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On subcritical multi-type branching process in
random environment

Elena Dyakonova1†

1Department of Discrete Mathematics, Steklov Mathematical Institute, Gubkin St. 8, 119991 Moscow, Russia

We investigate a multi-type Galton-Watson process in a random environment generated by a sequence of independent
identically distributed random variables. Suppose that the associated random walk constructed by the logarithms of
the Perron roots of the reproduction mean matrices has negative mean and assuming some additional conditions, we
find the asymptotics of the survival probability at time n as n→∞.
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Introduction
Branching processes in random environment are natural generalization of simple Galton-Watson pro-
cesses. A branching process in random environment was first considered by Smith and Wilkinson (11).
The subsequent papers investigated single- and multi-type Galton-Watson processes in random environ-
ment (3)-(8). A lot of papers is devoted to the study of the survival probability of single-type branching
processes in random environment (see, for example, (1)-(9)). The asymptotics of the survival probability
of the subcritical branching processes in random environment generated by a sequence of independent
identically distributed random variables was found in (7) for single-type processes. The paper (5) deals
with the asymptotics of the survival probability for the multi-type branching processes in random envi-
ronment whose associated random walks satisfy the Doney-Spitzer condition.The present paper studies
a case of subcritical multi-type processes branching processes in random environment. In particular, we
generalize some results from (7) and (5).

Let Z(n) = (Z1(n), ..., Zp(n)), n = 0, 1, ..., be a p-type Galton-Watson branching process in a
random environment. This process can be described as follows.

Let N0 = {0, 1, 2, ...} and Np
0 be the set of all vectors t = (t1, ..., tp) with non-negative integer

coordinates. Denote by (∆1,B(∆1)) a set of probability measures on Np
0 with σ−algebra B(∆1) of

Borel sets endowed with the metric of total variation, and by (∆,B(∆)) the p−times product of the space
(∆1,B(∆1)) on itself. Let F = (F(1)

, ...,F(p)) be a random variable (random measure) taking values in
(∆,B(∆)). An infinite sequence Π = (F0,F1,F2, ...) of independent identically distributed copies of
F is said to form a random environment and we will say that F generates Π.
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A sequence of random p−dimensional vectors Z (0) , Z (1) , Z (2) , ... with non-negative integer coor-
dinates is called a p−type branching process in random environment Π, if Z (0) is independent of Π and
for all n ≥ 0, z = (z1, ..., zp) ∈Np

0 and f0, f1, ... ∈ ∆

L(Z (n + 1) | Z(n) = (z1, ..., zp),Π = (f1, f2, ...))
= L(Z (n + 1) | Z(n) = (z1, ..., zp),Fn = fn)

= L(
p∑

i=1

ξ
(i)
n,1 + ... + ξ(i)

n,zi
), (1)

where fn = (f (1)
n , f

(2)
n , ..., f

(p)
n ) ∈ ∆, ξ

(i)
n,1, ξ

(i)
n,2, ..., ξ

(i)
n,zi , i = 1, ..., p, are independent p−dimensional

random vectors, and for each i = 1, ..., p the random vectors ξ
(i)
n,1, ξ

(i)
n,2, ..., ξ

(i)
n,zi are identically distributed

according to the measure f
(i)
n . Relation (1) defines a branching Galton-Watson process Z(n) in random

environment which describes the evolution of a particle population Z(n) = (Z1(n), ..., Zp(n)), n =
0, 1, ..., where Zi(n), i = 1, ..., p, is the number of type i particles in the n−th generation.

This population evolves as follows. If Fn = (f (1)
n , ..., f

(p)
n ) ∈ ∆ then each of the Zi(n) particles

of type i existing at the time n, produces offspring in accordance with the p−dimensional probability
measure f

(i)
n independently of the reproduction of other particles. Thus, the i-th component of the vector

Z(n + 1) = (Z1(n + 1), ..., Zp(n + 1)) is equal to the number of type i particles among all direct
descendants of the particles of the n−th generation.

The main results
Let Jp be the set of all column vectors s = (s1, ..., sp)T , 0 ≤ si ≤ 1, i = 1, ..., p. Here and later on the

superscript T stands for transposition. For s = (s1, ..., sp)T and t = (t1, ..., tp) ∈ Np
0 set st =

∏p
i=1 sti

i .
Taking into account existence of a one-to-one correspondence between probability measures and gener-
ating functions we associate with F = (F(1)

, ...,F(p)) generating Π a random p−dimensional column
vector F (s) = (F (1) (s) , ..., F (p) (s))T , s ∈ Jp, whose components are p−dimensional (random) gen-
erating functions F (i)(s) corresponding to F(i), 1 ≤ i ≤ p :

F (i)(s) =
∑

t∈Np
0

F(i)(t)st, s ∈ Jp. (2)

In a similar way we associate with the component Fn = (F(1)
n , ...,F(p)

n ), n ≥ 0, of the random environ-
ment Π = (F0,F1,F2, ...) a random vector Fn(s) = (F (1)

n (s) , ..., F
(p)
n (s))T , s ∈ Jp, the components

of which are multidimensional (random) generating functions F
(i)
n (s), corresponding to F(i)

n , 1 ≤ i ≤ p,

F (i)
n (s) =

∑
t∈Np

0

F(i)
n (t)st. (3)

Let ej , j = 1, ..., p, be the p−dimensional row vector whose j−th component is equal to 1 and the others
are zeros, 0 = (0, ..., 0) be the p−dimensional row vector all whose components are zeros, and let 1 =
(1, ..., 1)T be the p−dimensional column vector all whose components are equal to 1. For x = (x1, ..., xp)
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and y = (y1, ..., yp)T we set |x| =
∑p

i=1 |xi|, (x, y) =
∑p

i=1 xiyi. Let A = (A (i, j))p
i,j=1 be an

arbitrary positive p× p matrix. Denote by ρ(A) the Perron root of A and by u(A) = (u1(A), ..., up(A))T

and v(A) = (v1(A), ..., vp(A)) the right and left eigenvectors of A corresponding to the eigenvalue ρ(A)
and such that

|v(A)| = 1, (v(A), u(A)) = 1.

For vector-valued generating functions F (s) and Fn(s) we introduce the mean matrices

M = M(F) = (M(i, j))p
i,j=1 =

(
∂F (i)(1)

∂sj

)p

i,j=1

and

Mn = Mn(Fn) = (Mn(i, j))p
i,j=1 =

(
∂F

(i)
n (1)
∂sj

)p

i,j=1

.

Let Cα, 0 < α < 1, be the class of all matrices A = (A (i, j))p
i,j=1 such that

α ≤ A (i1, j1)
A (i2, j2)

≤ α−1, 1 ≤ i1, i2, j1, j2 ≤ p.

One of our basic hypotheses is the following condition.
Assumption A0. There exist a number 0 < α < 1 and a row vector v = (v1, ..., vp), vi > 0, i =

1, ..., p, |v| = 1, such that
M ∈ Cα,

and
v(M) = v. (4)

Thus, all mean matrices Mn, n ≥ 0, have a common left eigenvector v, i.e.,

vMn = ρ(Mn)v.

Set ρ = ρ(M), ρn = ρ(Mn), n ≥ 0. It is not difficult to see that in our settings X := ln ρ, Xi :=
ln ρi−1, i ≥ 1, are independent and identically distributed random variables. Our next hypothesis imposes
a restriction on the so-called associated random walk S = (S0, S1, ...), where

Sn = X1 + · · ·+ Xn, n ≥ 1, S0 = 0.

Assumption A1. Suppose that
E(ρ log ρ) < 0. (5)

Note that, by means of Jensen inequality, Assumption A1 implies

Eρ < 1, −∞ ≤ E log ρ < 0. (6)

Observe, that the class of multi-type branching processes in random environment satisfying Assumptions
A0 and A1 is an analog of the strongly subcritical case of single-type branching processes in random
environment considered in (7).
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Set

ζ :=
∑

t∈Np
0

p∑
i=1

vi

p∑
j,k=1

F(i)(t)tjtk, η = ζ/(ρ2v∗), (7)

ζn :=
∑

t∈Np
0

p∑
i=1

vi

p∑
j,k=1

F(i)
n (t)tjtk, ηn = ζ/(ρ2

nv∗),

where v = (v1, ..., vp) is from (4), v∗ = min(v1, ..., vp).
Introduce the random variables

Q(i)(n) = P(Z(n) 6= ~0T |Z(0) = ei,Π), Q(n) = (Q(1)(n), ..., Q(p)(n))

and let

qi(n) = P(Z(n) 6= ~0T |Z(0) = ei) = EQ(i)(n).

Note that under Assumptions A0 and A1 Q(i)(n) → 0 a.s. as n → ∞ for all 1 ≤ i ≤ p, since in view
of (6)

(v,Q(n)) ≤ min
0≤k≤n−1

|vM0 · · ·Mk| ≤ exp{ min
0≤k≤n−1

Sk} → 0

as n →∞. Denote by u(n) = (u1(n), ..., up(n))T := u(M0 · · ·Mn), n ≥ 0, the right eigenvector of the
product M0 · · ·Mn, corresponding to the Perron root ρ(M0 · · ·Mn) = ρ0 · · · ρn.

The main result of the paper is the following statement.

Theorem 1 Suppose that Assumptions A0 and A1 are valid, and

E(ρ log+ ζ) < ∞, (8)

where ζ is from (7). Then, as n →∞,

qi(n) ∼ ci(Eρ)n, ci > 0, i = 1, ..., p. (9)

In conclusion of this section we give an example where condition (8) is fulfilled.
Since

x log+(y/x2) ≤ x log+ y + 2 sup
t>0

t log(1/t) ≤ x log+ y + 2/e, x > 0, y > 0,

we see that if the measure F generating our random environment has a bounded support, i.e., there exists
a p−dimensional cube

K = {t = (t1, ..., tp) ∈ Np
0, 0 ≤ ti ≤ b, b > 0, 1 ≤ i ≤ p},

such that P(F(K) = 1) = 1, then condition (8) holds.
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1 Auxiliary results
The following assertion for the asymptotics of u(n) has been obtained in (5).

Theorem 2 If Assumption A0 is valid, then there exist a random vector u = (u1, ..., up)T and a function
g(n) ≥ 0, g(n) → 0, n →∞, such that with probability 1

|ui(n)− ui| ≤ g(n), i = 1, ..., p.

In addition,
(v, u) = 1, α ≤ ui ≤ 1/v∗,

v∗ = min(v1, ..., vp) and v = (v1, ..., vp) is from (4).

The following theorem describes the behavior of Qi(n) as n →∞.

Theorem 3 Assume Assumption A0 and let

E log ρ < 0. (10)

Then with probabilty 1, as n →∞,

Qi(n)
(v,Q(n))

→ ui, i = 1, ..., p, (11)

where u = (u1, ..., up)T is from Theorem 2.

Note that relation (11) has been proved in (5) for the case when Assumption A0 and condition

P(Sn > 0) → a, n →∞, (12)

where 0 < a < 1, are valid ( see Theorem 2 in (5)). The arguments presented in (5) are still valid if we
replace condition (12) by (10).

We need the following notations. For s ∈ Jp set

Fk,n(s) = Fk(Fk+1(...Fn−1(s))), 0 ≤ k < n− 1, Fn,n(s) = s,

Fk,n(s) = Fk−1(Fk−2(...Fn(s))), k > n ≥ 0.

It is not difficult to see that Q(n) = ~1− F0,n(~0) and

1
(v,~1− F0,n(s))

=
e−S0

(v,~1− F0,n(s))

=
e−Sn

(v,~1− Fn,n(s))
+

n−1∑
k=0

(
e−Sk

(v,~1− Fk,n(s))
− e−Sk+1

(v,~1− Fk+1,n(s))

)

=
e−Sn

(v,~1− s)
+

n−1∑
k=0

e−Skgk(Fk+1,n(s)), s ∈ Jp, (13)

where
gk(s) :=

1
(v,~1− Fk(s))

− 1
ρk(v,~1− s)

, k ≥ 0, s ∈ Jp. (14)

The following bound for gn(s), n ≥ 0, is from Lemma 1 in (5)
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Lemma 1 Assume Assumption A0. Then

0 ≤ gn(s) ≤ ηn, n ≥ 0, s ∈ Jp.

We need also the following statement.

Lemma 2 If Assumption A0 and condition (10) are valid, then, as n →∞,

EQ(i)(n) ∼ E(ui(n)(v,Q(n))), i = 1, ..., p.

The proof of the lemma is elementary (it is based on Theorems 2, 3) and Fatou’s lemma and we omit it.

2 Proof of the main result
We need some additional notation. Let ∆2 be the set of all possible tuples f(s) = (f (1)(s), ..., f (p)(s)), s ∈
Jp, where f (i)(s), i = 1, ..., p, are p−dimensional probability generating functions.

In fact we identify the set ∆2 with the space (∆,B(∆)). Since Assumption A1 yields Eρ < 1 we can
introduce the random vector

F̄ (s) = (F̄ (1)(s), ..., F̄ (p)(s))T , s ∈ Jp,

where F̄ (i)(s), i = 1, ..., p, are multidimensional (random) generating functions such that

Eϕ(F̄ (s)) =
E(ρϕ(F (s))

Eρ
(15)

for every non-negative measurable function ϕ on ∆2. ( Recall, that F (s) was defined by (2)). In a similar
way we introduce, for n ≥ 0,

F̄n(s) = (F̄ (1)
n (s), ..., F̄ (p)

n (s))T , s ∈ Jp,

by the relation

Eϕ(F̄n(s)) =
E(ρϕ(Fn(s)))

Eρ
,

where Fn(s) was defined by (3). It is not difficult to see that F̄0(s), ..., F̄n−1(s) are i.i.d. copies of F̄ (s)
and

Eϕ(F̄0(s), ..., F̄n−1(s)) =
E(exp(Sn)ϕ(F0(s), ..., Fn−1(s)))

(Eρ)n
,

where ϕ is from (15).
Proof of Theorem 1. In view of Lemma 2 to prove Theorem 1 it is sufficient to show that

E(ui(n)(v,~1− F0,n(~0))) ∼ ci(Eρ)n, ci > 0, i = 1, ..., p.

Fix i = 1, ..., p and denote by

u(n, 0) = (u1(n, 0), ..., up(n, 0))T := u(Mn−1Mn−2 · · ·M0), n ≥ 1,
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the right eigenvector of the product Mn−1Mn−2 · · ·M0 , corresponding to the Perron root ρ(Mn−1Mn−2 ·
· ·M0) = ρn−1 · · · ρ0. Using relation

E(ui(n)(v,~1− F0,n(~0))) = E(ui(n, 0)(v,~1− Fn,0(~0)))

and setting
ϕ(F0(s), ..., Fn−1(s)) = exp(−Sn)(v,~1− Fn,0(s))

in (15) we have

E(ui(n)(v,~1− F0,n(~0))) = (Eρ)nE(ūi(n, 0) exp(−S̄n)(v,~1− F̄n,0(~0))),

where ūi(n, 0), S̄n, F̄n,0, etc. are the analogues of ui(n, 0), Sn, Fn,0, defined in the terms of the F̄i, i ≥ 0.

For instance, S̄n =
∑n−1

i=0 log ρ̄i. Replacing Fk by F̄k in (13) we have

exp(−S̄n)(v,~1− F̄n,0(~0)) = (1 +
n∑

k=1

ζ̄k−1 exp(S̄k))−1,

where ζ̄k = ḡk(F̄k,0(~0)), k ≥ 0. Hence

E(ui(n)(v,~1− F0,n(~0))) = (Eρ)nE(ūi(n, 0)(1 +
n∑

k=1

ζ̄k−1 exp(S̄k))−1).

Observe that limn→∞ ūi(n, 0) = limn→∞ ui(n) = ui a.s. by Theorem 2. Thus, to prove (9) it suffices
to show that with probability 1

∞∑
k=1

ζ̄k−1 exp(S̄k) < ∞. (16)

By Lemma 1

ζ̄k ≤ η̄k :=
∑

t∈Np
0

p∑
i=1

vi

p∑
j,l=1

F̄(i)
k (t)tjtl/(ρ̄2

kv∗), k ≥ 0.

Condition (8) implies, that S̄n, n ≥ 0, is a random walk with negative drift

E log ρ̄ =
E(ρ log ρ)

Eρ
< 0.

Since by the strong law of large numbers limn→∞ S̄n/n = E log ρ̄ a.s., to prove (16) it suffices to show
that

lim
n→∞

sup
log+ η̄n

n
= 0 a.s. (17)

Using (15), (8), and the estimate supx>0(x log 1/x) = e−1, it is not difficult to check that

E log+ η̄n = E log+ ζ̄n

ρ̄2
n

≤ 1
Eρ

+ E log+ ζ̄n

=
1

Eρ
+

E(ρ log+ ζ̄)
Eρ

< ∞. (18)

Relation (17) follows from (18). This entails the desired result.
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