \cup \ldots \cup C_m^1 + K_1) - \{x_1x_2, x_3x_4, \ldots, x_{2m-1}x_{2m}, x_2x_{m+1} \}$$

Then H is a realization of $((n-1)\{p\}^2, (p-1)\{1\})$. It is easy to see that $((n-1)\{p\}^2, (p-1)\{1\})$ is not potentially $K_{p,1,1}$ graphic. Thus

$$\sigma(K_{p,1,1}, n) \geq (n-1) + p(n-2) + p - 1 + 2$$

$$= 2\left(\left(\frac{p+1}{n-1} + \frac{1}{2}\right)\right).$$

This completes the discussion for even p, and so finishes the proof of Theorem 1.

\[\square\]

Theorem 2 For $n = 5$ and $n \geq 7$, $\sigma(K_{3,1,1}, n) = 4n - 2$.

For $n = 6$, if S is a 6-term graphical sequence with $\sigma(S) \geq 22$, then either there is a realization of S containing $K_{3,1,1}$ or $S = (4^6)$. (Thus $\sigma(K_{3,1,1}, 6) = 26$.)

Proof: For $n \geq 5, \sigma(K_{3,1,1}, n) \geq 2\left(\left(3 + 1\right)(n-1) + 2\right) = 4n - 2$. We need to show that if S is an n-term graphical sequence with $\sigma(S) \geq 4n - 2$, then there is a realization of S containing a $K_{3,1,1}$ (unless $S = (4^6)$). Let $d_1 \geq d_2 \geq \cdots \geq d_n$, and let G be a realization of S.

Case $n = 5$: If a graph with size $q \geq 9$, then clearly it contains a $K_{3,1,1}$, so that $\sigma(K_{3,1,1}, 5) \leq 4n - 2$.

Case $n = 6$: If $\sigma(S) = 22$, we first consider $d_6 \leq 2$. Let S' be the degree sequence of $G - v_6$, so $\sigma(S') \geq 22 - 2 \times 2 = 18$. Then S' has a realization containing a $K_{3,1,1}$. Therefore S has a realization containing a $K_{3,1,1}$. Now we consider $d_6 \geq 3$. It is easy to see that S is one of $(5^3, 4^2, 3^2)$ or $(4^3, 3^2)$. Obviously, all of them are potentially $K_{3,1,1}$-graphic. Next, if $\sigma(S) = 24$, we first consider $d_6 \leq 3$. Let S' be the degree sequence of $G - v_6$, so $\sigma(S') \geq 24 - 3 \times 2 = 18$. Then S' has a realization containing a $K_{3,1,1}$. Therefore S has a realization containing a $K_{3,1,1}$. Now we consider $d_6 \geq 4$. It is easy to see that $S = (4^6)$. Obviously, (4^6) is graphical and (4^6) is not potentially $K_{3,1,1}$ graphic. Finally, suppose that $\sigma(S) \geq 26$. We first consider $d_6 \leq 4$. Let S' be the degree sequence of $G - v_6$, so $\sigma(S') \geq 26 - 2 \times 4 = 18$. Then S' has a realization containing a $K_{3,1,1}$. Therefore S has a realization containing a $K_{3,1,1}$. Now we consider $d_6 \geq 5$. It is easy to see that $S = (5^6)$. Obviously, (5^6) is potentially $K_{3,1,1}$-graphic.

Case $n = 7$: First we assume that $\sigma(S) = 26$. Suppose $d_7 \leq 2$ and let S' be the degree sequence of $G - v_7$, so $\sigma(S') \geq 26 - 2 \times 2 = 22$. Then S' has a realization containing a $K_{3,1,1}$ or $S' = (4^6)$. Therefore S has a realization containing a $K_{3,1,1}$ or $S = (5^1, 4^5, 1^1)$. Obviously, $(5^1, 4^5, 1^1)$ is potentially $K_{3,1,1}$-graphic. In either event, S has a realization containing a $K_{3,1,1}$. Now we assume that $d_7 \geq 3$. It is easy to see that S is one of $(6^1, 5^1, 3^3), (6^1, 4^2, 3^4), (5^2, 4^3, 3^1), (5^1, 4^3, 3^2)$. Obviously, all of them are potentially $K_{3,1,1}$-graphic. Next, if $\sigma(S) = 28$, Suppose $d_7 \leq 3$. Let S' be the degree sequence of $G - v_7$, so $\sigma(S') \geq 28 - 3 \times 2 = 22$. Then
This finishes the inductive step, and thus Theorem 2 is established.

\(S' \) has a realization containing a \(K_{3,1,1} \) or \(S' = (4^6) \). Therefore \(S \) has a realization containing a \(K_{3,1,1} \) or \(S = (5^2, 4^4, 2^1) \). Obviously, \((5^2, 4^2, 2^1) \) is potentially \(K_{3,1,1} \)-graphic. In either event, \(S \) has a realization containing a \(K_{3,1,1} \). Now we assume that \(d_T \geq 4 \), then \(S = (4^7) \). Clearly, \((4^7) \) has a realization containing a \(K_{3,1,1} \). Finally, suppose that \(\sigma(S) \geq 30 \). If \(d_T \leq 4 \). Let \(S' \) be the degree sequence of \(G - v_T \), so \(\sigma(S') \geq 30 - 2 \times 4 = 22 \). Then \(S' \) has a realization containing a \(K_{3,1,1} \) or \(S' = (4^6) \). Therefore \(S \) has a realization containing a \(K_{3,1,1} \) or \(S = (5^3, 4^3, 3^1) \). Clearly, \((5^3, 4^3, 3^1) \) has a realization containing a \(K_{3,1,1} \). Now we consider \(d_T \geq 5 \). It is easy to see that \(\sigma(S) \geq 5 \times 7 = 35 \). Obviously \(\sigma(S) \geq 36 \).

Clearly, \(S \) has a realization containing a \(K_{3,1,1} \).

We proceed by induction on \(n \). Take \(n \geq 8 \) and make the inductive assumption that for \(7 \leq t < n \), whenever \(S_1 \) is a \(t \)-term graphical sequence such that

\[
\sigma(S_1) \geq 4t - 2
\]

then \(S_1 \) has a realization containing a \(K_{3,1,1} \). Let \(S \) be an \(n \)-term graphical sequence with \(\sigma(S) \geq 4n - 2 \). If \(d_n \leq 2 \), let \(S' \) be the degree sequence of \(G - v_n \). Then \(\sigma(S') \geq 4n - 2 - 2 \times 2 = 4(n - 1) - 2 \). By induction, \(S' \) has a realization containing a \(K_{3,1,1} \). Therefore \(S \) has a realization containing a \(K_{3,1,1} \). Hence, we may assume that \(d_n \geq 3 \). By Proposition 2 and Theorem 4 of [5] (or Theorem 3.3 of [7]) \(S \) has a realization containing a \(K_4 \). By Lemma 1 of [5], there is a realization \(G \) of \(S \) with \(v_1, v_2, v_3, v_4 \), the four vertices of highest degree containing a \(K_4 \). If \(d(v_2) = 3 \), then \(4n - 2 \leq \sigma(S) \leq n - 1 + 3(n - 1) = 4n - 4 \). This is a contradiction. Hence, we may assume that \(d(v_2) \geq 4 \). Let \(v_1 \) be adjacent to \(v_2, v_3, v_4, y_1 \). If \(y_1 \) is adjacent to one of \(v_2, v_3, v_4 \), then \(G \) contains a \(K_{3,1,1} \). Hence, we may assume that \(y_1 \) is not adjacent to \(v_2, v_3, v_4 \). Let \(v_3 \) be adjacent to \(v_1, v_3, v_4 \). If \(y_2 \) is adjacent to one of \(v_1, v_3, v_4 \), then \(G \) contains a \(K_{3,1,1} \). Hence, we may assume that \(y_2 \) is not adjacent to \(v_1, v_3, v_4 \). Since \(d(y_1) \geq d_n \geq 3 \), there is a new vertex \(y_3 \), such that \(y_1 y_3 \in E(G) \).

Case 1: Suppose \(y_3 v_3 \in E(G) \). If \(y_3 v_4 \in E(G) \), then \(G \) contains a \(K_{3,1,1} \). Hence, we may assume that \(y_3 v_4 \notin E(G) \). Then the edge interchange that removes the edges \(y_1 y_3, v_3 v_4 \) and \(v_2 y_2 \) and inserts the edges \(y_1 v_2, y_3 v_1 \) and \(y_2 v_3 \) produces a realization \(G' \) of \(S \) containing a \(K_{3,1,1} \).

Case 2: Suppose \(y_3 v_3 \notin E(G) \). Then the edge interchange that removes the edges \(y_1 y_3, v_3 v_4 \) and \(v_2 y_2 \) and inserts the edges \(y_1 v_2, y_3 v_3 \) and \(y_2 v_4 \) produces a realization \(G' \) of \(S \) containing a \(K_{3,1,1} \).

This finishes the inductive step, and thus Theorem 2 is established.
An extremal problem on potentially $K_{p,1,1}$-graphic sequences

We make the following conjecture:

Conjecture 1 $\sigma(K_{p,1,1}, n) = 2\left[\left(\left(p + 1\right)(n - 1) + 2\right)/2\right]$, for $n \geq 2p + 4$.

This conjecture is true for $p = 1$, by Theorem 3.5 of [4], for $p = 2$, by Theorem 1 of [6], and for $p = 3$, by the above Theorem 2.

Acknowledgements

The author thanks Prof. Therese Biedl for her valuable suggestions. The author thanks the referees for many helpful comments.

References

