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Branching processes in random environment
die slowly
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Let Zn,n = 0, 1, ..., be a branching process evolving in the random environment generated by a sequence of iid
generating functions f0(s), f1(s), ..., and let S0 = 0, Sk = X1 + ... + Xk, k ≥ 1, be the associated random
walk with Xi = log f ′

i−1(1), τ(m, n) be the left-most point of minimum of {Sk, k ≥ 0} on the interval
[m, n], and T = min {k : Zk = 0}. Assuming that the associated random walk satisfies the Doney condition
P (Sn > 0) → ρ ∈ (0, 1), n → ∞, we prove (under the quenched approach) conditional limit theorems, as
n →∞, for the distribution of Znt, Zτ(0,nt), and Zτ(nt,n), t ∈ (0, 1), given T = n. It is shown that the form
of the limit distributions essentially depends on the location of τ(0, n) with respect to the point nt.

Keywords: critical branching process, random environment, limit theorems

1 Introduction
Recently a number of papers appeared (see, for instance, (1),(10), (12)-(19)) dealing with branching pro-
cesses in random environment in which individuals reproduce independently of each other according to
random offspring distributions which vary from one generation to the other. The present article comple-
ments results established in (13)-(19) where critical branching processes in random environment were
investigated under the quenched approach. To give a formal description of the model under consideration
we shall spend some time in this section introducing notation before proceeding to the main results in the
next section.

Let ∆ be the space of probability measures on N0 := {0, 1, 2, ...}. Equipped with the metric of total
variation ∆ becomes a Polish space. Let K be a random variable taking values in ∆. An infinite sequence
K̄ = (K0,K1, . . .) of i.i.d. copies of K is said to form a random environment. A sequence of N0-
valued random variables Z0, Z1, . . . is called a branching process in the random environment K̄, if Z0 is
independent of K̄ and given K̄ the process Z = (Z0, Z1, . . .) is a Markov chain with

L
(
Zn+1 | Zn = z(n), K̄ = (k0,k1, . . .)

)
= L

(
ξn1 + · · ·+ ξnz(n)

)
(1)
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for every n, z(n) ∈ N0 and k0,k1, . . . ∈ ∆, where ξn1, ξn2, . . . are i.i.d. random variables with distribu-
tion kn. Setting

fn(s) :=
∞∑

j=0

Kn({j})sj

one can rewrite (1) as

E
[
sZn+1 | Zn = z(n), K̄ = (k0,k1, . . .)

]
=

 ∞∑
j=0

kn({j})sj

z(n)

, n ≥ 0.

Let Ω = ∆N×N0
N be the space of elementary events, endowed with the product σ-fieldF and P be the

corresponding probability measure on the (Ω,F). The triple (Ω,F ,P) is be our basic probability space.
By Fn, n ≥ 1, we denote the smallest σ-field such that projection from Ω to Ωn := ∆N≤n × N0

N≤n is
measurable. Pn is the restriction of P to Fn.

Let
f

d= f0, Xk := ln f ′k−1 (1) , ηk := f ′′k−1 (1)
(
f ′k−1 (1)

)−2
, k ∈ N = {1, 2, ...};

X
d= X1; S0 := 0, Sk := X1 + ... + Xk, k ≥ 1.

The sequence {Sk, k ≥ 0} is called the associated random walk of the corresponding branching process
in random environment.

Let
T := min {k : Zk = 0}

and τ (m,n) := min{i ∈ [m,n] : Sj ≥ Si, j = m,m + 1, . . . , n} be the left–most point of minimum
of the random walk {Sk, k ≥ 0} on the discrete time interval [m,n]. In particular we shall write τ(n) :=
τ (0, n) for the left–most point of minimum of the random walk on the discrete time interval [0, n].

Properties of branching processes in random environment are specified to a great extent by the proper-
ties of the associated random walk. One of the most important conditions we impose on the characteristics
of our branching process in this respect is the following Doney condition:

Assumption A1. There exists a number 0 < ρ < 1 such that

P(Sn > 0) → ρ as n →∞.

As it was shown in (7), Condition A1 is equivalent to the classical Spitzer condition

1
n

n∑
k=1

P(Sk > 0) → ρ as n →∞.

Recall that Assumption A1 implies

n−1τ (n) d→ τ, n →∞, (2)

where τ is a random variable distributed according to the generalized arcsine law with parameter ρ ((11),
Ch. IV, § 20) and the symbol d→ means convergence in distribution.
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Vatutin and Dyakonova, using the quenched approach, have proved in (16) and (17) conditional limit
theorems given {T > n} describing the asymptotic behavior, as n →∞, of the distribution of the number
of particles at moments Znt and Zτ(nt), t ∈ (0, 1), in the branching processes in random environment
respecting Assumption A1.

In the present paper we consider the conditioning {T = n} and, under Assumption A1 and the quenched
approach, study the distribution of the number of particles in our branching process either at moments nt,
t ∈ (0, 1), or at moments located in a vicinity of points τ(nt) or τ(nt, n). (On a notational point, here
and in the sequel we understand nt as [nt], the integer part of nt). To formulate our results we need to
specify a number of characteristics related with associated random walks.

Let
γ0 := 0, γj+1 := min(n > γj : Sn < Sγj )

and
Γ0 := 0, Γj+1 := min(n > Γj : Sn > SΓj

), j ≥ 0,

be the strict descending and strict ascending ladder epochs of {Sn, n ≥ 0}. Introduce the functions

V (x) =


∑∞

j=0 P(Sγj ≥ −x) if x > 0,

1 if x = 0,
0 if x < 0,

U(x) =


1 +

∑∞
j=1 P(SΓj

< x) if x > 0,

1 if x = 0,
0 if x < 0,

and set

Θ(a) :=

∑∞
j=a j2K( {j} )

(
∑∞

r=0 rK( {r} ))2
, a ∈ N.

Assumption A2. There exist ε0 > 0 and a ∈ N0 such that

E(log+ Θ(a))
1
ρ +ε0 < ∞ and E[V (X)(log+ Θ(a))1+ε0 ] < ∞, (3)

E(log+ Θ(a))
1

1−ρ +ε0 < ∞ and E[U(−X)(log+ Θ(a))1+ε0 ] < ∞. (4)

One can find in (1) and (16) more details demonstrating the importance of these conditions.
Finally, we impose a (rather specific) condition on the form of the probability generating functions of

the underlying branching process in random environment.
Assumption A3. The random offspring generating functions fn(s), n = 0, 1, ..., are fractional-linear,

i.e., they have with probability 1 the following form

fn(s) = rn + (1− rn)
qn

1− pns
(5)

where pn + qn = 1, pnqn > 0.
It turns out that, many (but not all) of the forthcoming results in this paper can be proved for the

branching processes in random environment respecting Assumptions A1 − A2 only. However, the main
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advantage we gain by imposing Assumption A3 is that if we let

fk,n (s) := fk(fk+1(...(fn−1 (s))...)), 0 ≤ k ≤ n− 1, fn,n (s) := s,

fn,m (s) := fn−1(fn−2(...(fm (s))...)), n ≥ m + 1,

and denote

ηj+1 :=
f ′′j (1)(
f ′j (1)

)2 , bm :=
1
2

m−1∑
j=0

ηj+1e
−Sj

(noting that both are positive quantities), then Assumption A3 implies (see, for instance, (10)) that for
m = 0, 1, .... and s ∈ [0, 1],

1
1− f0,m (s)

=
e−Sm

1− s
+ bm. (6)

Later on we need various probability measures and (random) conditional expectations specified on the
measurable space (Ω,F) . To distinguish them we use the symbols E and P to denote the expectation and
probability law generated by the initial measure on the tuples

(f0, f1, ..., fn, . . . ;Z0, Z1, ..., Zn, . . .)

(there may be some occasional mild abuse of this notation however we do not anticipate that it will lead
to confusion). Besides we write for brevity E K̄[·] and P K̄[·] for the conditional expectation E[·|K̄] and
conditional probability P[·|K̄] with respect to the σ-field generated by the infinite-dimensional vector
K̄ = (K0,K1, . . .). Along with the basic probability space (Ω,F ,P) we deal with two (independent)
copies

(
Ω−,F−,P−

)
and

(
Ω+,F+,P+

)
. Denote by {f−n , n ≥ 0} and {f+

n , n ≥ 0} two sequences

of the random environment and by {S−n , n ≥ 0} and {S+
n , n ≥ 0} the corresponding associate random

walks specified on
(
Ω−,F−,P−

)
and

(
Ω+,F+,P+

)
, respectively. Later on any characteristics or

random variables related with {f−n , n ≥ 0} and {f+
n , n ≥ 0} are superscripted with the symbols − or +,

respectively. Following this practice, we write

Γ− = min{n ≥ 1 : S−n ≥ 0}

and
γ+ = min{n ≥ 1 : S+

n < 0}.
We also study various properties of the pair of branching processes in random environment given the event

Ak,p :=
{
Γ− > k, γ+ > p

}
. (7)

Set D =
∑∞

j=1 P(Sj = 0). In addition to the measures P− and P+ we define measures P̂− and P̂+

on
(
Ω−,F−

)
and

(
Ω+,F+

)
whose restrictions P̂−

k and P̂+
k on the σ-algebras F−k and F+

k , k ∈ N are
specified by

P̂−
k (A−) = eD

∫
A−

U
(
−S−k

)
I{Γ− > k}dP−, A− ∈ F−k , (8)

P̂+
k (A+) =

∫
A+

V (S+
k )I{γ+ > k}dP+, A+ ∈ F+

k . (9)
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One can check (see, (17)) that the sequences
{
P̂−

k , k ∈ N
}

,
{
P̂−

k , k ∈ N
}

consist of well-defined and
consistent probability measures. The probabilistic sense of these measures is rather transparent: the
restriction of P̂− to F−k is concentrated only on the realizations of the environment whose associated
random walks are negative for the first k steps (except the starting point) while the restriction of P̂+

to F+
k is concentrated only on the realizations of the environment whose associated random walks are

nonnegative for the first k steps. Indeed, in an appropriate sense, P̂+ and P̂− may be thought of as the
random walks S+ and S− conditioned to stay positive. See for example (5).

Further, on the measurable space
(
Ω− × Ω+,F− × F+

)
we specify the probability measure P̂ :=

P̂− × P̂+, whose projection on the elements of the σ-algebra F−k ×F+
p is given by

P̂(A) = eD

∫
A

U
(
−S−k

)
V (S+

p )I{Ak,p}d(P− ×P+),A ∈ F−k ×F+
p (10)

(see (17) for more detailed description of this measure).

With the notation above in hand we list for further references some results established in (16) before
moving to our main results.

1) Under Assumptions A1−A2 for any R ∈ N0 there exists the limit

q+
R := lim

n→∞
f+

R,n(0) < 1 P̂+- a.s. (11)

(later on we write for brevity q+ for q+
0 );

2) the tuple of random functions

ζ−l,m(s) :=
1− f−l,m(s)

eS−l −S−m
, m ∈ N0, l ≥ m + 1, (12)

is such that P̂− a.s. the limit
ζ−∞,m(s) := lim

l→∞
ζ−l,m(s) (13)

exists and is positive and less than 1 for any s ∈ [0, 1).

For brevity we set ζ−l (s) := ζ−l,0(s) and ζ−(s) := ζ−∞,0(s). Observe that

ζ := lim
min(l,n−l)→∞

ζ−l (f+
0,n−l(0)) = ζ−(q+) (14)

exists P̂− a.s. and, moreover, ζ ∈ (0, 1] with probability 1.

2 Main results
Now we are ready to formulate the main results of the present paper. Below our two main theorems we
offer some intuition as to their interpretation.
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Theorem 1 Suppose that A1− A3 hold. Then for any R ∈ Z, any t ∈ (0, 1), and s ∈ (0, 1]
1) {

EK̄

[
sZτ(nt)+R |T = n

]
|τ(n) ≥ nt

} d→ s

(
1−ΘR

1−ΘRs

)2

, n →∞,

where

ΘR =


ζ−

(
f+
0,R(0)

)
e−S+

R if R ≥ 0,

ζ−∞,R(0)e−S−R if R < 0,

and ΘR ∈ (0, 1) with probability 1;
2) {

EK̄

[
sZτ(nt,n)+R |T = n

]
|τ(n) < nt

} d→ s

(
1− θR

1− θRs

)2

, n →∞,

where

θR =


q+
R if R ≥ 0,

f−R,0(q
+) if R < 0,

and θR ∈ (0, 1) with probability 1.

The next theorem deals with the distribution of the number of particles at moments nt, 0 < t < 1. Let

Om,n :=
1− f0,n(0)
1− fm,n(0)

fm,n(0)bm. (15)

Theorem 2 Suppose that Assumptions A1− A3 hold. Then, for any t ∈ (0, 1) and λ ∈ (0,∞)

EK̄

[
exp

{
−λ

Znt

Ont,n

}
|T = n

]
p→ 1

(1 + λ)2
as n →∞.

It is necessary to note that despite of the unique form of the limit in the cases {τ(n) ≥ nt} and
{τ(n) < nt} , the behavior of the scaling function Ont,n as n → ∞ is different in the two theorems.
Later on in Lemmas 20 and 21 (see also Remark 23) we shall see that on the set τ(n) ≥ nt the ran-
dom variable Ont,neSτ(nt)−Snt converges in distribution , as n → ∞, to a random variable being finite
and positive with probability 1. Thus, the normalization in Theorem 1 is, essentially, specified by the
past behavior of the associated random walk. On the other hand, given τ(n) < nt the random variable
Ont,neSτ(nt,n)−Snt converges in distribution , as n → ∞, to a random variable being finite and positive
with probability 1. Thus, the scaling in in Theorem 2 is, essentially, specified by the future behavior of
the associated random walk.

This fact allows us to give the following non-rigorous interpretation of our results. If the process
dies out at a distant moment T = n then it happens not as a unique catastrophic event. Before the
extinction moment the evolution of the process consists of a number of ”bad” periods where the size of the
population is small. According to Theorem 1, such periods are located in the vicinities of random points
τ(nt)I {τ(n) ≥ nt} and τ(nt, n)I {τ(n) < nt} . On the other hand, at nonrandom points nt, t ∈ (0, 1),
the size of the population is, by Theorem 2, big. Hence log Znt grows like Snt − Sτ(nt) if τ(n) > nt and
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like Snt − Sτ(nt,n) if τ(n) < nt. Thus, the process {ZtT , 0 ≤ t ≤ 1} dies by passing through a number
of bottlenecks and favorable periods.

The remainder of the paper consists of two sections. The first deals with the proof of Theorem 1 and
the second with the proof of Theorem 2.

3 Proof of Theorem 1
The proof of Theorem 1 is given right at the very end of this section. We must first pass through a large
number of technical results.

We begin by setting

∆m,n :=
(

1− fm,n−1(0)
1− fm,n(0)

)2 (
1− f0,n(0)

1− f0,n−1(0)

)2

=
O2

m,n

O2
m,n−1

f2
m,m−1(0)
f2

m,n(0)

and justifying the following key estimate.

Lemma 3 Under Assumption A3 for any 1 ≤ m < n

1
1 + (1− s)Om,n−1

∆−1
m,n ≤ EK̄

[
sZm |T = n

]
≤ 1

1 + (1− s)Om,n
∆m,n.

Proof. Clearly,

EK̄

[
sZm |T = n

]
=

EK̄

[
sZm ;T = n

]
PK̄ (T = n)

=
EK̄

[
sZm ;Zn = 0

]
−EK̄

[
sZm ;Zn−1 = 0

]
f0,n(0)− f0,n−1(0)

=
f0,m(sfm,n(0))− f0,m(sfm,n−1(0))
f0,m(fm,n(0))− f0,m(fm,n−1(0))

.

Hence, using the Mean Value Theorem and the monotonicity properties of f ′0,m(s) in s and fm,N (0) in
N we get

s
f ′0,m(sfm,n−1(0))

f ′0,m(fm,n(0))
≤ EK̄

[
sZm |T = n

]
≤ s

f ′0,m(sfm,n(0))
f ′0,m(fm,n−1(0))

.

It is easy to conclude from (6) that under Assumption A3

f ′0,m(s) =
e−Sm

(1− s)2
(1− f0,m(s))2.

Therefore,
f ′0,m(sfm,n(0))
f ′0,m(fm,n−1(0))

=
(1− f0,m(sfm,n(0)))2

(1− sfm,n(0))2
(1− fm,n−1(0))2

(1− f0,n−1(0))2
.
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Further, again making use of (6), we have for s ∈ [0, 1]

1− f0,m(sfm,n(0))
1− sfm,n(0)

=
1

e−Sm + (1− sfm,n(0)) bm

=
1

e−Sm + (1− fm,n(0)) bm + (1− s)fm,n(0)bm

=
1

(1− fm,n(0)) (1− f0,n(0))−1 + (1− s)fm,n(0)bm

=
1− f0,n(0)
1− fm,n(0)

× 1
1 + (1− s)Om,n

where the third equality follows from the first equality when s = 1. As a result we have

f ′0,m(sfm,n(0))
f ′0,m(fm,n−1(0))

=
1

1 + (1− s)Om,n
∆m,n.

Similarly,
f ′0,m(sfm,n−1(0))

f ′0,m(fm,n(0))
=

1
1 + (1− s)Om,n−1

∆−1
m,n.

The lemma is proved. �

To proceed further we need to formulate for future reference several known statements. In the next two
lemmas recall that An,r was defined in (7).

Lemma 4 ((16), Lemma 3) Let Assumption A1 be valid and let Tl,p, l, p ∈ N, be a tuple of uniformly
bounded random variables such that, for any pair l, p the random variable Tl,p is measurable with respect
to the σ-algebra F−l ×F+

p . Then

lim
min(n,r)→∞

E[Tl,p | An,r] = Ê[Tl,p]. (16)

More generally, if the tuple {Tn,r, n, r ∈ N} consists of the uniformly bounded random variables which
are adopted to the flow of the σ−algebras {F−n ×F+

r }n≥1,r≥1, and limmin(n,r)→∞ Tn,r =: T exists P̂−
a.s. then

lim
min(n,r)→∞

E[Tn,r | An,r] = Ê[T ]. (17)

Lemma 5 ((16), Lemma 4) Let Assumption A1 be valid and let T and Tl,p, l, p ∈ N be a tuple of random
variables meeting the conditions of Lemma 4. If T ∗l,p, l, p ∈ N is a tuple of uniformly bounded random
variables such that for any pair l, p the random variable, T ∗l,p is measurable with respect to the σ-algebra
F−l ×F+

p and
E[T ∗τ(n),n | τ(n) = l] = E[Tl,n−l | Al,n−l],

then
lim

n→∞
E[T ∗τ(n),n] = Ê[T ]. (18)
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For 0 ≤ m ≤ n set

αn(m) :=
1− f0,m(0)
1− f0,n(0)

, βn(m) :=
1− f0,n (0)

eSm (1− fm,n (0))
. (19)

Clearly, αn(m) ≥ 1, βn(m) ≤ 1, and, in addition,

Om,n =
1

αn(m)
× fm,n(0)

1− fm,n(0)
− fm,n(0)βn(m)

= fm,n(0)βn(m)
(

eSm

1− f0,m(0)
− 1

)
. (20)

Lemma 6 ((16), Lemma 16) Assume that A1− A2 hold. Then for R ∈ Z and any ε > 0

lim sup
R,n→∞

P (αn(τ(n) + R) > 1 + ε) = 0.

Remark 7 Since the random variable αn(τ(n) + R) is not defined for τ(n) + R < 0 or τ(n) + R > n
we should formally write the statement of the lemma as

lim sup
R,n→∞

P (αn(τ(n) + R) > 1 + ε;n ≥ τ(n) + R ≥ 0) = 0

However, by the generalized arcsine law for each fixed R ∈ Z

lim
n→∞

P (τ(n) + R /∈ [0, n]) = 0. (21)

For this reason here and in what follows we agree to treat αn(τ(n) + R) as αn(0) if τ(n) + R < 0
and αn(n) if τ(n) + R > n. Similar agreement will be kept for other functions which involve τ(n) + R,
τ(nt) + R or τ(nt, n) + R.

Lemma 8 ((16), Corollary 3) Assume that A1− A2 hold. For any t ∈ (0, 1] and ε > 0

lim sup
n→∞

P ( αn(nt) > 1 + ε | τ (n) < nt ) = 0.

The next statement complements Lemmas 6 and 8.

Lemma 9 Assume that A1− A2 hold. Then for R ∈ Z, any t ∈ (0, 1] , and any ε > 0

lim sup
R,n→∞

P (αn(τ(nt, n) + R) > 1 + ε | τ (n) < nt ) = 0.

Proof. First we note that αn(m) ↓ 1 as m ↑ n. Hence

αn(τ(nt, n) + R)I {nt ≤ τ(nt, n) + R ≤ n} ≤ αn(nt)I {nt ≤ τ(nt, n) + R ≤ n}
≤ αn(nt).
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Therefore,

P (αn(τ(nt, n) + R) > 1 + ε; τ (n) < nt) ≤ P (αn(nt) > 1 + ε; τ (n) < nt)
+P (τ(nt, n) + R /∈ [nt, n]) . (22)

Observing that {τ(nt, n) + R > n} = � for R < 0 and {τ(nt, n) + R < nt} = � for R > 0 and
recalling the generalized arcsine law (which, under Assumption A1, holds for n−1τ(nt, n) (see (11))) we
see that for each fixed R

lim
n→∞

P (τ(nt, n) + R /∈ [nt, n]) = 0. (23)

Passing now to the limit as n →∞ in the both sides of (22) and recalling Lemma 8 we see that

lim sup
n→∞

P (αn(τ(nt, n) + R) > 1 + ε; τ (n) < nt) = 0.

Hence the statement of the lemma follows. �

Lemma 10 Assume that A1− A2 hold. Then for any R ∈ Z, any t ∈ (0, 1), and N ∈ {n− 1, n}{
fτ(nt,n)+R,N (0)|τ(n) < nt

} d→ θR as n →∞,

where θR is the same as in Theorem 1.

Proof. Consider first R < 0. Clearly,

E
[
e−λfτ(nt,n)+R,N (0); τ(n) < nt

]
= E

[
e−λfτ(nt,n)+R,N (0)

]
−E

[
e−λfτ(nt,n)+R,N (0); τ(n) ≥ nt

]
.

Introduce two independent environmental sequences {f−n , n ≥ 0} and {f+
n , n ≥ 0} and the respective

associated random walks {S−n , n ≥ 0} and {S+
n , n ≥ 0}. In the notation of Lemmas 4 and 5 we set

T ∗τ(n(1−t)),n(1−t) := e−λfτ(n(1−t))+R,N−n(1−t)(0), Tl,n−l := e
−λf−R,0(f

+
0,N−n(1−t)−l

(0))
.

Observing that

e−λfτ(n(1−t))+R,N−n(1−t)(0) d= e−λfτ(nt,n)+R,N (0)

and
f−R,0(f0,N−n(1−t)−l(0)) → f−R,0(q

+)

P̂ −a.s. as min(l, N −n(1− t)− l) →∞ we conclude by Lemma 5 and the generalized arcsine law that

E
[
e−λfτ(nt,n)+R,N (0)

]
= E

[
e−λfτ(n(1−t))+R,N−n(1−t)(0)

]
→ Ê

[
e−λf−R,0(q

+)
]
, n →∞.
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Further we have

E
[
e−λfτ(nt,n)+R,N (0); τ(n) ≥ nt

]
= E

[
e−λfτ(nt,n)+R,N (0); τ(n) ≥ nt

]
=

n∑
j=nt

E
[
e−λfτ(n)+R,N (0); τ(n) = j

]
=

n∑
j=nt

E
[
e−λfj+R,N (0); min

0≤r<j
Sr > Sj , min

j+1≤r≤n
Sr ≥ Sj

]

=
n∑

j=nt

E
[
e−λf−R,0(f

+
0,N−j(0));Aj,n−j

]
=

n∑
j=nt

E
[
e−λf−R,0(f

+
0,N−j(0))|Aj,n−j

]
P(τ(n) = j)

and since f−R,0(f
+
0,N−j(0)) → f−R,0(q

+) P̂−a.s as n− j →∞ we have by Lemma 4 that

lim
n−j→∞

E
[
e−λfR,N−j(0)|Aj,n−j

]
= Ê

[
e−λf−R,0(q

+)
]
.

This and the generalized arcsine law give

lim
n→∞

E
[
e−λfτ(nt,n)+R,N (0); τ(n) ≥ nt

]
= Ê

[
e−λf−R,0(q

+)
]
P (τ ≥ t) .

Thus,

lim
n→∞

E
[
e−λfτ(nt,n)+R,N (0)I{τ(nt,n)+R≥0}; τ(n) < nt

]
= Ê

[
e−λf−R,0(q

+)
]
P (τ ≤ t)

proving the lemma for R < 0.
The case R ≥ 0 can be treated in a similar way by observing that, in this case, for all j ≤ N −R

E
[
e−λfτ(n)+R,N (0); τ(n) = j

]
= E

[
e−λf+

R,N−j(0))|Aj,n−j

]
P(τ(n) = j)

and that (11) holds. �
In what follows we need some properties of the random variable βn(m).

Lemma 11 ((16), Lemma 17) Assume that A1− A2 hold. For any ε > 0 and N ∈ {n− 1, n}

lim sup
R,n→∞

P (βN (τ (n) + R) > ε) = 0. (24)

Lemma 12 ((16), Corollary 4) Assume that A1− A2 hold. For any t ∈ (0, 1) and ε > 0

lim sup
n→∞

P (βn (nt) < 1− ε; τ (n) ≥ nt) = 0, (25)

lim sup
n→∞

P (βn (nt) > ε; τ (n) < nt) = 0. (26)
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Lemma 13 Assume that A1− A2 hold. For any R ∈ Z, any t ∈ (0, 1), and N ∈ {n− 1, n}

{
Oτ(nt,n)+R,N |τ(n) < nt

} d→ θR

1− θR
.

Proof. We have

Oτ(nt,n)+R,N =
1

αN (τ(nt, n) + R)
×

fτ(nt,n)+R,N (0)
1− fτ(nt,n)+R,N (0)

−fτ(nt,n)+R,N (0)βN (τ(nt, n)+R). (27)

By Lemmas 9 and 10

1
αN (τ(nt, n) + R)

×
fτ(nt,n)+R,N (0)

1− fτ(nt,n)+R,N (0)
d→ θR

1− θR
, n →∞. (28)

Further, by (26)

βN (τ(nt, n) + R)I {τ(n) < nt ≤ τ(nt, n) + R} (29)
≤ βN (nt)I {τ(n) < nt ≤ τ(nt, n) + R}
≤ βN (nt)I {τ(n) < nt} p→ 0 (30)

as n →∞. Using (28) and (30) to evaluate (27) proves the lemma. �

Lemma 14 Assume that A1− A2 hold. For any t ∈ (0, 1) , any fixed R ∈ Z, and ε > 0

lim sup
n→∞

P (βn (τ(nt) + R) < 1− ε; τ (n) ≥ nt) = 0.

Proof. Since
eSm (1− fm,n (s)) ≤ eSm+1 (1− fm+1,n (s))

for any m < n, the elements of the sequence {βn(m), 0 ≤ m ≤ n} are monotone decreasing in m for
any fixed n. On the other hand, for any δ > 0 there exists ε1 > 0 such that

P (τ(nt) + R > nt(1− ε1)) < δ

for all n ≥ n0 = n0(δ, ε1). Thus, we have for all n ≥ n0

P (βn (τ(nt) + R) < 1− ε; τ (n) ≥ nt)
≤ δ + P (βn (nt(1− ε1)) < 1− ε; τ (n) ≥ nt)
≤ δ + P (βn (nt(1− ε1)) > 1− ε; τ (n) ≥ nt(1− ε1)) .

To complete the proof it remains to recall (25) . �

Lemma 15 Assume that A1− A2 hold. For any R ∈ Z, any t ∈ (0, 1), and N ∈ {n− 1, n}{
fτ(nt)+R,N (0)|τ(n) ≥ nt

} d→ 1, n →∞.
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Proof. For a fixed ε ∈ (0, 1) introduce the event

Hn(ε) = {ω : {τ(nt), τ(nt) + R, τ(n)} ∩ [nt(1− ε), nt(1 + ε)] = �}

and let H̄n(ε) be the complement of Hn(ε). By the generalized arcsine law

lim
ε↓0

lim
n→∞

P
(
H̄n(ε)

)
≤ lim

ε↓0
lim

n→∞
P (τ(nt) ∈ [nt(1− ε), nt(1 + ε)])

+ lim
ε↓0

lim
n→∞

P (τ(nt) + R ∈ [nt(1− ε), nt(1 + ε)])

+ lim
ε↓0

lim
n→∞

P (τ(n) ∈ [nt(1− ε), nt(1 + ε)])

= 0.

Hence, to prove the lemma it is suffices to show that{
fτ(nt)+R,N (0)|Hn(ε); τ(n) ≥ nt

} d→ 1, n →∞.

Clearly,(
1− fτ(nt)+R,N (0)

)
I {Hn(ε); τ(n) ≥ nt}

≤
(
1− fτ(nt)+R,τ(n)(0)

)
I {Hn(ε); τ(n) > nt(1 + ε)}

≤ eSτ(n)−Sτ(nt)+RI {Hn(ε); τ(n) > nt(1 + ε)} ≤ eSτ(n)−Sτ(nt)I {Hn(ε); τ(n) > nt(1 + ε)}
≤ eSτ(n)−Sτ(nt)I {τ(n) > nt(1 + ε)} .

Thus, for any ε1 ∈ (0, 1)

P
(
1− fτ(nt)+R,N (0) ≥ ε1;Hn(ε); τ(n) ≥ nt

)
≤ ε−1

1 E
[
1− fτ(nt)+R,N (0);Hn(ε); τ(n) ≥ nt

]
≤ ε−1

1 E
[
eSτ(n)−Sτ(nt) ; τ(n) > nt(1 + ε)

]
. (31)

Hence, using the notation introduced in the proof of Lemma 10 and the duality principle for random walks
it is not difficult to check that

E
[
eSτ(n)−Sτ(nt) ; τ(n) > nt(1 + ε)

]
=

∑
nt(1+ε)<k≤n

E
[
eSk−min0≤i≤nt Si ; τ(n) = k

]
=

∑
nt(1+ε)<k≤n

E
[
emink−nt≤l≤k S−l ;Ak,n−k

]
≤

∑
nt(1+ε)<k≤n

E
[
eminntε≤l≤k S−l |Ak,n−k

]
P (τ(n) = k) .

Since S−l → −∞ P̂-a.s as l →∞, we have by Lemma 4

lim
n→∞

E
[
eminntε≤l≤k S−l |Ak,n−k

]
= 0.
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Now the dominated convergence theorem gives

lim
n→∞

E
[
eSτ(n)−Sτ(nt) ; τ(n) > nt(1 + ε)

]
= 0.

Combining this fact with (31) complete the proof of the lemma. �

Lemma 16 Assume that A1− A2 hold. For any R ∈ Z and any t ∈ (0, 1){
1− f0,τ(nt)+R(0)

eSτ(nt)+R
|τ(n) ≥ nt

}
d→ ΘR

where ΘR is the same as in Theorem 1.

Proof. Let R ≥ 0 be fixed. We have

E
[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
; τ(n) ≥ nt

]
= E

[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}]
−E

[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
; τ(n) < nt

]
.

Introducing once again two independent environmental sequences {f−n , n ≥ 0} and {f+
n , n ≥ 0} , setting

T ∗τ(nt),nt := exp
{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
, Tl,nt−l := exp

{
−λ

1− f−l,0(f
+
0,R(0))

eS−l eS+
R

}

and observing that
1− f−l,0(f

+
0,R(0))

eS−l eS+
R

→
ζ−(f+

0,R(0))

eS+
R

P̂ a.s. as min(l, n(1− t)− l) →∞, we conclude by Lemma 5 that for any λ ∈ (0,∞)

E
[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}]
→ Ê

[
exp

{
−λ

ζ−(f+
0,R(0))

eS+
R

}]

as n →∞. Further, the same as in Lemma 15

E
[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
; τ(n) < nt

]
= E

[
exp

{
−λ

1− f0,τ(n)+R(0)
eSτ(n)+R

}
; τ(n) < nt

]
=

nt−1∑
j=0

E
[
exp

{
−λ

1− f0,j+R(0)
eSj+R

}
; τ(n) = j

]
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=
nt−1∑
j=0

E
[
exp

{
−λ

1− f0,j+R(0)
eSj+R

}
; min
0≤r<j

Sr > Sj , min
j+1≤r≤n

Sr ≥ Sj

]

=
nt−1∑
j=0

E

[
exp

{
−λ

1− f−j,0(f
+
0,R(0))

eS−j eS+
R

}
;Aj,n−j

]

=
nt−1∑
j=0

E

[
exp

{
−λ

1− f−j,0(f
+
0,R(0))

eS−j eS+
R

}
|Aj,n−j

]
P (τ(n) = j) .

By (14)
1− f−j,0(f

+
0,R(0))

eS−j eS+
R

→
ζ−(f+

0,R(0))

eS+
R

P̂ a.s. as min(j, n− j) →∞. Hence we see by Lemma 4 that

lim
min(j,n−j)→∞

E

[
exp

{
−λ

ζ−(f+
0,R(0))

eS+
R

}
|Aj,n−j

]
= Ê

[
exp

{
−λ

ζ−(f+
0,R(0))

eS+
R

}]
.

This and the generalized arcsine law give

lim
n→∞

E
[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
; τ(n) < nt

]
= Ê

[
exp

{
−λ

ζ−(f+
0,R(0))

eS+
R

}]
P (τ ≤ t) .

Thus,

lim
n→∞

E
[
exp

{
−λ

1− f0,τ(nt)+R(0)
eSτ(nt)+R

}
; τ(n) ≥ nt

]
= Ê

[
exp

{
−λ

ζ−(f+
0,R(0))

eS+
R

}]
P (τ ≥ t)

and the statement of the lemma for R ≥ 0 follows. The case R < 0 can be treated in a similar way. �

Lemma 17 Assume that A1− A2 hold. For any R ∈ Z, any t ∈ (0, 1) and N ∈ {n− 1, n}

{
Oτ(nt)+R,N |τ(n) ≥ nt

} d→ 1
ΘR

− 1.

Proof. We have

Oτ(nt)+R,N = fτ(nt)+R,N (0)βN (τ(nt) + R)
(

eSτ(nt)+R

1− f0,τ(nt)+R(0)
− 1

)
.
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Applying Lemmas 14, 15, and 16 we get{
Oτ(nt)+R,N |τ(n) ≥ nt

} d→ 1
ΘR

− 1

as desired. �

Lemma 18 Assume that A1− A2 hold. Then

∆m,n
p→ 1 as min (m,n−m) →∞.

Proof. Clearly, it suffices to show that

1− f0,n(0)
1− f0,n−1(0)

p→ 1 as n →∞. (32)

To verify this write

T ∗τ(n−1),n−1 :=
1− f0,τ(n−1)(fτ(n−1),n(0))

1− f0,τ(n−1)(fτ(n−1),n−1(0))

and

Tl,n−l−1 :=
1− f−l,0(f

+
0,n−l−1(fn−1(0)))

1− f−l,0(f
+
0,n−l−1(0))

.

Since, evidently, there exists s ∈ [0, 1) such that

lim
n−l→∞

f+
n−l−1(s) 6= s,

it follows from Lemma 1’ and Theorem 5 in (3) and (11) that P̂+ a.s.

lim
n−l→∞

f+
0,n−l−1(fn−1(0)) = lim

n−l→∞
f+
0,n−l−1(0) = q+.

Hence we conclude that P̂ a.s.

lim
min(l.n−l)→∞

Tl,n−l−1

= lim
min(l.n−l)→∞

1− f−l,0(f
+
0,n−l−1(fn−1(0)))

eS−l
× eS−l

1− f−l,0(f
+
0,n−l−1(0))

= 1.

To finish the proof of (32) it remains to observe that

lim
n→∞

P (τ(n) 6= τ(n− 1)) = 0,

to check that
E

[
T ∗τ(n−1),n−1|τ(n− 1) = l

]
= E [Tl,n−l−1|Al,n−l−1] ,

and to apply Lemma 5. �

Proof of Theorem 1. To prove the statement of the theorem it suffices to combine Lemmas 17, 13, and
18. �
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4 Proof of Theorem 2

Lemma 19 Under Assumptions A1−A2,

Ont,n−1

Ont,n

p→ 1 as n →∞. (33)

Proof. We have

Ont,n−1

Ont,n
=

fnt,n−1(0)
fnt,n(0)

× 1− f0,n−1(0)
1− f0,n(0)

× 1− fnt,n(0)
1− fnt,n−1(0)

.

Since the process is critical,
fnt,n(0) d= f0,n(1−t)(0) → 1 a.s. (34)

as n →∞. Similarly to (32)

1− fnt,n(0)
1− fnt,n−1(0)

d=
1− f0,n(1−t)(0)

1− f0,n(1−t)−1(0)
d→ 1 (35)

as n →∞. Combining (32), (34), and (35) gives (33). �

Lemma 20 Under Assumptions A1 − A2, for any t ∈ (0, 1) as n →∞{
Ont,n (1− f0,nt(0)) e−Snt |τ(n) ≥ nt

} d→ 1. (36)

and
{Ont,n (1− fnt,n(0)) |τ(n) < nt} d→ 1, (37)

Proof. To prove (36) one should write

Ont,n(1− f0,nt(0))e−Snt = fnt,n(0)βn(nt)
[
1− (1− fnt,n(0))) e−Snt

]
and to use Lemma 12 and (25), while to demonstrate (37) it suffices to observe that

Ont,n (1− fnt,n(0)) =
1

αn(nt)
× fnt,n(0)− fnt,n(0)βn(nt) (1− fnt,n(0))

and to apply Lemma 8 and (26). �

Lemma 21 Under Assumptions A1− A2, for any t ∈ (0, 1) as n →∞{
1− f0,nt(0)

eSτ(nt)
|τ(n) ≥ nt

}
→ ζ

and {
1− fnt,n(0)
eSτ(nt,n)−Snt

|τ(n) < nt

}
→ ζ

where ζ is defined in (14).
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Proof. Our arguments follow the same line of reasoning as the proof of Lemma 16. We have

E
[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}
; τ(n) ≥ nt

]
= E

[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}]
−E

[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}
; τ(n) < nt

]
.

Introducing once again two independent environmental sequences {f−n , n ≥ 0} and {f+
n , n ≥ 0} , setting

T ∗τ(nt),nt := exp
{
−λ

1− f0,nt(0)
eSτ(nt)

}
, Tl,nt−l := exp

{
−λ

1− f−l,0(f
+
0,nt−l(0))

eS−l

}
and observing that by (14)

1− f−l,0(f
+
0,nt−l(0))

eS−l
→ ζ−(q+) = ζ

P̂ a.s. as min(l, nt− l) →∞, we conclude by Lemma 5 that for any λ ∈ (0,∞)

E
[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}]
→ Ê [exp {−λζ}]

as n →∞. Further,

E
[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}
; τ(n) < nt

]
= E

[
exp

{
−λ

1− f0,nt(0)
eSτ(n)

}
; τ(n) < nt

]
=

nt−1∑
j=0

E
[
exp

{
−λ

1− f0,j(fj,nt(0))
eSj

}
; τ(n) = j

]

=
nt−1∑
j=0

E
[
exp

{
−λ

1− f0,j(fj,nt(0))
eSj

}
; min
0≤r<j

Sr > Sj , min
j+1≤r≤n

Sr ≥ Sj

]

=
nt−1∑
j=0

E

[
exp

{
−λ

1− f−j,0(f
+
0,nt−j(0))

eS−j

}
;Aj,n−j

]

=
nt−1∑
j=0

E

[
exp

{
−λ

1− f−j,0(f
+
0,nt−j(0))

eS−j

}
|Aj,n−j

]
P (τ(n) = j) .

By (14)
1− f−j,0(f

+
0,nt−j(0))

eS−j
→ ζ
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P̂ a.s. as min(j, nt− j) →∞. Hence we see by Lemma 4 that

lim
min(j,nt−j)→∞

E

[
exp

{
−λ

1− f−j,0(f
+
0,nt−j(0))

eS−j

}
|Aj,n−j

]
= Ê [exp {−λζ}] .

This and the generalized arcsine law give

lim
n→∞

E

[
exp

{
−λ

1− f−j,0(f
+
0,nt−j(0))

eS−j

}
; τ(n) < nt

]
= Ê [exp {−λζ}]P (τ ≤ t) .

Thus,

lim
n→∞

E
[
exp

{
−λ

1− f0,nt(0)
eSτ(nt)

}
; τ(n) ≥ nt

]
= Ê [exp {−λζ}]P (τ ≥ t)

and the first statement of the lemma follows. The second statement can be checked in a similar way. �

Lemma 22 Under Assumptions A1− A2, for any t ∈ (0, 1)

Ont,n
d→∞ as n →∞.

Proof. This statement is a direct corollary of Lemmas 20 and 21. �

Proof of Theorem 2. Using Lemma 3 we have

1
1 + Ont,n−1(1− e−λ/Ont,n−1)

∆−1
nt,n ≤ EK̄

[
exp

{
−λ

Znt

Ont,n

}
|T = n

]
≤ 1

1 + Ont,n(1− e−λ/Ont,n)
∆nt,n.

Now to complete the proof of the theorem it remains to observe that

lim
n→∞

∆nt,n
p
= 1

by Lemmas 19 and 22 and (35), and that by Lemma 22

lim
n→∞

Ont,n(1− e−λ/Ont,n) d= lim
n→∞

Ont,n−1(1− e−λ/Ont,n) d= λ.

Remark 23 It follows from Lemmas 20 and 21 that, as n →∞{
Ont,n

eSnt−Sτ(nt)
|τ(n) ≥ nt

}
→ ζ
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and {
Ont,n

eSnt−Sτ(nt,n)
|τ(n) < nt

}
→ ζ.

Thus, given {T = n} the growth rate of Znt depends essentially on the location of the point τ(n) of the
global maximum of {Sk, 0 ≤ k ≤ n} with respect to the moment nt. If τ(n) ≥ nt then this growth rate is
specified by the past local minimum of the associated random walk while if τ(n) < nt then it depends on
the value of this random walk at the point of prospective minimum of its remaining piece.
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