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The paper deals with the problem of catching the elephants in the Internet traffic. The aim is to investigate an
algorithm proposed by Azzana based on a multistage Bloom filter, with a refreshment mechanism (called shift in the
present paper), able to treat on-line a huge amount of flows with high traffic variations. An analysis of a simplified
model estimates the number of false positives. Limit theorems for the Markov chain that describes the algorithm for
large filters are rigorously obtained. The asymptotic behavior of the stochastic model is here deterministic. The limit
has a nice formulation in terms of a M/G/1/C queue, which is analytically tractable and which allows to tune the
algorithm optimally.
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Introduction
One traditionally distinguishes two kinds of flows in the Internet traffic: long flows, called elephants,
which are the less numerous (typically 5-10%), and short flows, called mice, which are the most numerous.
The convention is to fix a threshold C and to call elephant any flow having more than C packets, and
mouse any flow having strictly less than C packets. For various reasons, detections of attacks, pricing,
statistics, it is an important task to be able to “catch” the elephants, that means to be able to get the list
of all elephants, with their IP addresses, flowing through a given router. We emphasize the fact that this
problem is distinct from the one consisting only in providing statistical estimates for the traffic. Even a
simple on-line counting of the number of distinct flows reveals to be difficult due to the high throughput
of the traffic. There is a wide literature on algorithms for fast estimations of cardinality (i.e. of the number
of distinct elements in a set with repeated elements) of huge data sets (see [6], [9] and [11]). A similar
question consists in finding the k most frequent flows – the so-called “icebergs” (see [4] and [12]). If one
asks for the proportion of elephants or the size distribution of elephants, it is possible to use the Adaptive
Sampling algorithm proposed by Wegman and analyzed by Flajolet [8], which provides a sample of the
flows independently from their size. This sample can then be used to compute statistics for the elephants
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(and actually for all the flows). For counting the elephants, Gandouet and Jean-Marie have proposed in
[10] an algorithm based on sampling, thus requiring a knowledge on the flow size distribution, which
reduces its application. For the target applications, a unique elephant hidden in a huge traffic of mice –
which does not exist from a statistical point of view – has to be detected.

For this purpose, an algorithm based on Bloom filters has been already presented by Estan and Varghese
[7] in 2002. As explained here, a Bloom filter allows elephants to accumulate but due to huge traffic,
collisions occur and mice can be detected as elephants. Collisions will be controlled by taking several
stages and cleverly flushing the filter. More precisely, the principle of this latter algorithm is the following.
The IP header of each packet is hashed with k independent hashing functions in a k-multi-stage filter.
Counters are incremented and when a counter reaches C, the corresponding flow is declared as an elephant
and its packets are counted to give eventually its size. The problem is that in fact, under a heavy Internet
traffic, the multistage filter quickly gets totally filled. To avoid this problem, Estan and Varghese propose
to periodically (every 5 seconds) reinitialize the filter to zero. But, without any a priori knowledge about
the traffic (intensity, flows arrival rate...), 5 seconds can either be too long (in which case the filter can be
saturated) or too short (a lot of long flows can be missed). Therefore the accuracy of the algorithm closely
depends on the characteristics of the traffic trace.

In order to settle this problem, Azzana [2] introduces an adaptative refreshment mechanism, that we
will call shift, in the multi-stage filter algorithm. It is an efficient method to adapt the algorithm to traffic
variations: The filter is refreshed with a frequency depending on the current traffic intensity. Moreover the
filter is not reinitialized to zero, but a softer technique is used to avoid missing some elephants. The main
difference with the Estan and Varghese algorithm is its ability to deal with traffic variations. Azzana shows
in [2] that the refreshment mechanism improves notably the efficiency and accuracy of the algorithm (see
Section 3 for practical results). Parameters, as the filter size or related to the refreshment mechanism, are
experimentally optimized. Azzana proposes some elements of analysis for this algorithm. Our purpose is
to go further and to provide analytical results when the filter is large.
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Fig. 1: The multi-stage filter

Description of the algorithm
The algorithm designed by Azzana uses a Bloom filter with counters (defined below) and involves four
parameters in input: the number k of stages in the Bloom filter, the number m of counters in each stage,
the maximum value C of each counter, i.e. the size threshold C to be declared as an elephant and the
filling rate r.

A Bloom filter is a set of k stages, each of these stages being a set of m counters, initially at 0 and
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taking values in {0, . . . , C}. Together with the k stages F1, . . . , Fk, one supposes that k hashing functions
h1, . . . , hk are given, one for each stage. We make the (strong) assumption that these hashing functions
are independent, which implies that k is small (k = 10 is probably the upper limit). Each hashing function
hi maps the part of the IP header of a packet indicating the flow to which it belongs, to one of the counters
of stage Fi.

The algorithm works on-line on the stream, processing the packets one after the other. Flows identified
as elephants are stored in a list E . When a packet is processed, it is first checked if it belongs to a flow
already identified as an elephant (that is a flow already in E). Indeed, in this case, there is no interest in
mapping it to the k counters, and the algorithm simply forgets this packet. If not, it is mapped by the
hashing functions on one counter per stage and it increases these counters by one, except for those that
have already reached C, in which case they remain at C. When, after processing some packet, all the k
counters are at C, the flow is declared to be an elephant and stored in the dedicated memory E . When
the proportion of nonzero counters reaches r in the whole set of km counters, one decreases all nonzero
counters by one. This last operation is called the shift. See Figure 1 for an illustration.

Motivation of the algorithm
Packets of a same flow hit the same k counters, but two distinct flows may also increase the same counter
in one or several stages. The idea of using several stages where flows are mapped independently and
uniformly, intends to reduce the probability of collisions between flows. The shift is crucial in the sense
that it prevents the filters to be completely saturated, that is, to have many counters with high values.
Without the shift operation, mice would be very quickly mapped to counters equal to C and declared as
elephants. The algorithm would have a finite lifetime because when the filter is saturated, nothing can be
detected.

False positive and false negative
A false positive is a mouse detected as an elephant by the algorithm. A false negative is an elephant not
declared as such (hence considered as a mouse) by the algorithm. Generally, a false negative is worse
than a false positive. Think of an attack: One does not want to miss it, and a false alarm has less serious
consequences than a successful attack.

In our context, a false positive is a mouse one packet of which is mapped onto counters all ≥ C − 1. A
false negative is due to the shift, and if it happens, it means that there were at least f −C +1 shifts during
the transmission time of some elephant of size f . If shifts do not occur too often, a false negative is then
an elephant whose packets are broadcast at a slow rate.

Intuitively, and it will be confirmed by the forthcoming analysis, if the parameters (actually r) are
chosen so as to maintain counters at low values, then shifts occur often, and if one tries to decrease the shift
frequency, then the counters tend to have high values. Therefore, a compromise has to be found between
these two properties (frequency of the shifts, height of the counters), which translates into a compromise
between false positives and false negatives. This last compromise depends on the applications.

A Markovian representation
In this paper, we will mainly focus our analysis on the one-stage filter case when the traffic is made up
only of mice of size 1. The aim is to estimate the proportion of false positives. From this analysis, we will
then derive results for the general case. Let us now introduce our main notations.
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We thus assume that k = 1 and that all flows have size 1. Throughout the paper, Wm
n (i) denotes the

proportion of counters having value i just before the nth shift in a filter with m counters. According to
this notation, Wm

n (0) is close to 1− r and
∑C

i=0 Wm
n (i) = 1. Notice that the nth shift exactly decreases

the number of nonzero counters by mWm
n (1). An important part of our analysis will consist in estimating

Wm
n (C − 1) + Wm

n (C). Indeed, it gives an upper bound on the probability that a flow is declared as
an elephant (that is a false positive) between the (n − 1)th and the nth shifts, since, according to our
assumptions, there is no elephant at all.

In this framework (k = 1 and flows of size one), the algorithm has a simple description in terms of urns
and balls. Each flow is a ball thrown at random into one of m urns (each urn being one of the m counters).
When a ball falls into an urn with C balls, it is immediately removed, in order to have at most C balls in
each urn. When the proportion of non empty urns reaches r, one ball is removed in every non empty urn.

For m fixed, (Wm
n )n∈N =

(
(Wm

n (i))i=0,...,C

)
n∈N

is an ergodic Markov chain on some finite state

space. Its invariant probability measure πm is the distribution of some variable Wm
∞ . For C = 2, the first

non-trivial case, even the expression of the transition matrix Pm of the Markov chain is combinatorially
quite complicated and an expression for πm seems out of reach. In practice, the number m of counters
per stage is large. This suggests to look at the limiting behavior of the algorithm when m tends to ∞. We
use as far as possible the Markovian structure of the algorithm in order to derive rigorous limit theorems
and analytical expressions for the limiting regime. This is the longest and most technical part of the paper,
which also contains the main result, from a mathematical point of view.

Main results
The model considered in the paper describes the collisions between mice in order to evaluate the number
of false positives due to these collisions. In a one-stage filter where all flows are mice of size 1, the Markov
chain (Wm

n )n∈N describes the evolution of the counters observed just before shift times. The main result
is that, when m is large, the random vector Wm

∞ converges in distribution to some deterministic value w.
This result is not quite completely proved. The way to proceed is classical for large Markovian models

(see for example [5] and [1]). The idea is to study the convergence of the process over finite times. It is
shown that the Markov chain given by the empirical distributions (Wm

n )n∈N converges to a deterministic
dynamical system wn+1 = F (wn), which has a unique fixed point w. The situation is analogous in
discrete time to the study by Antunes and al. [1]. A Lyapunov function for F would allow to prove the
convergence in distribution of Wm

∞ . Such a Lyapunov function is exhibited in the particular case C = 2.
The dynamical system provides a limiting description of the original chain which stationary behavior is
then described by w. The fixed point w has the following interpretation.

The fixed point w is identified as the invariant probability measure µλ of the number of customers in an
M/G/1/C queue where service times are 1 and arrival rate is some λ satisfying the fixed point equation

µλ(0) = 1− r

or equivalently

λ = log
(

1 +
µλ(1)
1− r

)
.

As a byproduct, the stationary time between two shifts divided by m converges in distribution to the
constant λ. Thus the inter-shift time (closely related to the number of false negatives) and the probability
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of false positives are respectively approximated by λm and bounded by µλ(C − 1) + µλ(C) when m is
large.

When mice have general size distribution, the previous model is extended to an approximated model
where packets of a given mouse arrive simultaneously. The involved quantity is the invariant measure of
an M/G/1/C queue with arrivals by batches with distribution the mouse size distribution. In the case of
size 1 mice, the multi-stage filter case is investigated.

Even if µλ is not explicit, which complicates the exhibition of a Lyapunov function, the quantities λ
and µλ(C − 1) + µλ(C) can be numerically computed. It appears that the latter quantity is an increasing
function of r (as r varies from 0 to 1). Hence, given the mouse size distribution, one can numerically
determine the values of r for which the algorithm performs well.

Section 1 is the most technical part of the paper. It investigates the one-stage filter in case of size 1
flows. In Section 2, this analysis is generalized to a general mouse size distribution in a simplified model
and to a multi-stage filter. Then Section 3 is devoted to discussing the performance of the algorithm, to
experimental results and improvements (validated through an implementation).

1 The Markovian urn and ball model

In this section, C is fixed and we consider the sequence (Wm
n )n∈N, where Wm

n denotes the vector of the
proportions of urns with 0, . . . , C balls just before the nth shift time. For m ≥ 1, (Wm

n )n∈N is an ergodic
Markov chain on the finite state space

P(r)
m =

{
w = (w(0), . . . , w(C)) ∈

(
N
m

)C+1

,

C∑
i=0

w(i) = 1 and
C∑

i=1

w(i) =
drme

m

}
,

(where drme denotes the smallest integer larger or equal to rm) with transition matrix Pm defined as
follows: If Wm

n = w ∈ P(r)
m , then Wm

n+1, distributed according to Pm(w, .), is the empirical distribution
of m urns when, starting with distribution w, one ball is removed from every non empty urn and then
balls are thrown at random until drme urns are non empty again, balls overflowing the capacity C being
rejected. The required number of thrown balls is

τm
n =

drme−1∑
l=drme−W m

n (1)m

Yl, (1)

where Yl, l ∈ N are independent random variables with geometrical distributions on N∗ with respective
parameters l/m, i.e. P(Yl = k) = (l/m)k−1(1− l/m), k ≥ 1.

Let F be defined on P =
{

w ∈ RC+1
+ ,

∑C
i=0 w(i) = 1

}
by

F (w) = TC

(
s(w) ∗ Pλ(w)

)
(2)
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where

s : w 7→ (w(0) + w(1), w(2), . . . , w(C), 0) on P

TC : P(N) =

{
(wn)n∈N,

+∞∑
i=0

wi = 1

}
→ P, w 7→

w(0), . . . , w(C − 1),
∑
i≥C

w(i)


λ : P → R+, w 7→ log

(
1 +

w(1)
1− r

)
and Pλ is the Poisson distribution with parameter λ. Notice that F maps P to itself and, also by definition

of λ, P(r) def=
{

w ∈ RC+1
+ ,

∑C
i=0 w(i) = 1 and

∑C
i=1 w(i) = r

}
to itself.

1.1 Convergence to a dynamical system
We prove the convergence of (Wm

n )n∈N to the dynamical system given by F as m tends to +∞. The
following lemma is the key argument. The uniform convergence stated below appears as the convenient
way to express the convergence of Pm(w, .) to δF (w) in order to prove both the convergence of (Wm

n )n∈N,
and, later on, the convergence of the stationary distributions.

Define ‖ x ‖= supC
i=0 |xi| for x ∈ RC+1.

Lemma 1 For ε > 0,

sup
w∈P(r)

m

Pm(w, {w′ ∈ P(r)
m : ||w′ − F (w)|| > ε}) −→

m→+∞
0.

Proof: The first step is to prove that, for ε > 0,

sup
w∈P(r)

m

Pw

(∣∣∣∣τm
1

m
− λ(w)

∣∣∣∣ > ε

)
→

m→∞
0 (3)

where λ(w) = log
(

1 +
w(1)
1− r

)
and Pw(.) denotes P(.|Wm

0 = w). By Bienaymé-Chebyshev’s inequal-

ity, it is enough to prove that

sup
w∈P(r)

m

∣∣∣∣Ew

(
τm
1

m

)
− λ(w)

∣∣∣∣ →
m→∞

0 (4)

and

sup
w∈P(r)

m

Varw

(
τm
1

m

)
→

m→∞
0. (5)

By equation (1), as E(Yl) = 1/(1− l/m), using a change of index,

Ew

(
τm
1

m

)
=

drme−1∑
l=drme−w(1)m

1
m− l

=
m−drme+w(1)m∑

j=m−drme+1

1
j
. (6)
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A comparison with integrals leads to the following inequalities:

log
1− drme

m + w(1) + 1
m

1− drme
m + 1

m

≤ Ew

(
τm
1

m

)
≤ log

1− drme
m + w(1)

1− drme
m

.

It is then easy to show that the two extreme terms tend to λ(w) = log(1 + w(1)/(1 − r)), uniformly in
w(1) ∈ [0, 1]. This gives (4). For (5), as Var(Yl) = (l/m)/(1− l/m)2, by the same change of index,

Varw

(
τm
1

m

)
=

1
m

m−drme+w(1)m∑
j=m−drme+1

m− j

j2
=

m−drme+w(1)m∑
j=m−drme+1

1
j2

− 1
m

Ew

(
τm
1

m

)
. (7)

The first term of the right-hand side is bounded independently of w by
∑+∞

j=m−drme+1 1/j2, which tends
to 0 as m tends to +∞. The second term tends to 0 uniformly in w using (4) together with the uniform
bound λ(w) ≤ log(1 + 1/(1− r)).

To obtain the lemma, it is then sufficient to prove that, for each ε > 0,

sup
w∈P(r)

m

Pw

(
||Wm

1 − F (w)|| > ε,

∣∣∣∣τm
1

m
− λ(w)

∣∣∣∣ ≤ ε

2

)
→

m→∞
0. (8)

Since Wm
1 and F (w) are probability measures on {0, . . . , C}, to get (8), it is sufficient to prove that for

j ∈ {0, . . . , C − 1},

sup
w∈P(r)

m

Pw

(
|Wm

1 (j)− F (w)(j)| > ε,

∣∣∣∣τm
1

m
− λ(w)

∣∣∣∣ ≤ ε

2

)
→

m→∞
0. (9)

Let w ∈ P(r)
m . Define the following random variables: For 1 ≤ i ≤ m, Nm

i (respectively Ñm
i (w)) is the

number of additional balls in urn i when τm
1 (respectively mλ(w)) new balls are thrown in the m urns.

One can construct these variables from the same sequence of balls (i.e. of i.i.d. uniform on {1, . . . ,m}
random variables), meaning that balls are thrown in the same locations for both operations until stopping.
This provides a natural coupling for the Ni’s and Ñi’s. Let j ∈ {0, . . . , C−1} be fixed. Given Wm

0 = w,
as j ≤ C − 1, the capacity constraint does not interfere and Wm

1 (j) can be represented as

Wm
1 (j) =

1
m

j∑
k=0

∑
i∈Im

w,k

1{Nm
i =j−k} (10)

where Im
w,k is the set of urns with k balls in some configuration of m urns with distribution s(w), so that

card Im
w,k = ms(w)(k). The sum over i is exactly the number of urns that contains k balls after the

removing of one ball per urn, and having j balls after new balls have been thrown. By coupling, on the
event {Wm

0 = w, |τm
1 /m− λ(w)| ≤ ε/2}, the following is true:

card{i,Nm
i 6= Ñm

i (w)} ≤ ε

2
m (11)
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thus, denoting W̃m
1 (j) = 1

m

∑j
k=0

∑
i∈Im

w,k
1{ eNm

i (w)=j−k}, on the same event,

|Wm
1 (j)− W̃m

1 (j)| ≤ ε

2
.

To prove equation (9), it is then sufficient to show that

sup
w∈P(r)

m

Pw

(
|W̃m

1 (j)− F (w)(j)| > ε
)
−→

m→∞
0.

This will result from

sup
w∈P(r)

m
|Ew(W̃m

1 (j))− F (w)(j)| −→
m→∞

0 and

sup
w∈P(r)

m
Varw(W̃m

1 (j)) −→
m→∞

0.
(12)

which is quite standard to prove. The key argument, with classical proof, is the following: If Lm
i is

the number of balls in urn i when throwing mλ balls at random in m urns, if 0 < a < b, then, for all
(i1, i2) ∈ N2,

(i) sup
λ∈[a,b]

|P(Lm
1 = i1)− Pλ(i1)| −→

m→∞
0,

(ii) sup
λ∈[a,b]

|P(Lm
1 = i1, L

m
2 = i2)− Pλ(i1)Pλ(i2)| −→

m→∞
0.

It is applied since λ(w) ∈ [0, log(1 + 1/(1− r)]. It ends the proof. 2

Proposition 1 If Wm
0 converges in distribution to w0 ∈ P(r)

m then (Wm
n )n∈N converges in distribution to

the dynamical system (wn)n∈N given by the recursion wn+1 = F (wn), n ∈ N.

Proof: Assume that Wm
0 converges in distribution to w0 ∈ P(r)

m . Convergence of (Wm
0 , . . . ,Wm

n ) can
be proved by induction on n ∈ N. By assumption it is true for n = 0. Let us just prove it for n = 1, the
same arguments holding for general n, from the assumed property for n − 1. Let g be continuous on the
(compact) set P(r)2

m . Since the distribution µm of Wm
0 has support in P(r)

m ,

E (g(Wm
0 ,Wm

1 )) =
∫
P(r)2

m

g(w,w′)Pm(w, dw′)dµm(w)

=
∫
P(r)

m

∫
P(r)

m

(g(w,w′)Pm(w, dw′)− g(w,F (w))) dµm(w) +
∫
P(r)

m

g(w,F (w))dµm(w).

Since g(., F (.)) is continuous on P(r)
m (F being continuous as can be easily checked), the last integral

converges to g(w0, w1) by assumption (or case n = 0). The first term is bounded in modulus, for each
η > 0, by

sup
w∈P(r)

m

∣∣∣∣∫
P(r)

m

g(w,w′)Pm(w, dw′)− g(w,F (w))
∣∣∣∣

≤ 2 ‖ g ‖∞ sup
w∈P(r)

m

Pm

(
w,

{
w′ ∈ P(r)

m , ‖ w′ − F (w) ‖> ε
})

+ η
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where ε is associated to η by the uniform continuity of g on P(r)2
m . By Lemma 1, this is less than 2η for

m sufficiently large. Thus, as m tends to +∞,

E (g(Wm
0 ,Wm

1 )) → g(w0, w1).

2

1.2 Convergence of invariant measures
Let, for m ∈ N, πm be the stationary distribution of (Wm

n )n∈N. Define P as the transition on P(r) given
by P (w, .) = δF (w).

Proposition 2 Any limiting point π of (πm)m∈N is a probability measure on P(r) which is invariant for
P i.e. that satisfies F (π) = π.

Proof: A classical result states that, if P and Pm, m ∈ N, are transition kernels on some metric space E
such that, for any bounded continuous f on E, Pf is continuous and Pmf converges to Pf uniformly on
E then, for any sequence (πm) of probability measures such that πm is invariant under Pm, any limiting
point of πm is invariant under P . Indeed, for any m and any bounded continuous f , πmPmf = πmf .
If a subsequence (πmp) converges weakly to π, then πmpf converges to πf . Writing πmpPmpf =
πmpPf + πmp(Pmpf − Pf), since Pf continuous (and bounded since f is), the first term πmpPf
converges to πPf and the second term tends to 0 by uniform convergence of Pmf to Pf . Equation
πmpPmpf = πmpf thus gives, in the limit, πPf = πf for any bounded continuous f .

Here the difficulty is that the Pm’s and P are transitions on P(r)
m and P(r), which are in general disjoint.

To solve this difficulty, extend artificially Pm and P to P by setting:

Pm(w, .) = δF (w) for w ∈ P \ P(r)
m

P (w, .) = δF (w) for w ∈ P \ P(r).

The proposition is then deduced from the classical result if we prove that, for each f continuous on P
(notice that then Pf = f ◦ F is continuous),

sup
w∈P(r)

m

|Pmf(w)− f(F (w))| −→
m→∞

0,

which is straightforward from Lemma 1. The fact that the support of π is in P(r) is deduced from the
portmanteau theorem (see Billingsley [3] p.16) using the sequence of closed sets

P(r),n =

{
w ∈ P, r ≤

C∑
i=1

w(i) ≤ r +
1
n

}
.

2

The fixed points of the dynamical system are the probability measures w on P(r) such that

w = F (w) = TC(s(w) ∗ Pλ(w))
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where λ(w) = log(1 + w(1)/(1 − r)). This is exactly the invariant measure equation for the number of
customers just after completion times in an M/G/1/C queue with arrival rate λ(w) and service times 1,
so that it is equivalent to

w = µλ(w) (13)

where µλ (respectively νλ) is the limiting distribution of the process of the number of customers in an
M/G/1/C (respectively M/G/1/∞) queue with arrival rate λ and service times 1.

Indeed, it is well-known that this queue has a limiting distribution for λ ∈ R+ (respectively 0 ≤ λ < 1)
which is the invariant probability measure of the embedded Markov chain of the number of customers
just after completion times. The balance equations here reduce to a recursion system, so that, even when
λ ≥ 1, νλ is well defined up to a multiplicative constant (which can not be normalized into a probability
measure in this case). Moreover, νλ is given by the Pollaczek-Khintchine formula for its generating
function: ∑

n∈N
νλ(n)un = νλ(0)

gλ(u)(u− 1)
u− gλ(u)

, for |u| < 1 (14)

where gλ(u) = e−λ(1−u) and for λ < 1, νλ(0) = 1− λ (see for example Robert [13] p176-177). Notice
that νλ(n) (n ∈ N) has no closed form. For example, the expressions of the first terms are

νλ(1) = νλ(0)(eλ − 1),

νλ(2) = νλ(0)eλ(eλ − 1− λ),

νλ(3) = νλ(0)eλ

(
λ(λ + 2)

2
− (1 + 2λ)eλ + e2λ

)
(15)

where νλ(0) = 1− λ if λ < 1. For the M/G/1/C queue,

µλ(i) =
νλ(i)∑C
l=0 νλ(l)

, i ∈ {0, . . . , C}. (16)

The following proposition characterizes the fixed points of F .

Proposition 3 F defined by (2) has one unique fixed point, denoted by w̄, in P(r) given by the limiting
distribution µλ of the number of customers in an M/G/1/C queue with arrival rate λ and service times
1, where λ is determined by the implicit equation µλ(0) = 1− r which is equivalent to

λ = log
(

1 +
µλ(1)
1− r

)
, (17)

where µλ is given by (16) and νλ by the Pollaczek-Kintchine formula (14).

Notice that, moreover,
r ≤ λ ≤ − log(1− r).

The upper bound on λ, obtained from equation (17) using µλ(1) ≤ r just says that the stationary mean
number of balls between two shifts is less than the mean number of balls thrown until the first shift
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(starting with empty urns). Moreover λ ≥ r, which is clear if λ ≥ 1, and obtained if λ < 1 writing (16)
for i = 0 and using

∑C
l=0 νλ(l) ≤ 1 in this equation. This is exactly the fact that the asymptotic stationary

mean number of balls λm arriving between two shift times is greater than the number of removed balls at
each shift, which is drme. It is due to the losses under the capacity limit C.

Proof: Only the existence and uniqueness result remains to prove. According to (13), w is some fixed
point if and only if it is a fixed point of the function

P(r) −→ P(r)

w 7−→ µλ(w)

with λ(w) = log(1 + w(1)/(1− r)). This function being continuous on the convex compact set P(r), by
Brouwer’s theorem, it has a fixed point. To prove uniqueness, let w and w′ be two fixed points of F in
P(r). By definition of P(r),

µλ(w)(0) = µλ(w′)(0) = 1− r. (18)

A coupling argument shows that, if λ ≤ λ′ then µλ is stochastically dominated by µλ′ , and in particular,

µλ(0) + µλ(1) ≥ µλ′(0) + µλ′(1). (19)

It can then be deduced that λ(w) = λ(w′). Indeed, if for example λ(w) < λ(w′), by equations (18) and
(19),

µλ(w)(1) ≥ µλ(w′)(1).

thus, using (15) together with (18),

λ(w) = log
(

1 +
µλ(w)(1)

1− r

)
≥ λ(w′) = log

(
1 +

µλ(w′)(1)
1− r

)
which contradicts λ(w) < λ(w′). One finally gets λ(w) = λ(w′), and then by equation (13), w = w′. 2

A Lyapunov function for the dynamical system given by F on P(r) is a function g ≥ 0 on P(r) such
that, for each w ∈ P(r), g(F (w)) ≤ g(w) with equality if and only if w is the fixed point of F . In the
particular case C = 2, a Lyapunov function can be exhibited, resulting from a contracting property of F
in this case.

Indeed, restricted to P(r), F is here given by:

w = (1−r, w(1), w(2) = r−w(1)) 7−→ F (w) =
(

1− r, (1− r)
[
log

(
1 +

w(1)
1− r

)
+

r − w(1)
1− r + w(1)

]
,

1− (1− r)
[
log

(
1 +

w(1)
1− r

)
+

1
1− r + w(1)

])
.

P(r) is some one dimensional subvariety of R3, so that any w ∈ P(r) can be identified with its second
coordinate w(1) ∈ [0, r], or equivalently with λ(w) = log(1 + w(1)/(1− r)) ∈ [0, log(1/(1− r))].
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Using this last parametrization of P(r), it is easy to show that F rewrites as G, mapping the interval

I = [0, log(1/(1− r))] to itself and defined, for λ ∈ I , by G(λ) = log
(

λ +
e−λ

1− r

)
.

An elementary computation shows that G has derivative on I taking values in the interval ] − 1, 0],
which gives the already known existence and uniqueness of a fixed point λ for G (or F , both assertions
being equivalent, and λ being equal to λ(w)). Moreover, the following inequality holds for λ ∈ I:

|G(λ)− λ| ≤ |λ− λ|,

equality occurring only at λ = λ. As a result, g defined on P(r) by

g(w) = |λ(w)− λ| = |λ(w)− λ(w)| =
∣∣∣∣log

1− r + w(1)
1− r + w(1)

∣∣∣∣ ,

is a Lyapunov function for the dynamical system defined by F .
For C > 2, we conjecture the existence of such a g.

Theorem 1 Assume that a Lyapunov function exists for the dynamical system given by F on P(r) then,
as m tends to +∞, the invariant measure of (Wm

n )n∈N converges to δw̄ where w̄ is the unique fixed point
of F . Thus the following diagram commutes,

(Wm
n )n∈N

(d)−−−−−→
n→+∞

Wm
∞

m→+∞
y(d)

y(d)

(wn)n∈N −−−−→ w̄

Proof: We prove that δw̄ is the unique invariant measure π of P with support in P(r). Let g be the
Lyapunov function for F on P(r). π is P -invariant, thus πP = π and πPg = πg which can be rewritten∫

(g ◦ F − g)dπ = 0. This implies that g = g ◦ F holds π almost surely because g − g ◦ F ≥ 0. Equality
being only true at w̄, π has support in {w̄}. 2

2 A more general model
2.1 Mice with general size distribution
Let (Wm

n )n∈N be the sequence of vectors giving the proportions of urns at 0, . . . , C just before the nth
shift time in a model where balls are thrown by batches. The balls in a batch are thrown together in a
unique urn chosen at random among the m urns. The ith batch is composed with Si balls and (Si)i∈N is
a sequence of i.i.d. random variables distributed as a random variable S on N∗ with support containing
1. Let φ be the generating function of S. The quantity Si is called the size of batch i. The dynamics is
the same: If, before the nth shift time, the state is w ∈ P(r)

m , it first becomes s(w) and then a number
τm
n defined by (1) of successive batches are thrown in urns until drme urns are non empty. The model

generalizes the previous one obtained for S = 1.
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Let F be defined on P by

F (w) = Tc(s(w) ∗ Cλ(w),S) (20)

where TC , λ and S are already defined and Cλ(w),S is a compound Poisson distribution i.e. the distribution
of the random variable

Y =
X∑

i=1

Si (21)

where X is independent of (Si)i∈N with Poisson distribution of parameter λ(w).
We mimic the arguments in Section 1 to obtain the convergence of the stationary distribution of the

ergodic Markov chain (Wm
n )n∈N as m tends to +∞ to a Dirac measure at the unique fixed point of F .

Propositions 1 and 2 hold. The fixed points of F are described in the following proposition.

Proposition 4 F defined for w ∈ P by

F (w) = Tc(s(w) ∗ Cλ(w),S)

has a unique fixed point on P(r) which is exactly the invariant measure µλ̄ of the number of customers
in a M/G/1/C queue with batches of customers arriving according to a Poisson process with intensity
λ̄, batch sizes being i.i.d. distributed as S with generating function φ and service times 1, where λ̄ is
determined by the implicit equation

µλ(0) = 1− r

which is equivalent to

λ̄ = log
(

1 +
µλ̄(1)
1− r

)
where for i ∈ {0, . . . , C},

µλ(i) =
νλ(i)∑C
l=0 νλ(l)

and νλ is given by
+∞∑
n=0

νλ(n)un = νλ(0)
g ◦ φ(u)(u− 1)
u− g ◦ φ(u)

, |u| < 1

where gλ(u) = e−λ(1−u) and νλ(0) = 1− λE(S) when λ < 1.

Recall that the first terms of νλ are given by

νλ(1) = νλ(0)(eλ − 1)

and νλ(2) = νλ(0)eλ(eλ − 1− λP(S = 1))

where νλ(0) = 1 − λE(S) when λ < 1, which generalizes the previous expressions. For C = 2, the
Lyapunov function defined when S = 1 still works. Furthermore, for C > 2, we assume the existence of
a Lyapunov function for F . Theorem 1 still holds.
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2.2 A multi-stage filter
The filter is previously supposed to have only one stage. Let now assume that the filter has k stages of
m counters each. The natural model then consists of k sets of m urns where, when a ball is thrown, k
copies of this ball are sent simultaneously and independently into the k stages, each falling at random in
one of the m urns of its set. If some ball hits an urn with C balls, then it is rejected. Moreover, when the
proportion of non-empty urns in the whole filter reaches r, then one ball is removed from each non-empty
urn: This is called a shift.

The previous analysis extends with one main difference: When the system is initialized at some state
(wj(i), 1 ≤ j ≤ k, 0 ≤ i ≤ C), where wj(i) is the proportion of urns with i balls in stage j, the number
τm
1 of balls thrown in each stage before the next shift is now asymptotically equivalent to λ(w)m, where

w = (w(i), 0 ≤ i ≤ C) here gives the global proportions of urns in each possible state in the whole filter,

that is w(i) =
1
k

k∑
j=1

wj(i) for 0 ≤ i ≤ C. Thus λ is the same function as for the one-filter case, here

evaluated at the global proportions:

λ(w) = log
(
1 +

∑k
j=1 wj(1)
k(1− r)

)
.

The one-stage proof of (3) is however not reproducible here, due to the lack of a representation of τm
1

analogous to (1) of Section 1.
Another proof can be written. The alternative argument is provided by noticing that when αm balls per

stage are thrown, with α /∈ [λ(w)−ε, λ(w)+ε] (using the same arguments (i) and (ii) as in Section 1), the
empirical distributions of the urns at each stage are precisely known (for large m) and do not correspond
to the global proportion r of non-empty urns.

Once the (uniform) convergence of τm
1 /m is established, the proof then proceeds along the same lines

as for k = 1 (the same reasoning holding for each stage).
Notice however that the Markov property does not hold for the process of global proportions at shift

times, so that convergence in distribution is proved for the process of proportions detailed by stage, then
inducing convergence.

3 Discussions
3.1 Synthesis: false positives and false negatives
From a practical point of view, the main results are Propositions 3 and 4. Given some size distribution for
the flows (the generating function φ of Section 2), these propositions show how the values of the counters
can be computed from the different parameters of the algorithm, since these values are encoded by the
fixed point w of F : according to Theorem 1, w is the state reached in the stationary regime when there is
one stage and also when there are several stages (see Subsection 2.2: one has

∑k
j=1 wj(C) = kw(C)).

Moreover, the convergence is experimentally really fast (see the remark below), which ensures that in
practice the algorithm lives in the stationary phase. The component w(i) of w gives the approximate
proportion of counters having value i in the whole Bloom filter. λ is the number of packets that arrive
between two shifts. w and λ are respectively related to the number of false positives and to the number of
false negatives:
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The probability that a packet is a false positive is less than (w(C − 1) + w(C))k since, in stage j, the
probability to hit a counter at height C is at most wj(C − 1) + wj(C) and

k∏
j=1

(wj(C − 1) + wj(C)) ≤ (w(C − 1) + w(C))k.

The quantity mλ is the time (number of packets) between two shifts, which is connected to the number
of false negatives according to the discussion “False positive and false negative” of the Introduction.

3.2 Implementation and tests
The algorithm has been implemented with an improvement called the min-rule already proposed in [7].
Instead of increasing the k counters, an arriving packet is incrementing only the counters among k having
the minimum value. Analytically more difficult to study, the algorithm should perform better: Heuristi-
cally, more flows are needed to reach high values of the counters inducing fewer false positives; moreover,
the time between two shifts is longer and hence the number of false negatives is decreased. It has been
tested against on two ADSL traffic traces from France Telecom, involving millions of flows. The perfor-
mance of the algorithm is evaluated comparing the real number of elephants with the value estimated by
the algorithm. Even under the min-rule, the algorithm performs well only if r stays under a critical value
rc, closely dependent on the mice distribution.

Simulations have been processed with a one-stage filter with flows of size 1 to evaluate the transient
phase duration. It appears that the number of shifts to reach the stationary phase is not much greater than
C. Such a result on the speed of convergence seems however theoretically out of reach.
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