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On density of truth of the intuitionistic logic in
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In this paper we focus on the intuitionistic propositional logic with one propositional variable. More precisely we
consider the standard fragment {→,∨,⊥} of this logic and compute the proportion of tautologies among all formulas.
It turns out that this proportion is different from the analog one in the classical logic case.
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1 Introduction
Intuitionistic logic is an important subsystem of the classical one. In intuitionistic logic the effective
interpretation and mechanical extraction of programs from proofs are allowed. The programming in-
terpretation of intuitionistic propositional logic by simply typed lambda-calculus is a significant part of
interest of computer scientists. The intuitionistic natural deductions are actually the same as simply λ -
terms (Curry-Howard isomorphism).

For any set of formulas A ⊂ F we define its density, denoted by µ(A), as follows:

µ(A) = lim
n→∞

|{α ∈ A : ‖α‖ = n}|
|{α ∈ F : ‖α‖ = n}|

. (1)

The length ‖α‖ of a formula α is defined in the standard way and |B| means the cardinality of the set B.
If A is the set of tautologies of a given logic, then µ(A) is called the density of truth of this logic. Note
that µ(A) does not exists for some sets (or logics) A .

The density of truth, and other asymptotic properties of logics, appeared in literature. In the first place,
the density was computed for various fragments of classical propositional logic (see (9), (13), (1) and
(5)). The problem of equality between density of truth of classical and intuitionistic logic was raised by
M. Moczurad, J. Tyszkiewicz and M. Zaionc in (11). In the present paper we take this subject up.

In (11), the densities of truth for the purely implicational fragments of classical and intuitionistic logic,
in a language with one variable, were computed. The densities appeared to be the same. The authors also
conjectured, that even in a language with a larger than one number of variables, the densities of truth of
implicational fragments of these logics are also equal. This conjecture was refuted by Kostrzycka in (6).
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In (6), the conjecture was reformulated and it was posed that the densities of truth, for the appropriate
fragments of classical and intuitionistic logics are asymptotically equal if the number of variables tends
to infinity. The modified conjecture was proved by Fournier, Gardy, Genitrini and Zaionc in (4). The
authors applied there a very interesting estimation for the sets of tautologies and non-tautologies of the
implicational fragments of classical and intuitionistic logics.

It is possible to extend the above mentioned result to the language with implication and negation. A
new problem, however, appears. The implicational-negational fragment of classical logic is functionally
complete which means that any formula can be translated into an implicational-negational one. This is
no longer true for the intuitionistic logic. It is known, for instance, that using n variables one can define,
by means of implication or negation, only finitely many formulas (up to equivalence). Whereas, even
in the case of one variable, the fragment {→,∨,¬} (which is equivalent to {→,∨,⊥}) of intuitionistic
logic consists of infinitely many non-equivalent formulas. They may be exposed in the so-called Rieger-
Nishimura lattice which will be given later on. In the present paper, we consider the fragment {→,∨,⊥}
of intuitionistic logic, in a language with one variable p. The problem of computing the density of truth,
for this fragment, is by no means more difficult than for any previously considered case, with finitely many
non-equivalent formulas. All methods already used to compute the density, fail in the case of existing an
infinite number of non-equivalent formulas. It is even not quite clear if the density ever exists. However,
we give a positive answer to this question in the case of intuitionistic logic in one variable. We also
provide some estimation of the density in the considered case.

2 Semantics for intuitionistic logic
Intuitionistic logic is a subsystem of the classical one. It can be defined by discarding, from a set of
classical axioms, the law of excluded middle. Intuitionistic logic may be characterized by various types
of semantics, see (10). There are considered, for instance, relational structures such as Kripke frames or
Beth’s tables, topological spaces or Heyting algebras. In our paper we focus on the algebraic characteri-
zation of the intuitionistic logic.

Definition 1 A Heyting algebra is a pair (B,≤) where B is a non-empty set and≤ is a lattice ordering on
B with the least element ⊥ and the pseudo-complement a→ b := max{c : c ∧ a ≤ b} for each a, b ∈ B.

The greatest element is defined as > = ⊥ → ⊥ and ¬a = a → ⊥ is the complement of the element
a. A valuation from the set V ar of propositional variables to a (B,≤) is a function h : V ar → B. The
valuation extends to all formulas in {→,∧,∨,⊥} as a homomorphism.

Formula α is valid in (B,≤) if h(α) = > for each valuation h. Formula α is an intuitionistic tautology
if it is valid in any Heyting algebra. For example, the law of excluded middle could be falsified in the
following algebra, see Figure 1.
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Figure 1.

3 Generating functions
In our paper we deal with sequences of numbers of formulas. We consider different classes of formulas
(e.g. class of tautologies) and count number of formulas with the established length. To determine limits
of such sequences we use generating functions. An exhaustive presentation of this method can be found,
for instance, in (2) and (12). We take advantage of the Drmota-Lalley-Woods theorem; see (2), Thm.
8.13, p.71. Suppose we have two generating functions fA and fF representing, respectively, formulas
from the class A and all formulas. Suppose they have the same dominant singularity ρ and there are
suitable constants α1, α2, β1, β2 such that:

fA(z) = α1 − β1

√
1− z/ρ+O(1− z/ρ), fF (z) = α2 − β2

√
1− z/ρ+O(1− z/ρ). (2)

Then the density of the class A is given by:

µ(A) = lim
n→∞

[zn]fA(z)
[zn]fF (z)

=
β1

β2
. (3)

4 Intuitionistic logic in one variable
In this section we consider the fragment {→,∨,⊥} of intuitionistic logic, in a propositional language
with one variable p. Let

α0 = ⊥, α1 = p, α2 = p→ ⊥,
α2n+1 = α2n ∨ α2n−1, α2n+2 = α2n → α2n−1 for n ≥ 1
αω = p→ p for ω 6∈ N.

In the set of all formulas F we introduce an equivalence relation ≡ in the standard way:

Definition 2 ϕ ≡ ψ if both ϕ→ ψ and ψ → ϕ are intuitionistic tautologies.

Every formula from our language F falls into one of the equivalence classes Am = [αm]≡. Therefore,
up to this equivalence relation on the classes of formulas Am, the quotient algebra rises to the so-called
Rieger - Nishimura lattice R, which is a single-generated free Heyting algebra (see Figure 2).

The above algebra is a nice example of a finitely generated free algebra, which is infinite. Let us stress,
that Aω is the class of intuitionistic tautologies in the considered language. Our purpose is to compute
the density µ

(
INT

{→,∨⊥}
{p}

)
= µ(Aω) if it exists. This is directly related to computing (and proving the

existence) the density of the class Am for each m ≥ 0. There are infinitely many classes, so the methods
which are effective in the cases of finite algebras (and logics) must be now modified.

The length of a formula is defined as follows:

Definition 3

||p|| = 1, ||⊥|| = 1, ||φ→ ψ|| = ||φ||+ ||ψ||, ||φ ∨ ψ|| = ||φ||+ ||ψ||
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Figure 2.

By Fn we mean the set of formulas of the length n and, by |Fn|, the cardinality of Fn. We will also
consider some subclasses of Fn. For any B ⊂ F , we take Bn = B ∩ Fn and, by |Bn|, we denote the
cardinality of the class Bn.

Lemma 4 The generating function f for the numbers |Fn| is the following:

f(z) =
1−

√
1− 16z
4

. (4)

Proof. The number |Fn| of formulas from Fn is given by the recursion:

|F0| = 0, |F1| = 2, |Fn| = 2
n−1∑
i=1

|Fi||Fn−i|. (5)

Hence the function f has to fulfil the equation: f(z) = 2f2(z) + 2z. With the boundary condition:
f(0) = 0 we obtain (4).

2

5 Quotient algebras
In this section we give a practical approach to the problem of computing the density of truth in the case of
infinite Rieger-Nishimura lattice.

It can be immediately seen from the definition that the density µ is finitely additive. So, if A and B are
disjoined classes of formulas such that µ(A) and µ(B) exist, then µ(A ∪B) exists as well and

µ(A ∪B) = µ(A) + µ(B). (6)
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Unfortunately, the density µ is not countably additive. We only have the following inequality:

µ

( ∞⋃
i=0

Ai

)
≥

∞∑
i=0

µ (Ai) (7)

In the case of Rieger - Nishimura lattice R, we have
⋃∞

i=0A
i ∪Aω = F and hence we get

µ
(⋃∞

i=0A
i ∪Aω

)
= 1. In this section we show that µ(Ai) exists for any i ∈ N. In Section 9 we prove

the existence of µ(Aω). Before we are able to do it, we consider finite quotient algebras obtained from
the Rieger - Nishimura lattice R.

Definition 5 Let (B,≤) be a Heyting algebra. A nonempty set D ⊂ B is a filter if: 1) a ∧ b ∈ D, for any
a, b ∈ D; 2) if a ∈ D and a ≤ c, then c ∈ D .

By [A2n−1) we mean a filter in the algebra R generated by the element A2n−1. Formally,
[A2n−1) = {α ∈ F : α2n−1 → α ∈ Aω}, n ≥ 1.

We consider a sequence of quotient algebras obtained from the algebra R by division by the filters:
[A2n−1) for n ≥ 2. Every such algebra consists of 2n elements, so we will denote it as AL2n. We have:

AL4 := R/[A3), AL6 := R/[A5), ... AL2n := R/[A2n−1), ...
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Figure 3. Diagrams of AL4 and AL6.

Let us notice that the filters [A2n−1), n ≥ 2 form the following decreasing sequence:

[A3) ⊃ [A5) ⊃ ... ⊃ [A2n−1) ⊃ .... ⊃ Aω. (8)

Theorem 6 The density µ(Ak) exists for any k ∈ N.

Proof. The idea of the proof is to take some finite quotient algebraAL2n such that 2n > k−3 and show
that the appropriate system of 2n equations fulfils the assumptions of the Drmota-Lalley-Woods theorem.
Formally, the proof should proceed by induction but we present here only the basic step. Let us consider
the algebra AL4. The operations {→,∨} in the algebra are given by the following truth-tables:

→ A0 A1 ∪A4 A2 [A3)
A0 [A3) [A3) [A3) [A3)

A1 ∪A4 A2 [A3) A2 [A3)
A2 A1 ∪A4 A1 ∪A4 [A3) [A3)

[A3) A0 A1 ∪A4 A2 [A3)

∨ A0 A1 ∪A4 A2 [A3)
A0 A0 A1 ∪A4 A2 [A3)

A1 ∪A4 A1 ∪A4 A1 ∪A4 [A3) [A3)
A2 A2 [A3) A2 [A3)

[A3) [A3) [A3) [A3) [A3)
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Table 1.
The appropriate generating functions f0, f1 + f4, f2, f[3) for the classes A0, A1 ∪A4, A2, [A3) fulfil

the following system of equations:
f0(z) = f[3)(z) · f0(z) + [f0(z)]2 + z

(f1 + f4)(z) = f[3)(z) · (f1 + f4)(z) + f2(z) · [f0(z) + (f1 + f4)(z)] + 2f0(z) · (f1 + f4)(z)
+[(f1 + f4)(z)]2 + z

f2(z) = f[3)(z) · f2(z) + (f1 + f4)(z) · [f0(z) + f2(z)] + 2f0(z) · f2(z) + [f2(z)]2

f[3)(z) = f(z)− [f0(z) + (f1 + f4)(z) + f2(z)]

(9)

From the Drmota-Lalley-Woods theorem we conclude that all the functions have the same dominant
singularity. Actually, it is the same singularity as the one of the function f . Hence z0 = 1/16 is the
common singularity and the densities of the classes A0, A1 ∪A4, A2, [A3) exist.

Analogous situation holds for the algebra AL2n for any n > N. All involved functions have the same
dominant singularity z0 = 1/16. Hence densities of all classes of formulas from AL2n exist. Among
these classes we have the class of true formulas in AL2n, which is denoted as [A2n−1). 2

From Theorem 6 and inclusions (8) it follows that:

Corollary 7 The density µ([A2n−1)) exists for any n ∈ N and the following inequalities hold:

µ([A3)) ≥ µ([A5)) ≥ ... ≥ µ([A2n−1)) ≥ ... (10)

6 Calculation of the basic generating functions
In this section we calculate the generating functions for the classes: A0, A1 ∪ A4, A2, [A3). To solve
the system of equations (9) we use strictly algebraical methods, i.e. division by filters. The method is
presented with all details in (7) and (8). Roughly speaking, we take two filters: [A2) and [A1), and two
quotient algebras: AL4/[A2) and AL4/[A1), which are two-element algebras. In the first one we have
classes: [A2) and A0 ∪A1 ∪A4, in the second one: [A1) and A0 ∪A2.

Let us consider the second algebra AL4/[A1) and let f∗0 := f0 + f2. We can draw an appropriate truth
table for the operations: →,∨ and obtain a suitable equation for the function f∗0 . It is:
f∗0 = f[1) · f∗0 + (f∗0 )2 + z. Also: f[1) = f − f∗0 . Hence after simplification we get: f∗0 = z

1−f .
Analogously, we obtain the generating function f∗∗0 for the classA0∪A1∪A4 in the algebraAL4/[A2).

It is: f∗∗0 = 2z
1−f . Hence f∗∗0 = 2f∗0 . Having the functions f∗0 and f∗∗0 we can determine the generating

functions for the classes from algebra AL4.

Lemma 8 The generating function f0 for the class A0 is the following:

f0(z) =
1
4

(
1 + 3f∗ − f −

√
(1 + 3f∗ − f)2 − 8z

)
, (11)

where f is defined by (4) and f∗ = z
1−f .

Proof. In the first equation from (9) we put: f[3) = f − f∗0 − f∗∗0 + f0 and f∗∗0 = 2f∗0 . Then we obtain
an equation with the one unknown function f0.

f0(z) = [f(z)− 3f∗0 (z) + f0(z)] · f0(z) + [f0(z)]2 + z. (12)
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It is a quadratic equation and after solving it with the condition f0(0) = 0 we obtain (11). 2

Having the function f0 we obtain the other generating functions from AL4.

(f1 + f4) = 2f∗ − f0, f2 = f∗ − f0, f[3) = f − f0 − (f1 + f4)− f2. (13)

We expand the functions f , f0, (f1 + f4), f2 and f[3) in a neighborhood of z0 = 1/16 and, by use of
the transfer lemma, we obtain:

Lemma 9 The densities of the classes of formulas from the algebra AL4 are the following:

µ(A0) ≈ 0.069, µ(A1 ∪A4) ≈ 0.153, µ(A2) ≈ 0.042, µ([A3)) ≈ 0.736

Analogously, we determine the generating functions for the classes from algebra AL6. Obviously, the
functions f0 and f2 are already given. Using again division by filters, we are able to solve the appropriate
system of six equations. It is not difficult to define the functions f1, f4, (f3 + f6), f[5) explicitly, expand
them around z0 = 1/16, use the transfer lemma and obtain:

Lemma 10 The densities of the classes from the algebra AL6 are the following:

µ(A1) ≈ 0.1315, µ(A3 ∪A6) ≈ 0.0244, µ(A4) ≈ 0.02164, µ([A5)) ≈ 0.71099

7 Upper bound of the density of INT
In this section we estimate the density of INT {→,∨,⊥}

{p} by densities of the filters [A2k−1). Let us consider
the algebra AL2k; see Figure 4.
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Directly from the diagram of AL2k we can read out how formulas from the class [A2k−1) are obtained.
They arise as implications from A0 to any other class, and from A1 to any other class, with the exception
of A0 and A2, and so on. They also arise as disjunctions between formulas from A2k−4 ∪ A2k−3 ∪ A2k

and A2k−2, and from [A2k−1) and any other class. To write it precisely, we introduce the following
abbreviation: {A�B} = {α ∈ F : ∃α1∈A ∃α2∈B α = α1 � α2} for � ∈ {→,∨}. Hence we have:

[A2k−1) = {A0 → F} ∪ {A1 → (F \ (A0 ∪A2))} ∪ {A2 → (F \ (A0 ∪A1 ∪A4))} ∪ ...
... ∪ {(A2k−3 ∪A2k) → (A2k−3 ∪A2k ∪ [A2k−1))} ∪ {A2k−2 → (A2k−2 ∪ [A2k−1))} ∪
∪{A2k−2 ∨ (A2k−4 ∪A2k−3 ∪A2k)} ∪ {(A2k−4 ∪A2k−3 ∪A2k) ∨A2k−2} ∪
∪{[A2k−1) → [A2k−1)} ∪ {[A2k−1) ∨ [A2k−1)} ∪ {[A2k−1) ∨ (F \ [A2k−1))} ∪
∪{(F \ [A2k−1)) ∨ [A2k−1)}. (14)

Of course, the sum written above as ‘...’ is finite in the case of finite algebraAL2k. After simplification,
the above formula may by transformed into the following one:

f[2k−1) = [f0 · f + f1 · (f − f0 − f2) + f2 · (f − f0 − f1 − f4) + f3 · (f − f0 − f1 − f2 − f4) + ...

...+ f2k−2 · (f − f0 − f1 − ...− f2k−3 − f2k) +
+(f2k−3 + f2k) · (f − f0 − f1 − ...− f2k−4 − f2k−2) +
+2f2k−2 · (f2k−4 + f2k−3 + f2k)]/(1− 2f)

Note that all generating functions, related to the algebra AL2n, are involved in the above equation. It
is possible to determine the functions f[2n−1) explicitly, for any n ∈ N. We skip all details, the same
methods as in (7) and (8) should be used here. Let us add that the growing index n involves increase
of the number of nested square roots in the formula defining f[2n−1). It is not difficult to compute the
density of the class of valid formulas for the next two algebras: AL8 and AL10. They are as follows:
µ([A7)) ≈ 0.709016 and µ([A9)) ≈ 0.709011. From the inequality (10) we get:

Observation 11 If the density of µ(Aω) exists then µ(Aω) < 0.709011 .

8 Lower bound of the density of INT
Let us consider the algebra R. As we see in Figure 1, the formulas from the class Aω are either impli-
cations or some special disjunctions. In these disjunctions at least one formula comes from Aω. Hence,
analogously as in the previous section, we may write down the set of intuitionistic tautologies Aω as
follows:

Aω = {A0 → F} ∪ {A1 → (F \ (A0 ∪A2))} ∪ {A2 → (F \ (A0 ∪A1 ∪A4))} ∪
∪{A3 → (F \ (A0 ∪A1 ∪A2 ∪A4))} ∪ {A4 → (F \ (A0 ∪A1 ∪A2 ∪A3 ∪A6))} ∪
∪{A5 → (F \ (A0 ∪A1 ∪A2 ∪A3 ∪A4 ∪A6))} ∪
∪..... ∪ {Aω → Aω} ∪ {Aω ∨Aω} ∪ {Aω ∨ (F \Aω)} ∪ {(F \Aω) ∨Aω}. (15)

Observation 12 Let (cn), (dn) and (en) be three sequences of natural numbers, such that cn ≤ dn for
all n ∈ N. Suppose two new sequences are defined recursively as follows:

xn = cn +
n−1∑
i=1

ei · xn−i, yn = dn +
n−1∑
i=1

ei · yn−i



On density of truth of the intuitionistic logic in one variable 457

Then xn ≤ yn for any n ∈ N.

We will consider subset of Aω. We just omit the infinite part in the formula (15), which is written as
‘...’. The omitted sets consists of formulas which are implications. The new set is denoted as B5 and the
superscript 5 is due to the fact that all intuitionistically valid implications, with the predecessor in An, for
n > 5, do not appear in B5.

B5 = {A0 → F} ∪ {A1 → (F \ (A0 ∪A2))} ∪ ...
∪{A5 → (F \ (A0 ∪A1 ∪A2 ∪A3 ∪A4 ∪A6))} ∪
∪{B5 → B5} ∪ {B5 ∨B5} ∪ {B5 ∨ (F \B5)} ∪ {(F \B5) ∨B5}. (16)

On the basis of Observation 12 we conclude that |B5
n| ≤ |Aω

n | for any n ∈ N. The generating function
g5, for |B5

n| is the following:

g5 = [f0 · f + f1 · (f − f0 − f2) + f2 · (f − f0 − f1 − f4) +
+f3 · (f − f0 − f1 − f2 − f4) + f4 · (f − f0 − f1 − f2 − f3 − f6) +
+f5 · (f − f0 − f1 − f2 − f3 − f4 − f6)]/(1− 2f). (17)

The function g5 is obtained from the generating functions for classes of formulas from AL8. So,
z0 = 1/16 is its dominant singularity and its density exists.

Lemma 13 The density of the class B5 exists and µ(B5) ≈ 0.7068 .

From Lemma 13 and Observations 11 and 12 we obtain a quite tight estimation of the density of truth
of intuitionistic tautologies.

Theorem 14 If the density of the class Aω exists, then it is estimated as follows:

0.7068 ≤ µ(Aω) ≤ 0.709011 (18)

9 Existence of the density
In this section we prove that the density of truth µ(Aω) exists. We define two sequences of sets (and
numbers) approximating the set Aω (and |Aω

n |). Let us consider the sequence (B2k
n ) of smaller than Aω

n

sets defined analogously as the set B5
n in the previous section:

B2k = {A0 → F} ∪ {A1 → (F \ (A0 ∪A2))} ∪ {A2 → (F \ (A0 ∪A1 ∪A4))} ∪ ...
... ∪ {A2k → (F \ (A0 ∪A1 ∪ ... ∪A2k−2 ∪A2k−1 ∪A2k+2))} ∪
{B2k → B2k} ∪ {B2k ∨B2k} ∪ {B2k ∨ (F \B2k)} ∪ {(F \B2k) ∨B2k}. (19)

The formula (19) defines the cardinalities of subsets of some set B2k, with k ≥ 2, which is a proper
subset of Aω. Hence on the basis of Observation 12 and inclusions (8) we get the following inclusions:

B4 ⊂ B6 ⊂ ... ⊂ Aω ⊂ ... ⊂ [A5) ⊂ [A3) . (20)

Let us consider the sequence of compartments [µ(B2k), µ([A2k−1))], for k ≥ 2, and show that their
‘lengths’ tend to 0.
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Lemma 15

lim
k→∞

(
µ([A2k−1))− µ(B2k)

)
= 0 (21)

Proof. We consider the numbers |[A2k−1)n| − |B2k
n |. From (14) and (19) we obtain:

|[A2k−1)n| − |B2k
n | = 2

n−1∑
i=1

|A2k−2
i | · (|A2k−4

n−i |+ |A2k−3
n−i |+ |A2k

n−i|) + (22)

+
n−1∑
i=1

|A2k
i | · (|A2k−3

n−i |+ |A2k−1
n−i |+ |A2k+2

n−i |) +

+2
n−1∑
i=1

|Fi| · (|[A2k−1)n−i| − |B2k
n−i|)−

n−1∑
i=1

|A2k−1
i | · |[A2k−1)n−i|

The numbers
∑n−1

i=1 |A
2k−1
i | · |[A2k−1)n−i| are non-negative, so on the base of Observation 12 we may

consider larger numbers |Ck
n|:

|Ck
n| = 2

n−1∑
i=1

|A2k−2
i | · (|A2k−4

n−i |+ |A2k−3
n−i |+ |A2k

n−i|) + (23)

+
n−1∑
i=1

|A2k
i | · (|A2k−3

n−i |+ |A2k−1
n−i |+ |A2k+2

n−i |) + 2
n−1∑
i=1

|Fi| · |Ck
n−i|.

The numbers |Ck
n| characterize the set Ck consisting of formulas being disjunctions between formulas

from A2k−2 and A2k−4 ∪ A2k−3 ∪ A2k, and implications from A2k to A2k−3 ∪ A2k−1 ∪ A2k+2, and
disjunctions between formulas from Ck and formulas from F .

From the above we obtain formulas defining the generating functions fCk for the numbers |Ck
n|:

fCk = [f2k · (f2k−3 + f2k−1 + f2k+2) + 2f2k−2 · (f2k−4 + f2k−3 + f2k)]/(1− 2f). (24)

The function fCk is defined by functions with dominant singularity at z0 = 1/16 (see proof of Theorem
6). So, it has the same dominant singularity. The density of the class Ck can be computed as follows:

µ(Ck) =
f ′Ck( 1

16 )
f ′( 1

16 )
. (25)

We show that the values of f ′Ck( 1
16 ) tend to 0 when k tends to infinity. For simplicity, we introduce a

new symbol hk := f2k · (f2k−3 + f2k−1 + f2k+2) + 2f2k−2 · (f2k−4 + f2k−3 + f2k). Then, from (25),
we have:

f ′Ck(
1
16

) =
h′k( 1

16 ) · (1− 2f( 1
16 ))− hk( 1

16 ) · (−2f ′( 1
16 ))

(1− 2f( 1
16 ))2

. (26)
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The values of f( 1
16 ) and f ′( 1

16 ) exist and are constant. To prove that

lim
k→∞

h′k

(
1
16

)
= 0 and lim

k→∞
hk

(
1
16

)
= 0. (27)

we prove that

lim
k→∞

f ′k

(
1
16

)
= 0 and lim

k→∞
fk

(
1
16

)
= 0. (28)

It is straightforward to observe that (28) yields (27). From Theorem 6 it follows that µ(Ak) exists for
each k ∈ N. By (7), the series

∑∞
k=0 µ

(
Ak
)

is convergent and hence limk→∞ µ
(
Ak
)

= 0. So, from the
transfer lemma (we know that the functions fk have the same dominant singularity) we obtain:

lim
k→∞

f ′k

(
1
16

)
= 0. (29)

Similarly, let us consider the series
∑∞

k=0 fk

(
1
16

)
. This series is bounded by f

(
1
16

)
= 1

2 and the
values fk

(
1
16

)
are non-negative (i), so it also must be convergent. Hence:

lim
k→∞

fk

(
1
16

)
= 0. (30)

2

By Theorem 14 and Lemma 15 we get:

Theorem 16 The density of the class Aω exists and is about 70%.

Let us compare the above result with the one we can get for the classical logic:

Observation 17 The algebra AL4 is the Lindenbaum algebra of the classical logic {→,∨,⊥} in one
variable. Hence

µ(CL{→,∨,⊥}
{p} ) = µ([A3)) ≈ 0.736 (31)

By Theorem 14 and Observation 17 we immediately have:

Theorem 18 The relative density of intuitionistic tautologies among classical ones in the language
{→,∨,⊥, p} is more than 96% .

We conjecture that the density of truth for INT {→,∨,⊥}
m exists for any m ≥ 1, where m is the number

of variables occurring in the language. The following problem appears:
Problem 1 Whether, or not, the logics INT {→,∨,⊥}

m and CL{→,∨,⊥}
m are asymptotically identical.

It seems to be important to work out a new and effective method for calculation (or estimation) the
density of truth in the case of logics with infinite number of non-equivalent formulas. Any semantical
approach to this question usually involves extremely complicated calculations. More promising seem to
be syntactical approaches where one can analyze shapes of binary trees. However, these methods also
need some refinement as, for instance, formulas from {→,∨} have not been yet investigated as binary
trees.
(i) It could be justified as follows: for each i ∈ N, fi(1/16) ≥ 0 because fi(z) =

P∞
n=0 ainzn and the series is convergent at

z0 = 1
16

and then the sum
P∞

n=0 ain( 1
16

)n is also non-negative.
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