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According to the by now established theory developed in order to define a Laplacian or – equivalently – a Brownian
motion on a nested fractal, one has to solve certain renormalization problems. In this paper, we present a Markov chain
algorithm solving the problem for certain classes of simplefractalsK provided that there exists a unique Brownian
motion and hence, a unique Laplacian onK.
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1 Introduction
In the last 20 years, there has been a powerful ’hand in hand’ development of approaches to define a
’natural’ Laplacian or a ’natural’ Brownian motion on fractals. The connection between the two problems
is obvious: InRn, the Laplacian is the infinitesimal generator of the standard Brownian motion, which can
be obtained as the limit of renormalized random walks. This correspondence can be used in order to define
a Laplacian on fractal sets which are often used to model ’wild’, ’irregular’, and ’rough’ things. Fractals
are non–differentiable objects because the classical notion of a ’tangent space’ is not available, thus a
Laplacian can not be defined explicitly as a differential operator; however, the construction of a random
walk does not require a differentiable structure. Hence, the first steps in this direction have been made by
people defining a Laplacian on so–callednested fractals(we will not define here what a nested fractal is,
see Lindstrøm (Lin90)) as the infinitesimal generator of a Brownian motion. (The classical reference on
this topic is (Lin90), as a first introduction we recommend the very nice survey by Barlow (Bar89).) The
main challenge in following this stochastic approach is to find out the right time–space scaling of a random
walk on the fractal graph implied by the iterated function system describing the fractal. By self similarity,
the same scaling property holds on every magnification levelleading to a sequence of appropriate scaled
random walks converging to Brownian motion on the fractal.
Let us illustrate the problem a bit better with the help of themodel case of theSierpinski gasket. Pose
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Fig. 1: The Sierpinski gasket

A := (0, 0), B := (1, 0) andC := (1
2 ,

√
3

2 ). SoA, B andC are the vertices of a unilateral triangle of
unit side length. The Sierpinski gasketSG(2) (this notation is chosen in view of Section 3.1) is defined
to be the unique nonempty compact set, which is self–similarwith respect to the family of similarity
contractionsF := {ψ1, ψ2, ψ3} (i.e. K =

⋃3
i=1 ψi(K)) where the mappingsψi : R

2 −→ R
2 are

just given by the unique contractive similitude with contraction ratio 1
2 and fixed pointsA, B andC

respectively. It is easy to check that the famous open set condition (OSC) is satisfied by choosing the
open setO to be the interior of the triangle∆ABC. Hence, the Hausdorff dimension of the Sierpinski
gasket equalsdH = ln 3

ln 2 (see for example (Fal85)). Obviously, the Sierpinski gasket is finitely ramified,
which means that a removal of the middle pointsa, b andc from the line segmentsBC, AC andAB
makes it a disconnected set.
We introduce the vertex setV0 := {A,B,C} and the set offirst–order approximating points

V1 :=
3

⋃

i=1

ψi(V0) = {A,B,C, a, b, c}

(see Figure 2, and also Figure 3).

In order to get the natural time–space scaling of a random walk on the corresponding fractal graph, we
will use the notion ofwalk dimension.We recall here the definition of walk dimension for the convenience
of the reader, but in a heuristic way only. While the Hausdorff dimension somehow relates the volume
of small balls with their radii, the walk dimension relates mean exit times (of the ’canonical Brownian
motion’) from balls with the radii of these balls. Hence, thewalk dimension describes the time-space-
scaling of a random walk or a stochastic process.
Let τ(B(x,R)) denote the exit time of a stochastic processX starting at time 0 inx from a ball with
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radiusR. Then the walk dimension is defined by

dW :=
ln Eτx(B(x,R))

lnR
. (1)

In graph theory, the limit asR→ ∞ of the latter term is taken, but we will see, that in the case offractals
(due to the self–similarity) we will have a reasonable valuefor dW independently ofR.
The local symmetry and the self–similarity of the fractal (as well as of the approximating setsVn, see
Figure 3 below) in connection with the arising (natural) strong reflection principle of the corresponding
random walks lead to the helpful observation that exit timesfrom balls equal crossing times through
subgraphs ofVn. Thus, we can reformulate our leaving–a–ball–problem as follows: Supposing that the
random walk starts in a vertex ofV0, we ask for the expected time of the first hitting ofanothervertex of
V0 provided that we move along the edges ofV1. To be more concrete, we assume that we start inA and
want to pass through the graph ofV1 until we reachB orC. In the following considerations,EτP denotes
the expected time moving from a pointP to the set{B,C}. Starting in pointA and making one step, we

Fig. 2: Random walk on the graph with vertex setV1

can reach either pointb or pointc, both of them with probability1/2 (all notations of this paragraph refer
to Figure 2). Hence, we have

EτA =
1

2

(

Eτb + Eτc
)

+ 1 = Eτc + 1.

Note that our hitting problem is symmetric with respect to the symmetry axis of the triangle mappingb to
c. This impliesEτb=Eτc. Similar observations lead to

Eτc =
1

4

(

EτA + Eτb + Eτa + EτB
)

+ 1 =
1

4

(

EτA + Eτc + Eτa
)

+ 1

and

Eτa =
1

4

(

EτC + Eτb + Eτc + EτB
)

+ 1 =
1

2
Eτc + 1,

taking into account thatEτB = EτC = 0. From the last three equations one easily calculates that the
mean graph crossing time TequalsT = EτA = 5. Hence, it takes in expectation five steps (of length
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one) to leave a ball of radius two. By the self similarity of the Sierpinski gasket and the Markov property
of the random walks it readily verifies that this time–space–scaling will occur on all magnification scales,
and also in the limit approaching continuous time (see also (Lin90)). Thus, the walk dimension of the
Sierpinski gasket equalsdW = ln 5

ln 2 .

In order to explain the corresponding analytic counterpart- i.e. to find theanalytic renormalization
factor let us firstly emphasize that the construction of the Laplacian on a nested fractals deeply relies on
its finite ramification. Such sets can be approximated by an increasing sequence of finite sets(Vn)n≥0,
see Figure 3. As done above, setV0 := {A,B,C} and define inductivelyVn :=

⋃3
i=1 ψi(Vn−1), n ≥ 1.

Fig. 3: The approximating setsV0, V1, V2 andV3

Denote
ψj1...jn

:= ψj1 ◦ . . . ◦ ψjn
, jk ∈ {1, 2, 3}, k = 1, . . . n, n ∈ N

and
Vj1...jn

:= ψj1...jn
(V0).

We say thatp, q ∈ Vn aren–neighboursif there exists an−tuple of indices(j1, ..., jn) ∈ {1, 2, 3}n such
thatp, q ∈ Vj1...jn

. Every pointp in Vn\V0 has fourn–neighboursq ∈ Vn denoted in the following by
q ∼n p. We say that any two points fromV0 form a pair of zero–neighbours. Further, we set

V∗ :=
⋃

n≥0

Vn = lim
n→∞

Vn.

It holds thatK = V∗ (the bar denotes the closure with respect to Euclidean norm).
As in the stochastic approach explained above, also analytic quantities on a fractal are approximated by
discrete structures. In particular, the energy of a function on the Sierpinski gasket which is the ’fractal
analogue’ of the Euclidean standard energy formE[u] =

∫

|∇u|2dx is obtained as the limit of certain
discrete ’pre-energies’ defined on finite sets(Vn) approximating the fractal. For a general outline of the
theory see for example the monograph (Kig01), for a short survey we refer to the first authors paper (F05).
For any functionu : V∗ −→ R, these pre–energies are defined by

En[u] :=

(

5

3

)n
∑

p∈Vn

∑

q∼np

(u(p) − u(q))2, n ≥ 0. (2)

The number̺ = 5
3 is theenergy scaling factordetermined by the Gaussian principle as follows: Suppose

we are given the values of a functionu on the setV0, sayu(A) = uA, u(B) = uB andu(C) = uC .
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According to (2), we have that

E0[u] = (uA − uB)2 + (uA − uC)2 + (uB − uC)2 (3)

and

E1[u] =
5

3

[

(u(a) − uB)2 + (u(a) − uC)2 + (uB − u(c))2

+(uA − u(b))2 + (uA − u(c))2 + (u(b) − uC)2 (4)

+(u(a) − u(c))2 + (u(a) − u(b))2 + (u(b) − u(c))2
]

(see also Figure 2 on Page 503 for a better illustration). We minimize E1[u] with respect to the values
u(a), u(b), u(c), i.e. we are seeking for theharmonic extensionof the functionu from V0 to V1 (see
(BF07) for a recently developed algorithm calculating suchharmonic extensions with the help of a chaos
game algorithm). Here, a simple calculation leads to the minimizers

u(a) = (uA + 2uB + 2uC)/5, u(b) = (2uA + uB + 2uC)/5 and u(c) = (2uA + 2uB + uC)/5,

and in view of (3) and (4) we obtain thatE1[u] = E0[u] for this harmonic extension. In other words,5/3
is the unique number̺, satisfyingmin{E1[v] : v|V0

= u} = E0[u], if we would use the general ansatz

En[u] := ̺n
∑

p∈Vn

∑

q∼np

(u(p) − u(q))2, n ≥ 0.

Note that by self–similarity and finite ramification it holdsthatmin{En[v] : v|V0
= u} = E0[u] for all

n ≥ 1. Using the appropriate energy scaling factor, the sequenceof pre– energies converges to a Dirichlet
form leading to the notion of Laplacian by the Gauss–Green–formula (see (Kig01) and the references
therein). In (KigLap93), the authors prove that for a nestedfractal the exponentdS of the leading term in
the eigenvalue counting function of this Laplacian satisfiesdS/2 = lnM/ ln(M̺), whereM denotes the
number of similitudes in the iterated function system and̺ the energy scaling factor introduced above.
The numberdS is usually called thespectral dimensionof the corresponding set.

It is reasonable to expect that the geometrical feature of a body has influence on spectral asymptotics
of its ’natural’ Laplacian as well as to the behavior of its ’natural’ Brownian motion. In fact, such an
interaction can be expressed by a so-calledEinstein relationimplicating Hausdorff, spectral and walk di-
mension, expressing geometric, analytic and stochastic aspects of a set (see (GM83), (Tel06), and (Zho93)
as related references). Einstein’s relation in its ’dimensional form’ reads

2dH = dSdW , (5)

wheredH , dS anddW denote Hausdorff, spectral and walk dimension respectively. Taking into account
thatdH = ln M

− ln r
(wherer < 1 denotes the contraction ratio of the similitudes, see (Fal85) or the original

paper (Hut81)), it can be transformed into a relationship between the energy scaling factor̺ and the mean
crossing timeT introduced above:

M̺ = T, (6)
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whereM denotes the number of similitudes in iterated function system. Hence, it is sufficient to know
only one of the numbers̺andT in order to give a full quantitative analytic and stochasticdescription of
the setK. However, the identification of both of the numbers requiresto solve a system of linear equa-
tions. These equations can be found by analyzing graphs as shown in Figure 2, in particular by evaluating
the ramification properties of the figure.

The aim of this paper is to present an algorithm that enables us to determine such crossing timesT
(and hence, by relation (6) the corresponding energy scaling factor̺) without relying on a sketch – like
we did in the calculations belonging to Figure 2. We present apure graph theoretical approach using the
connection matrix of the underlying graph only. The developed algorithm founds on Markov chain theory
and can be calculated by a computer. An implementation usingMapleR© is demonstrated in Section 4
below. Another advantage is that the calculations are independent of the ambient space, in particular
independent of its dimension (see the example of Sierpinskispaces, discussed in Subsection 3.2). In the
present paper, we restrict ourselves to the case of isotropic fractals, i.e. in a metric sense we assume that
each edge in the graph has the same length and that the graph beside its self–similarity carries a high
number of symmetries. In the forthcoming paper (FTa) we willweaken these assumptions.

2 A first example: The Sierpinski gasket

The aim of this section is a demonstration of our algorithm inthe case of the classical Sierpinski gasket
SG(2). This can be considered somehow as a counterpart to the introduction, where the crossing time
was calculated by a method which relies more or less on the concrete vision of the set. Define nowv1 :=

A = (0, 0), v2 := B = (1, 0) andv3 := C = (1
2 ,

√
3

2 ). Then the Sierpinski gasketSG(2) is the unique
nonempty compact set which is self–similar with respect to the family of similaritiesF := {ψ1, ψ2, ψ3}
(cf. Section 1). An illustration of this set is provided by Figure1. As before, denoteV0 denote the set of
verticesV0 = {A,B,C} andV1 :=

⋃3
i=1 ψi(V0) = {A,B,C, a, b, c}, see Figure2. The setV0 can be

considered as a graph with adjacency matrix

A0 =





0 1 1
1 0 1
1 1 0



 .

We also need to introduce the(9 × 9)-block matrix

A :=





A0 0 0
0 A0 0
0 0 A0



 .
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The so-calledconnection matrixof the graphV1 is the following symmetric(9 × 9)–matrix

C :=





























0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0





























.

Its interpretation is the following: Each rowi and each columnj represent verticesv, w ∈ V1. The
numbersi andj have a unique representationi = 3 · i1 + i2 andj = 3 · j1 + j2, wherei2 − 1 = i mod 3
andj2 − 1 = j mod 3. The verticesw andv then correspond to the rows and columns in the following
way: v = ψi2(vi1) andw = ψj2(vj1). The entry1 in row (column)i and column (row)j means that
the vertices corresponding toi andj are glued together in the graphV1. For exampleψ2(v1) = ψ1(v2),
which means that the entry in row2 and column4 equals1. By the symmetry assumption onC we also
have a1 in row 4 and column2. The entry0 in the matrixC means that the corresponding vertices remain
not connected by an edge. For the input of the algorithm it is sufficient to give in the codes of pairs of
vertices which we want to glue together. In our special case this are the three pairs

12 = 21,

13 = 31,

23 = 32.

It is worth to be pointed out here, that the latter fact can be expressed in a mathematically precise manner
by using the notion ofcode spaces(see (B08) for the very latest insight into that topic as wellas the
authors references listed therein). According to this approach, every point in the Sierpinski gasketSG(2)
has an adress in the space{1, 2, 3}N. Theadress functionπ : {1, 2, 3}N −→ SG(2) given by

π(σ) := lim
n→∞

ψσ1
◦ . . . ◦ ψσn

(x0), σ = σ1σ2σ3 . . . ∈ {1, 2, 3}N, (7)

is well defined as the limit in (7) is a singleton which does notdepend onx0 ∈ R
2. Note thatπ is onto, but

in general not one–to–one (unless the fractal under consideration is totally disconnecetd as for example
famous Cantor set). In terms of the adress function, the connectivity property above reads

π(12) = π(21), π(13) = π(31) andπ(23) = π(32).

It is now an easy task to construct the matrixC from this data using the facts from above.
We remark: If one transforms the matrixA into a stochastic matrix in the obvious way, this would lead
to a transition matrix of a Markov chain, whose states form three disconnected triangles. It is now our
aim to couple these triangles with the help of the connectionmatrixC = (cij)

9
i,j=1. The next step of

the algorithm is the following loop: Put firsti := 1 andj := 1. If cij = 1 then add rowi to row j and
columni to columnj. If i < j then increasei by 1, i.e. i := i+ 1, else increasej by one and reseti, i.e.
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j := j + 1, i := 1 until j = 9. The resulting(9 × 9)–matrix will be denoted byA′. This procedure will
be explicitly demonstrated on this example in Section 4.

A′ =





























0 1 1 1 0 0 1 0 0
1 0 1 0 0 0 1 0 0
1 1 0 1 0 0 0 0 0
1 0 1 0 1 1 1 1 0
0 0 0 1 0 1 0 1 0
0 0 0 1 1 0 0 0 0
1 1 0 1 0 0 0 1 1
0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 1 1 0





























In the language of graphs, the matrixA′ is the adjacency matrix of the graph shown in Figure 4. For our

Fig. 4: Graph with adjacency matrixA′

purpose we have to identify the vertices2 and3, 5 and7 and6 and8. For doing so, the next step of our
algorithm is the following: If in the connection matrixcij = 1 for some1 ≤ j < i ≤ 9 then delete row
and column numberi. Do this for all entries ofC and turn the result into the(6 × 6) stochastic matrix
A′′, i.e. divide each entry by the number of non-zero elements inits row. In our special case this results:

A′′ =

















0 1
2 0 1

2 0 0
1
4 0 1

4
1
4

1
4 0

0 1
2 0 0 1

2 0
1
4

1
4 0 0 1

4
1
4

0 1
4

1
4

1
4 0 1

4
0 0 0 1

2
1
2 0

















.



Markov Chain Algorithm for Crossing Times 509

If we delete in a further step the rows and columns corresponding to the essential fixed points of the
iterated function system{ψ1, ψ2, ψ3}, this leads to a Markov chain with two cemeteries (in this example
the pointsB andC) which is shown in Figure 5. The resulting (substochastic) matrix is calledA′′′ and is

Fig. 5: Markov chain corresponding to the transition matrixA′′

in our special case given by

A′′′ =









0 1
2

1
2 0

1
4 0 1

4
1
4

1
4

1
4 0 1

4
0 1

4
1
4 0









.

To calculate the crossing time of the graphV1, we have to solve the following linear system

~Eτ = A′′′ ~Eτ + 1, (8)

where1 = (1, 1, 1, 1)T and ~Eτ is the vector ~Eτ = (EτA,Eτb,Eτc,Eτa)T (the upperT denotes the
transpose) andEτv is the mean number of steps a walker needs from vertexv to one of the verticesB or
C (compare with Figure 2). The crossing timeT we are looking for is given byT = EτA = 5, which is
easily calculated by hand or using a computer–algebra–system as MapleR©. By doing so, we get that the
whole vector~Eτ equals~Eτ = (5, 4, 4, 3).
As mentioned at the beginning of this section, our method provides an algorithmic approach for the
calculation of mean crossing times. In the introduction we calculated the same valueT = 5 for the mean
crossing time of the Sierpinski graphV1 using explicitly the ramification properties ofV1. This leads to
earnest problems for other examples as for example for the generalized Sierpinski gasketsSG(m) (see
Section 3.1 below) for largem. In these cases it is a difficult and longish task to write downthe linear
system

~Eτ = A′′′ ~Eτ + 1
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by hand using the ramification properties of the graph. In ourapproach only the adjacency matrixA0 of V0

and the upper triangle of the connection matrixC or the identification pairs are needed. The establishment
of the linear system and its solution is then reduced to matrix manipulations which can easily implemented
on a PC. Since we are interested in exact values (i.e. fractions) for the crossing timeT instead of numerical
values, we decided to implement the algorithm with the computer–algebra–system MapleR©. This will be
explained in detail in Section 4.

3 Generalizations of the Sierpinski gasket
3.1 Generalized planar Sierpinski gaskets

By a generalized Sierpinski gasket we mean the following construction: Divide a (regular) triangle∆
into m2, m ≥ 2, smaller triangles, such that they form a replicating dissection of ∆ (this is a self-
similar dissection, where all the pieces are congruent), compare with Figure 6 for the casem = 4. This

Fig. 6: Replication dissection of∆ into 16 pieces. The gray triangles form thegeneratorof SG(4).

dissection consists of two types of triangles: those which are similar to∆ without a rotation (these are the
gray colored triangles in Figure 6) and those similar copiesof ∆ which are rotated (this is for the example
m = 4 the white piece of Figure 6). We haveM := m(m+ 1)/2 triangles of the first andm(m − 1)/2
of the second type. The removing of all rotated small triangles leads to a generator of a self-similar set,
which we want to callgeneralized Sierpinski triangle, SG(m). It is straight forward to compute the
Hausdorff dimension ofSG(m) as

dHSG(m) =
lnm+ ln(m+ 1) − ln 2

lnm
, (9)

by using the well known dimension formula for self-similar sets which can be found for example in
(Fal85) or in the original paper (Hut81). It is also possibleto describeSG(m) as the attractor of an
iterated function system with appropriate mappingsψ1, ..., ψM all having contraction ratio1/m. Take the
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three vertices of∆ as a starting setV0 and defineV1 to be the set of points given by

V1 :=

M
⋃

k=1

ψk(V0).

It is our aim to study some Markov chains defined onV1. For the graphV0 we have the following
adjacency matrix

A0 =





0 1 1
1 0 1
1 1 0



 .

Obviously,A0 has rank3. We now define the following(3M × 3M)-block matrix

A :=















A0 0 0 · · · 0
0 A0 0 · · · 0
0 0 A0 · · · 0
...

...
...

. . .
...

0 0 0 · · · A0















.

One can also computeA as follows: LetEk = (ek
ij)

i=3M,j=M
i=1,j=1 such that

ek
ij =

{

1 : i = j + (k − 1)

0 : else,

wherek = 0, ...,M . ThenA is representable as

A =
M
∑

k=1

(Em
k )T ·A0 · E

m
k . (10)

This formula will be useful for the implementation of the algorithm in Section 4.
Each block ofA is the adjacency matrix of a subtriangle of∆. If one would transform the matrixA into
a stochastic matrix - in the obvious way - then this matrix would correspond to the transition matrix of
a Markov chain which states form the vertices ofM disconnected triangles. This areM Markov chains,
each of them acting independent of the others on one subtriangle. For the construction of a Markov chain
onV1, some further steps are necessary.
Let the vertices of∆ be labelled byA,B andC. We can now assign to each vertexv of the subtriangle the
addressij, wherev = ψi(vj). To obtain a Markov chain onV1 we must identify some of the the points

ij. In V1 we have3 vertices of degree2, 3(m− 1) of degree4 and
1

2
(m− 1)(m− 2) of degree6. Thus,

we need3(m− 1) + 2 (m−1)(m−2)
2 = m2 − 1 identifications. This are

I1 =

{

(k + 1)

[

M

2

]

= (k + 2)1 : k = 0 · · ·m− 2

}

,

I2 =

{(

km+
(k + 1)(2 − k)

2

)

M =

(

km+
(k + 1)(2 − k)

2
+m− k

)

1
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: k = 0 · · ·m− 2} ,

I3 =

{(

km+
(k + 1)(2 − k)

2
+m− k − 1

)

M

=

(

km+
(k + 1)(2 − k)

3
+ 2m− 2k − 1

) [

M

2

]

: k = 0 · · ·m− 2

}

,

I4 =

{

lM = (l +m− k − 1)

[

M

2

]

, (l +m− k − 1)

[

M

2

]

= (l +m− k)1

: l 6=

(

km+
(k + 1)(2 − k)

2

)

,

(

km+
(k + 1)(2 − k)

2
+m− k

)

, k = 0 · · ·m− 3

}

.

The relationsI1, I2 andI3 are the identifications of the points on the boundary (they have degree4), I4
contains those of all the other points (having degree6). As in the last section, these identification can
be coded in the upper triangle of the so-called connection matrix C of dimension3M × 3M . With this
identifications in form of the matrixC = (cij)

3M
i,j=1 it is now possible to obtain a Markov chain onV1 by a

coupling of the Markov chains of each subtriangle. The algorithmic construction of the transition matrix
runs as follows:

1. Puti := 1 andj := 1 and put in the matricesA andC.

2. If cij = 0 then go to the next step.
If cij = 1 the add rowi to row j and columni to columnj and to the next step.

3. Puti := i+ 1 until i < j. If i = j theni := 1, j := j + 1. Repeat step 2.

4. Call the resulting matrixA′.

5. Put againi := 1 andj := 1.

6. If cij = 0 then go to the next step.
If cij = 1 then delete row and column with numberi in A′. Go to the next step.

7. Puti := i+ 1 until i < j. If i = j theni := 1, j := j + 1. Repeat step 6.

8. Transform the actual matrix into a stochastic matrixA′′ = (a′′ij) by puttinga′′ij := a′ij/ni, where
ni is the number of non-zero elements of rowi.

9. Delete the two rows and columns corresponding to the verticesB andC and call the resultA′′′.

A detailed calculation was provided in the last section for the case ofSG(2). ForSG(3), we only quote
the resulting matrixA′′′:

A′′′ =

























0 1
2 0 1

2 0 0 0 0
1
4 0 1

4
1
4

1
4 0 0 0

0 1
4 0 0 1

4
1
4 0 0

1
4

1
4 0 0 1

4 0 1
4 0

0 1
6

1
6

1
6 0 1

6
1
6

1
6

0 0 1
4 0 1

4
1
4 0 1

4
0 0 0 1

4
1
4 0 0 1

4
0 0 0 0 1

4
1
4

1
4 0

























.
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The sub–stochastic matrixA′′′ is the transition matrix of a Markov chain with two cemeteries defined
on V1. We are interested in the crossing time of this chain starting in A, this is the mean number of
steps one needs fromA to one of the other verticesB or C following the transition rules given byA′′′.
Therefore we have to solve the following equation

~Eτ = A′′′ ~Eτ + 1,

where ~Eτ = (Eτ1, ...,Eτk)T (as in the last section, the first component refers to the state A), 1 =
(1, ..., 1)T andk = #V1 − 2 = 1

2m
2 + 3

2m− 1 is the dimension (or size) ofA′′′. The crossing time we
are looking for isEτA := Eτ1. In the case ofSG(3) we get

EτA =
90

7
.

Our algorithm results form = 2 the valueEτA = 5, which is well known from the last section. We sum-
marize here the values for the crossing timeT for the generalized Sierpinski gasketsSG(2), ..., SG(7):

m T (m) = EτA lnT (m)/ lnm

2 5 2, 3219
3 90/7 2, 3247
4 1030/41 2, 3254
5 8315/197 2, 3255
6 452739/7025 2, 3249
7 904836/9823 2, 3244

Firstly, we declare that form = 2, . . . , 5 our values agree with those obtained in (GM83). Secondly, we
want to point out that the explicit formula for the crossing time T (m) is still unknown for arbitrarym.
From (9) one sees thatdH(SG(m)) → 2 asm → ∞ which is clear, becauseSG(m) approaches a filled
triangle asm→ ∞. Hence, also the spectral dimensiondS will converge to2 which yields in view of (5)
the conclusion thatdW (SG(m)) → 2 as well asm→ ∞. So, by (1) it should hold that

lim
m→∞

lnT (m)

lnm
= 2. (11)

However, the above table documents some abnormalities in the convergence behavior oflnT (m)
ln m

for small
m. This might come from the fact that the number of vertices having degree3 and4 is dominant compared
with the number of degree–6–vertices. This effect disappearers with growingm and in the limit case, (11)
holds.

3.2 Sierpinski spaces
In the last section we considered a planar analogue of the classical Sierpinski gasketSG(2). Another way
of generalizingSG(2) is a lifting of the construction to higher dimensional Euclidean spacesRD,D ∈ D.
This section is devoted to the calculation of their mean crossing times.
We will understand under the canonicalSierpinski spaceSS(D) in R

D the set obtained from theD–
dimensional unit simplex with vertex setSD = {z1, . . . , zD+1} and the iterated function system made
from theD + 1 contractive similitudes (all with ratio1/2) given by

ψi(x) := zi +
1

2
(x− zi), x ∈ R

D, i = 1, . . . , D + 1.
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The construction is shown forD = 3 in Figure 7. Note that we obtain the usual Sierpinski gasketSG(2)
in D = 2, while the construction inD = 1 leads to the unit interval. In this way, one obtains a full scale
of models with increasing ramification complexity.
As SS(D) consists ofD + 1 smaller copies of itself (each scaled by the factor 1/2), it holds that
dHSS(D) = ln(D+1)

ln 2 (see (Fal85) or (Hut81) again). It is an interesting observation, that therefore
the Hausdorff dimension of the fractalSS(D) in R

3,R7,R15, . . . ,R2n−1, . . . is an integer! In fact, the
Hausdorff dimension of the Sierpinski–Tetrahedron shown in Figure 3.2 equals 2. An analysis on the
Sierpinski spacesSS(D) has been developed in (Kig89), and from the results in (KigLap93) it easily
verifies that the spectral dimensiondSSS(D) = 2 ln(D+1)

ln(D+3) .

Fig. 7: The first four construction steps of Sierpinski–Tetrahedron (Sierpinski space inR3)

Thus, by Einstein’s relation (5) it should hold for the walk dimension thatdWSS(D) = ln(D+3)
ln 2 .

In fact, our algorithm becomes rather simple for these models and yields this result. The result can be
obtained as well by an elementary proof:

Proposition 3.1 The mean crossing time through the graph belonging toSS(D) equalsD + 3,D ∈ N .

Proof: DenoteV0 := SD = {z1, . . . , zD+1} and defineΓ to be the graph with vertex setV0 and edges
joining each pair of different pointszi andzj from the setV0. SetV1 :=

⋃D+1
i=1 ψi(V0). Fix a starting

pointA ∈ V0 and start a random walk on the graph obtained by applying the mappingsψ1, . . . , ψD+1 to
the graphΓ. We have to find out the mean number of steps the walker needs toreach one of the other
verticesv1, . . . , vD in V0.
Firstly, we observe that according to this problem we may distinguish four different kinds of points inV1,
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namely: The pointA itself; the other verticesv1, . . . , vD in V0 (’kind z’); those points one can reach in
one step fromA (’kind x’ – these are the midpoints of the edges joiningAwith one of the points from kind
z); and finally those points which are midpoints of the edges joining two different point of kindz (’kind

y’). Note that we haveD points of kindx and
(

D
2

)

points of kindy. In the following considerations,

EτP , P ∈ {A, x, y, z} denotes the expected number of steps moving from the pointA (or, from a point
of kind x, y or z respectively) to the set{v1, . . . , vD}. Of course,Eτz = 0.
Starting fromA, we certainly move to a point of kindx, thus we have

EτA = Eτx + 1. (12)

Sitting at a point of kindx, we can reach2D neighbours (all of them with the same probability).D − 1
of these neighbours are the other points of kindx, one neighbour isA, D − 1 neighbours are of kindy,
and one neighbour of kindz. This leads to

Eτx =
D − 1

2D
Eτx +

1

2D
EτA +

D − 1

2D
Eτy + 1. (13)

Finally, similar considerations yield

Eτy =
2

2D
Eτx +

2(D − 2)

2D
Eτy + 1. (14)

From (12), (13), and (14) we getEτA = D + 3. 2

4 A Note on the Implementation using Maple R©

In this section we explain briefly the implementation of our algorithm using the computer–algebra–system
MapleR©. We decided to use MapleR©, because it is possible here to do symbolic calculation and not only
numerical ones. This advantage results exact values for thecrossing times we are looking for (compare
this with Section 3.1). The implementation can also be done in any other computer–algebra–systems
as for example MathematicaR© or MATLAB R©. In MapleR© we used only standard commands and the
linalg–package. It is now an easy task to implement steps 1 - 9 of the algorithm described in section 3.1
using loops and the commandsadrow, adcol, delrows, delcols andmulrow. We like to remark
here that the results of all these operations can also be obtained by matrix multiplications and are therefor
independent of MapleR©.
At this point we want to indicate the complexity of our algorithm. As mentioned above, the procedure
to getA′′′ can be done only by using loops of certain matrix multiplications. It is well known (see for
example (J04) or (Knu90)) that schoolbook matrix multiplications have a cubic complexity, i.e.O(n3).
For the solution of the resulting linear system, we need to invert the matrixA′′′ and to multiply this in-
verse with a vector. The last task has anO(n2)-complexity. Using the Coppersmith-Winograd-Algorithm
(CW90), the complexity of matrix multiplications and inversions can be reduced toO(n2.376), which is
at the moment the best known bound. Hence, we can conclude thefollowing:

Theorem 4.1 The algorithmic complexity of our algorithm is of orderO(n2.376).
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5 Outlook
In the forthcoming paper (FTb), we will extend our approach to self similar graphs obtained from regular
n–gons. In Figure 8, the first two nontrivial examples are given (note that the self–similar set obtained
from a square would be the square). The main difference is, that now a fixed pointP from the vertex set

Fig. 8: Self–similar Pentagasket and Hexa–Snowflake

V0 has zero–neighbours of different type depending on how far away the other vertex is fromP . So, in
the Pentagasket graph we have two types of neighbours, whilewe have three types of neighbours in the
Hexa–gasket case. In (FTb), we will discuss two possible approaches, namely the first one is allowing the
random walk to visit only nearest neighbours of a point in thegraph, while the second approach allows
the particle also to move through cells where the transitionprobabilities reflect the distances the particle
has to overcome. Hence, one has to deal withweighted adjacency matricesinstead. Hereby, the main
challenge is to find out for which vectors of transition probabilities the arising linear system (cf. (8)) has
a (unique) solution.
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