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We study the online specialization problem, where items arrive in an online fashion for processing by one of n

different methods. Each method has two costs: a processing cost (paid once for each item processed), and a set-up

cost (paid only once, on the method’s first use). There are n possible types of items; an item’s type determines the set

of methods available to process it. Each method has a different degree of specialization. Highly specialized methods

can process few item types while generic methods may process all item types. This is a generalization of ski-rental

and closely related to the capital investment problem of Azar et al. (1999). We primarily study the case where method

i + 1 is always more specialized than method i and the set-up cost for a more specialized method is always higher

than that of a less specialized method. We describe an algorithm with competitive ratio O(log n), and also show an

Ω(log n) lower bound on the competitive ratio for this problem; this shows our ratio is tight up to constant factors.

Keywords: online algorithms, competitive analysis, specializations

1 Introduction

To motivate the online specialization problem, consider the scenario of hosting an online data archival

service. Customers are expected to store many data files into the archive regularly but rarely read data

from the archive. To minimize the cost of operating the archive, the host could automatically compress

the data files before storing them in archive. Since the incoming files could represent text, sound, or any

number of other possible types, different compression algorithms are needed for an efficient system.

As a simple example, suppose there are four different methods for processing data: method f1 denoting

no compression at all, f2 denoting a standard dictionary coding technique good for generic unicode text,

f3 denoting a specialized encoding scheme for English prose, and f4 an efficient compressor for sound.

An English novel could be compressed very efficiently with f3, and less efficiently with f2, and not at all

with f4. We say that f3 is more specialized than f2 (denoted f2 ≺ f3) because f2 can compress anything

that f3 can compress. We also know f1 ≺ f2, f1 ≺ f4, and f2 is incomparable to f4.

A simple model for the costs of operating the archive would be to assume each method has two costs:

a set-up cost ci representing the cost of creating (or purchasing) method fi, as well as a “processing cost”

pi reflecting the cost of maintaining the storage space of any compressed file produced by fi. This is an

extremely oversimplified model for this scenario that assumes several things: 1) The cost of computer

time for encoding and decoding is insignificant compared to the costs for creating the methods and for

physical storage of the data; 2) All input files are the same size; and 3) Each method reduces the size of
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input files of the appropriate type by a fixed amount. Assumptions 2 and 3 imply a predetermined final

size of any input file processed by method fi; when the processing cost pi represents the cost for storing

the file, it is proportional to the final compressed file size. Note that assumption 2 may not be completely

unrealistic as any large file can be viewed as a sequence of many uniformly-sized smaller files.

As the input files of different types arrive in an online fashion, we need to choose between the available

compression methods, incurring the processing costs for each input, as well as set-up costs during the

first use of each method. Using the standard competitive analysis framework (see Borodin and El-Yaniv

(1998)), our goal is to find an algorithm with low competitive ratio. This means we wish to minimize the

cost that our online algorithm incurs compared to the cost for the optimal algorithm that knows all inputs

in advance. We assume that the methods, their set-up and processing costs, and the ≺-relation between

them are known in advance.

The original motivation for studying this problem came from the dynamic compilation problem. Dy-

namic compilation attempts to decrease a program’s execution time by using run-time information to per-

form additional optimization techniques. For example, consider a program P that has a function f(x, y),
and suppose P calls f(3, 4) many times. A dynamic compilation system could speed up program P by

first detecting that f(3, 4) is called many times and then, next computing and storing the value, and finally

performing a look-up of the value instead of recomputing for all future calls with the same parameters.

This is called specializing f for x = 3 and y = 4.

Let f1, f2, and f3 represent the unspecialized version of f , f specialized for x = 3, and f specialized

for x = 3 and y = 4, respectively. Specialized version f2 could be created by applying any standard

compiler optimization (such as constant folding and loop unrolling) to the function f while assuming

x = 3.

In the general problem, there are n different methods to process the inputs, and n different types of

input. Furthermore, there is a specialization hierarchy defined by a partial order that represents the degree

of specialization of each method. Our online algorithm must decide which specialization (if any) it should

create on every input. In this paper, we concentrate primarily on the case where more specialized methods

have higher set-up costs, and on the case where the graph representing the specialization hierarchy is a

line. For this case we define an online algorithm that makes these specialization decisions with competitive

ratio of O(log n). We also give a lower bound proof showing that every online algorithm has competitive

ratio Ω(log n).

1.1 Related work

To our knowledge, no one has studied the online specialization problem before, although it is a general-

ization of previous work. The ski-rental problem is a simplification of our problem to the case where there

are only two methods, and where all inputs can be processed with either method. It was initially proposed

as an analogue to the competitive snoopy caching problem Karlin et al. (1988).

A generalization of ski-rental that is relevant to the problem we describe here is the capital investment

problem studied by Azar et al. (1999). They considered the following manufacturing problem: Initially,

there is a set of machines that can manufacture a certain item. Each machine costs a certain amount to buy

and can produce the item at a certain cost. Furthermore, at any time, technological advances could occur

which would make new machines available for purchase. These new machines have different purchase

costs and lower per-item production costs. They studied the problem of designing an algorithm that

minimizes the total cost of production (the sum of the cost of buying machines and the cost of producing

items).
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The online specialization problem is a generalization of the capital investment problem to the case

where machines can be specialized, and some items which are manufactured can be produced by some

machines and not others. However, the online specialization problem does not include the idea of tech-

nological advances, where the adversary could give the online algorithm completely new methods for

processing the input at future points in time; in our problem all methods are assumed to be known at the

beginning.

Many other ski-rental generalizations have a multi-level structure related to our problem. However,

none of them adequately represent the specialization hierarchy. For instance, the online file allocation

problem (see Awerbuch et al. (2003)) takes a weighted graph representing a network and files located at

nodes in the network. The online input is a series of access requests to the files from particular nodes, and

the algorithm is allowed to move data files from one node to another at some cost. With an appropriate

network design, the processing costs in our algorithm could be modeled by access requests from one

node for files located at many other nodes. However, the idea of generic specializations that can process

many input types would force nodes modeling a generic specialization f1 to always have all data files that

represent methods more specialized than f1. In other words, the algorithm cannot decide to migrate files

on a strictly individual basis; some files would be grouped into hierarchical layers so that any node with a

layer i file must always have all layer j files for all j > i.
Other multi-level structure problems studied using competitive analysis include caching strategies with

multi-level memory hierarchies for minimizing access time (starting with Aggarwal et al. (1987)), and

online strategies for minimizing power usage of a device by transitioning between multiple available

power states when idle (see Irani et al. (2005)). See Grant et al. (2000) for an experimental dynamic

compilation system that motivated this work.

1.2 Algorithmic design issues

First consider the ski-rental case Karlin et al. (1988) where there are two methods f1 and f2, and where

c1 = 0. An online algorithm with competitive ratio 2 is to wait until c2/(p1 − p2) inputs are seen before

creating f2.

Our problem is significantly more challenging because of how the many different methods interact with

one another. Consider the case with three methods f1, f2, and f3; c1 = 0; f2 ≺ f3; and p2 > p3. Every

input that f3 can process can also be processed by f2. The defining question with specialized methods is

choosing between f2 and f3 when the inputs can be processed with either. Creating f3 first is better when

many future inputs of type f3 occur; however, if many future inputs can use f2 but not f3, then f2 is a

better choice. We are faced with a tradeoff between highly specialized methods with low processing costs

and widely applicable methods with high processing costs.

Now consider the case with n increasingly specialized versions of f : (f1 ≺ f2 ≺ · · · ≺ fn). We say

an input has specialization level i when it can be processed by any f � fi but not by any f ≻ fi. One

difficulty with this problem is in measuring the actual benefit of creating fi with respect to a worst-case

adversary. The following scenario illustrates that the apparent benefit of creating fi can decrease as more

inputs are seen.

Suppose f1 is the only method created so far and let p1 > p2 > · · · > pi, and c = ci−1 = ci.

Suppose k = c/(p1−pi) inputs with specialization level i have been seen so far, and no inputs with lower

specialization levels have yet been seen. The apparent benefit of creating fi is k(p1−pi), representing the

gain in benefit when using fi from the beginning instead of f1. Since this benefit exactly equals the cost

c of creating fi, perhaps fi should be created. However, suppose we anticipate processing so many future
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inputs of specialization level i−1 that creating fi−1 is guaranteed to be a good decision. In this anticipated

future scenario, the benefit of creating fi for the k inputs of specialization level i is only k(pi−1 − pi),
which may be much smaller than the apparent benefit of k(p1 − pi). It is not obvious when fi should be

created in this scenario.

1.3 Naive extension

We end this section showing the poor performance of a simple extension of the ski-rental algorithm to

the case of n increasingly specialized versions of f . This algorithm, when processing the next input I ,

computes what the optimal offline algorithm would do on all inputs seen so far since the beginning of

the algorithm, including I . Then it processes I with the same specialization as the optimal, creating it if

necessary.

Consider this algorithm’s performance in the special case where the costs are c1 = 0, c2 = c3 = · · · =
cn = 1, p1 = 1, and pi = 1

n
− i

2n2 for i > 2. This is designed so that the processing costs from p2

to pn decrease linearly from from just below 1
n

down to 1
2n

. For this specific case with just one input,

the online algorithm creates f1 and uses it because c1 = 0. Suppose two inputs with specialization level

n are given. Clearly the optimal offline algorithm would use fn on those inputs to get a minimal total

cost of 1 + 1/n, where 1 is the creation cost and 1/n is the processing cost for both inputs. This means

the online algorithm would create and use fn when it sees the second input. Now suppose two inputs of

level n are given followed by one of level n − 1. The optimal cost would use fn−1 for all three inputs;

creating both fn−1 and fn is not cost effective because the relatively high creation costs do not offset the

reduced processing cost. This means the online algorithm would create and use fn−1 on the third input,

after already having created fn for the second input.

Now suppose the total input consists of k inputs with specialization level 2 or higher, where 2 ≤ k ≤ n.

The optimal offline strategy here is to just create and use fi on all the inputs where i is the minimum

specialization level among the k inputs. At least one specialization in {f2, f3, ..., fn} must be created

because of the high processing cost of f1 compared to all other processing costs. No more than one can be

created because the added benefit of creating a second specialization in the set is at most a 1
2n

reduction in

processing cost per input, and the benefit must outweigh the creation cost of 1. This means that more than

2n total inputs are necessary before the optimal algorithm could even consider creating more than one

specialization in {f2, f3, ..., fn}. And since we know the optimal must use create just one specialization,

the best one to create to minimize processing costs is clearly the most highly specialized one that can be

applied to all inputs.

The behavior of the optimal offline algorithm above implies the following adversarial strategy for this

problem. Give the online algorithm two inputs with specialization level n, followed by one input each at

level from n − 1 down to 2, in the specified order. Note that n inputs are given overall.

With this strategy, the online algorithm uses f1 for the first input. For the second input it uses fn

because the optimal would have used fn when seeing just the first two inputs. On the third input, the

online algorithm uses fn−1 because the optimal would use fn−1 for all three inputs. Generalizing, we

see that the online algorithm uses the specializations f1, fn, fn−1, fn−2, ..., f3, f2 in that order for the n
inputs in the adversarial strategy. It is basically tracking the behavior of the optimal offline algorithm on

a prefix of the entire input.

The total cost incurred by this online algorithm on these n inputs is thus more than n−1 because it paid

to create all specializations of level 2 and higher. In contrast, the optimal algorithm uses f2 exclusively
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and pays just c2 + np2 = 1 + n
(

1
n
− 1

n2

)

= 1 + 1 − 1/n. This shows a ratio of n−1
2 ; this algorithm has

a competitive ratio of at least Ω(n).
The lesson learned is to not aggressively create highly specialized methods, even if the optimal solution

would create them based on inputs seen so far. Creating intermediate level specializations in anticipation

of future inputs with specialization levels in the middle is a much better idea.

2 Problem definition and results

2.1 Online specialization problem definitions

• F = {f1, f2, ..., fn} denotes the set of all specializations.

• c : F → [0,+∞) is a function representing the set-up cost or creation cost for each element

of F . The cost c(fi), abbreviated ci, denotes the creation cost of fi. The standard ordering for

specializations in F is in non-decreasing creation cost order, so c1 ≤ c2 ≤ · · · cn.

• p : F → (0,+∞) represents the processing cost for each fi; p(fi) is abbreviated pi.

• ≺ is the partial order over F that determines the specialization hierarchy.

• σ = (I1, I2, ..., It) represents the input sequence.

• lev(I) denotes the specialization level of input I , defined so if lev(I) = fi then any method fj such

that fj � fi can be used to process I .

We assume the set F , the cost functions p and c, as well as the partial order ≺ are known before the

online algorithm starts. The online algorithm outputs decisions about when to create each fi as it sees the

input sequence. We assume that once fi has been created, it persists and is available for use by any future

input. We study the following two special cases of the online specialization problem.

• The monotone linearly-ordered specialization problem, denoted MLS(F , c, p,≺), assumes ≺ is a

total ordering on F and the following monotonicity constraint applies.

For i 6= j, if fj ≺ fi, then c(fi) ≥ c(fj).

The monotonicity constraint says that more specialized methods have higher set-up costs. Note that

if fj ≺ fi, ci ≥ cj , and pi ≥ pj , then no reasonable algorithm would ever use fi. This is because

fj is more widely applicable than fi and it also costs less. Thus without loss of generality, in this

monotone setting we assume that if fj ≺ fi, then pi < pj . The standard ordering for F based

on creation costs also orders the methods by specialization level and by processing cost, so that

f1 ≺ f2 ≺ · · · ≺ fn, and p1 > p2 > · · · > pn.

• The equally specialized problem, denoted ES(F , c, p) assumes that all methods can be used to

process any input. Furthermore, we also assume that ci > cj implies pi < pj . Note that an

algorithm solving this special case is given in Azar et al. (1999), as well as in section 3.1.

We now define the costs for online algorithm A running on problem P with input σ.
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• CRE
P
A(σ) denotes the cost for creating specializations.

• PROC
P
A(σ) denotes the processing cost.

• TOT
P
A(σ) = PROC

P
A(σ) + CRE

P
A(σ) denotes the total cost paid by A on σ.

OPT
P(σ) denotes the cost of the optimal offline algorithm. Note that the optimal offline algorithm

simply chooses the optimal set of methods to create at the beginning and then processes each input with

the appropriate method.

In the above definitions, whenever problem P , algorithm A, or input σ is understood from context,

we omit it. In the equally specialized setting, the online (and optimal) cost is determined solely by the

number of inputs the adversary gives. Thus, given an ES problem, we replace the input parameter σ with

an integer k representing the length of σ.

We derive performance bounds using standard competitive analysis. Let P(n) be the set of all problems

with n specializations, and ΣP denote the set of all possible inputs for P . Then we say an algorithm A is

ρ(n)-competitive if

sup
P∈P(n),

σ∈ΣP

TOT
P
A(σ)

OPT
P(σ)

≤ ρ(n).

2.2 Results

For the MLS problem as described in section 2.1, we construct an algorithm MLSA that has competitive

ratio O(log n), where n is the number of methods available. Our algorithm makes calls to ESA, a slightly

modified version of the capital investment algorithm (CIA) from Azar et al. (1999). MLSA often creates

the same specializations as ESA running on a related ES problem. The main idea is to partition F into

“contiguous intervals” of the form {fi, fi+1, ...fj}, and assign a worker to each interval. A worker’s job

is to process the inputs whose specialization level is inside its interval. Each worker runs completely

independently of the other workers and makes its decisions based on the ESA algorithm running on the

problem ES(F ′, c, p), where F ′ ⊂ F . When a worker decides to quit, its interval is partitioned into

smaller intervals, and more workers are created to handle the new intervals.

The two main theorems of this paper are as follows.

Theorem 2.1 The algorithm MLSA on problem MLS(F , c, p,≺) is (1 + 13 log n)-competitive.

Theorem 2.2 Any online algorithm for the online monotone linearly-ordered specialization problem has

competitive ratio at least (log n)/4.

Section 3 describes and analyzes the properties of ESA for the equally specialized setting. Section

4 describes and analyzes MLSA. Section 5 describes an adversary and a particular MLS(F , c, p,≺)
problem that shows an Ω(log n) lower bound on the competitive ratio for any online algorithm.

3 Design and analysis of ESA

3.1 Design of ESA

ESA is an online algorithm for solving ES(F , c, p); it can be thought of as a simple modification to

the capital investment algorithm (CIA) that slightly delays the creation of specializations. The overall
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idea for ESA is to use the best already-created specialization until the total processing costs so far is

roughly equal to the total optimal cost. ESA improves upon CIA because it is 6-competitive (as opposed

to 7-competitive); however, it cannot handle the technological advances present in the capital investment

problem Azar et al. (1999). ESA behaves as follows.

For the first input, ESA creates and uses the method f ′ that minimizes c(f)+ p(f) over all f ∈ F . For

the kth input, k > 1, let fb be the method ESA used for Ik−1. Then ESA first checks the condition

PROC(k − 1) + p(fb) > OPT(k). (1)

If condition (1) is false then ESA uses fb on the kth input. Otherwise, ESA creates and uses the method

that minimizes p(f) from the set

{f : c(f) < 2PROC(k − 1) + p(f)}. (2)

3.2 Analysis of ESA

We first show that ESA is well defined, in particular, that whenever it chooses to create a new method, the

set (2) above will contain a specialization that is more highly specialized than the one ESA had previously

been using. We also state some lemmas about ESA that are required later in this paper for analyzing the

performance of MLSA.

Lemma 3.1 Suppose condition (1) is true in the ESA algorithm when processing input Ik. Let f∗ be the

method used by the optimal algorithm for k inputs. Let fx be the new method from the set (2) above that

ESA uses for input Ik. Then we know that f∗ � fx.

Proof: The truth of condition (1) implies that

c(f∗) < c(f∗) + kp(f∗) = OPT(k) < PROC(k − 1) + p(fb).

Let f ′ be the first method created by ESA. Applying p(fb) ≤ p(f ′) ≤ PROC(k − 1) to the previous

statement shows c(f∗) < 2PROC(k − 1). This means that f∗ is available for ESA to pick for processing

input Ik. Thus, the actual method fx that ESA picks must be either f∗ or another method with a lower

processing cost than f∗; this shows f∗ � fx. ✷

Lemma 3.2 For any problem P = ES(F , c, p), ∀k,PROC
P
ESA(k) ≤ OPT

P(k).

Proof: Because of the way the first method f ′ is chosen, it is clear that PROC(1) ≤ TOT(1) = OPT(1).
Assume by induction that PROC(k − 1) ≤ OPT(k − 1). Let fb be the method used on Ik−1 and

consider the kth input. If the condition 1 from section 3.1 is false, then we use fb on Ik and know that

PROC(k) ≤ OPT(k). Otherwise condition (1) is true, and we pay cost PROC(k − 1) + p(fx) for k
inputs, where fx is the method chosen from set (2). Let f∗ be the method used by the optimal algorithm

for k inputs, so OPT(k) = c(f∗) + kp(f∗). From lemma 3.1, we know f∗ � fx, so that p(fx) ≤ p(f∗).
Then by our induction hypothesis and by the optimality of OPT, PROC(k) = PROC(k − 1) + p(fx) ≤
OPT(k − 1) + p(f∗) ≤ c(f∗) + (k − 1)p(f∗) + p(f∗) = OPT(k). ✷

Corollary 3.3 Whenever condition (1) is true, ESA will create a new specialization that has a higher

creation cost and lower processing cost than any specialization previously created.
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Proof: Since ESA’s processing cost stays below the optimal total cost (lemma 3.2), we know that condi-

tion (1) is typically false, and that it becomes true only when the current specializiation fb being used is

less specialized (and has a higher processing cost) than the optimal one f∗ for on k inputs. Thus, when the

condition becomes true, it will always be possible to switch to a better specialization. If all specializations

have been created, then the condition will never become true again. ✷

Lemma 3.4 Given a problem P = ES(F , c, p). Then

∀k, j > 0,PROC
P
ESA(k + j) ≤ PROC

P
ESA(k) + PROC

P
ESA(j).

Proof: Clearly the processing cost per input decreases over time as ESA creates specializations with

lower processing cost. Thus processing k + j inputs together is better than processing k inputs and then

restarting and processing j more. ✷

Lemma 3.5 For any problem P = ES(F , c, p), let k∗ be the number of inputs ESA must see before it

creates its second specialization. Then ∀k ≥ k∗,CRE
P
ESA(k) ≤ 5PROC

P
ESA(k − 1).

Proof: Suppose ESA creates m specializations when run for k inputs. Let gi denote the ith specialization

created, and ki denote the number of inputs seen when gi was created. For z > 1, gz was created because

the processing cost was “about to surpass” OPT(kz). This implies two facts (based on condition 1):

Fact 1. OPT(kz) < PROC(kz − 1) + p(gz−1).

Fact 2. p(gz−1) > p(f∗), where f∗ is the method used by the optimal on kz inputs.

Applying OPT(kz) = c(f∗) + kzp(f∗) to Fact 1 shows

c(f∗) < PROC(gz − 1) + p(gz−1). (3)

Fact 2 says ESA uses a less-than-optimal method for inputs up through kz − 1. For z > 2, this implies

f∗ was not chosen at time kz−1 because its creation cost was too high at the time;

c(f∗) > PROC(kz−1 − 1) + p(f∗). (4)

Combining (3) and (4) and Fact 2 yields 2PROC(kz−1 − 1) < PROC(kz − 1), for z > 2. Since the

processing costs must at least double with each new specialization created, we know

PROC(k2 − 1) +

m
∑

z=2

PROC(kz − 1) < 2PROC(km − 1). (5)

From the way that gz is chosen at time kz ,

c(gz) < 2PROC(kz − 1) + p(gz). (6)

Also c(g1) + p(g1) = OPT(1) < OPT(k2) ≤ PROC(k2 − 1) + p(g1) (using condition 1), so clearly

c(g1) < PROC(k2 − 1). (7)
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Thus, our total creation costs can be bounded as follows:

CRE(k) = c(g1) +
∑m

z=2 c(gz) (defn. of CRE(k))
< PROC(k2 − 1) +

∑m

z=2 (2PROC(kz − 1) + p(gz)) (equations 7 and 6)

< 4PROC(km − 1) +
∑m

z=2 p(gz) (equation 5)

< 4PROC(km − 1) + PROC(km − 1) (each gz used at least once)

≤ 5PROC(k − 1).

✷

Corollary 3.6 ESAis 6-competitive.

Proof: By lemmas 3.2 and 3.5, we know

TOT(k) = CRE(k) + PROC(k) ≤ 5PROC(k − 1) + PROC(k) ≤ 6OPT(k).

✷

Lemma 3.7 Let ES(F , c, p) denote a problem where F has n specializations in the standard order, and

let Fℓ = {f1, f2, ..., fr} where r < n. Then

∀k > 0,PROC
ES(F,c,p)
ESA (k) ≤ PROC

ES(Fℓ,c,p)
ESA (k). (8)

Furthermore, let Fr = {fr, fr+1, ..., fn}, let k∗ be the number of inputs that ESA must see on problem

ES(F , c, p) before it creates some specialization in Fr, and let k′ be the number of inputs that ESA must

see on ES(Fℓ, c, p) before it creates fr. Then

k′ ≥ k∗,

∀k < k∗,PROC
ES(F,c,p)
ESA (k) = PROC

ES(Fℓ,c,p)
ESA (k), (9)

∀k, k∗ − 1 ≤ k ≤ k′ − 1,CRE
ES(Fℓ,c,p)
ESA (k) = CRE

ES(F,c,p)
ESA (k∗ − 1). (10)

Proof: Let A and Aℓ denote the execution of ESA on ES(F , c, p), and ES(Fℓ, c, p), respectively. As

long as the extra specializations available in execution A are too costly to be created by ESA, A and Aℓ

run in lock step and pay exactly the same costs. This is always true for k < k∗; thus equation (9) holds.

The extra specializations in execution A may reduce the cost OPT as compared to execution Aℓ; thus the

condition (1) may become true earlier in execution A than in Aℓ, but it can never come later. This shows

that k∗ ≤ k′.

Once k ≥ k∗, A creates and uses f∗ ∈ Fr which may have lower processing cost than anything

available to Aℓ; this shows equation (8). By how f∗ is chosen and equation (9),

c(f∗) < 2PROC
ES(F,c,p)(k∗ − 1) + p(f∗) = 2PROC

ES(Fℓ,c,p)(k∗ − 1) + p(f∗). (11)

From the ordering of F , we know c(fr) ≤ c(f∗) and p(f∗) ≤ p(fr). Applying this to equation (11)

yields c(fr) ≤ 2PROC
ES(Fℓ,c,p)(k∗ − 1) + p(fr). This implies that after the k∗th input in Aℓ, fr will be

the next method created once method creation is allowed. Since this happens at input k′, no additional

methods are created by Aℓ when running for up to k′ − 1 inputs; this shows equation (10). ✷
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4 Design and analysis of MLSA

4.1 Overview of MLSA

The two main ideas for solving MLS are partitioning F into subintervals, and using the behavior of ESA
on a subset of the inputs to determine which specializations to create. MLSA consists of one manager,

and many workers. The manager routes each input to a single worker who then processes the input. The

manager also creates and destroys workers, as necessary. Each worker processes the inputs that it is given

completely independently of all other workers.

Each worker is defined by a tuple of integers, (q, r, s), where q ≤ r ≤ s. The worker only knows about

specializations in the set {fi : q ≤ i ≤ s} (abbreviated [fq, fs]); it cannot create any other specializations.

The worker is only given inputs whose specialization level fi satisfies fi ∈ [fr, fs]. A worker’s goal is to

create fr which is typically in the middle of its interval. On the way to creating fr the worker runs ESA
as a subroutine to figure out when it is necessary to create methods in [fq, fr−1]. Once fr is created, the

worker quits.

The manager maintains the partition invariant that if {(qi, ri, si)} is the set of all current workers, then

the sets [fri
, fsi

] form a partition of F . With this invariant, it is a simple job to route the incoming inputs

to the appropriate worker. Whenever a worker quits, the manager creates new workers in a manner that

maintains the partition invariant.

Replacement workers are chosen to overcome the bad performance found in section 1.3. As an example,

one of the initial workers is (1, ⌈n+3
2 ⌉, n). This implies f⌈n+3

2
⌉ is always created before any worker has a

chance to create fn. Our algorithm does not create a highly-specialized method right away even when the

initial inputs are all of specialization level fn.

4.2 MLSA Manager

The manager’s two responsibilities are creating workers and routing inputs to the appropriate worker.

The manager creates workers so that they partition {1, 2, ..., n} into contiguous subsets; a worker (q, r, s)
“covers” the interval from r to s, in the following sense: every input Ik is routed to the worker (q, r, s)
such that lev(Ik) ∈ [fr, fs]. Whenever a worker (q, r, s) quits, the manager replaces that worker with

several new ones that cover the interval from r to s, as depicted in figure 1.

Suppose the worker W = (q, r, s) has just quit, and let m = ⌈(r + s)/2⌉. The following three workers

are created to replace it: (r, r, r), (r, r + 1,m), (r, m + 1, s). Note however, that the second and third

workers listed are not created when the interval they cover is empty. We use the term created worker to

refer to any worker created by MLSA when processing all the input (including the workers that have quit).

Initially, the manager creates f1. It then follows the above procedure as if worker (1, 1, n) had just quit.

Note that just before a worker (q, r, s) quits, it creates fr. This fact and the way the manager creates

workers imply the following invariants.

• fq is created before worker (q, r, s) is created.

• Let W be the set of current workers that have not yet quit. For all i, 1 ≤ i ≤ n, there is only one

worker (q, r, s) in W such that r ≤ i ≤ s.

• A created worker (q, r, s) always satisfies either q = r = s or q < r ≤ s.
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Fig. 1: Worker (q, r, s) followed by its three replacement workers. Circles represent a specialization created before

the worker starts. Boxes represent the set of specialization levels handled by the worker.
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4.3 MLSA Workers

Each worker uses a private array N to track the number of inputs of each specialization level, initially set

to all zeroes. This array is local to the worker and not shared between workers. Let (q, r, s) be a worker.

An invariant maintained is that when a worker processes input I , N [k] represents the number of inputs

with specialization level fk that the worker has seen, including the current input I .

We know either (q = r = s) or q < r ≤ s. A worker with q = r = s uses fq to process all its input and

never quits. A worker with q < r ≤ s processes input I of specialization level fj by first incrementing

its private variable N [j]. It then performs two additional steps to process I: the quit step and the process

step. The quit step checks to see whether or not the worker should quit; if it decides to quit, then fr is

created, and input I remains unprocessed (it is processed by one of its replacement workers). The process

step decides the specialization f∗ to be used on I; f∗ is created if necessary. The decisions in both steps

are made using calls to ESA with a subset of the methods available to the worker. The calls to ESA are

all made with set-up costs c′ defined so that c′(fq) = 0 and c′(f) = c(f) for all f 6= fq.

In the quit step, the worker examines the behavior of ESA on many problems. Let

S = {f : for some i, r ≤ i ≤ s, f is the method that ESA uses on

ES([fq, fi], c
′, p) when run for

s
∑

j=i

N [j] inputs}.

If there is a specialization f ∈ S such that fr � f , then the worker creates fr and then quits.

In the process step, the worker decides to use the specialization f∗ that ESA uses on ES([fq, fr], c
′, p)

when run for
∑s

j=r N [j] inputs.

4.4 Analysis of MLSA

We separately bound the online processing and creation costs paid by MLSA relative to the total cost paid

by the optimal offline algorithm. In particular, we prove the following theorems:

Theorem 4.1 On problem P = MLS(F , c, p,≺), if n ≥ 2, then

∀σ, PROC
P
MLSA(σ) ≤ (2 log n)OPT

P(σ).

Theorem 4.2 On problem P = MLS(F , c, p,≺), if n ≥ 2, then

∀σ, CRE
P
MLSA(σ) ≤ (1 + 11 log n)OPT

P(σ).
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These two theorems prove theorem 2.1.

Our overall strategy for the processing cost bound charges the processing cost MLSA pays for each

input I against the optimal cost for processing I . Let I be the set of all inputs processed with fi in the

optimal solution; B = c(fi) + |I |p(fi) represents the cost the optimal pays for processing I . We show

that the processing cost paid by MLSA for I is at most (2 log n)B. We derive this bound by separately

bounding the total number of workers that could process inputs in I , and the cost contributed by any one

worker for inputs in I . Our strategy for the creation cost bound is to bound the creation cost paid by each

worker by a constant factor of the processing cost paid by the worker. We then reuse our bound of the

processing cost relative to the optimal to get a bound of the creation cost relative to the optimal.

We now define terms for describing the subdivision of the costs involved, describe lemmas on the

behavior of MLSA, and finally combine these lemmas in the proofs of the theorems.

4.5 Definitions

In describing the cost of MLSA, σ refers to the input sequence, and the P = MLS(F , c, p,≺). Both σ
and P are fixed for the rest of this section. The definitions below are abbreviated in that they implicitly

depend on these two values.

• Let V = [fv, fz] = {fv, fv+1, ..., fz}. We say V is an optimal interval if in the optimal algorithm,

all inputs in σ whose specialization level is in V are processed by fv .

• When V is an optimal interval, I (V ) denotes the set of inputs from σ that are processed with fv

by the optimal offline algorithm.

• OPTINT(V ) = c(fv) + p(fv)|I (V )|. By definition, summing OPTINT(V ) over all optimal

intervals yields OPT.

• If I is a subset of inputs from σ, then PROCSUB(I ) denotes the processing cost that MLSA paid

for inputs in I , when MLSA was run on entire input sequence σ.

• Let W be a created worker. Then I (W ) = {I : I is in σ and W processed I}.

• CRESUB(W ) denotes the sum of the cost of the methods created by worker W . By definition, if

W is the set of all created workers, then

CRE = c(f1) +
∑

W∈W

CRESUB(W ).

• Applying the previous definitions, if W and V are the set of all created workers and optimal inter-

vals, respectively, then

PROC =
∑

V ∈V

∑

W∈W

PROCSUB(I (W ) ∩ I (V )).

We also use the following notation to describe the ES problems that MLSA simulates.

• Let ES(fi, fj) denote ES([fi, fj ], c
′, p). Note that c′ = c except for c′(fi) = 0. Workers simulate

many problems of this form to determine when to quit.
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• If W = (q, r, s), then ES(W ) = ES(fq, fr); this is the problem W simulates in the process step.

We now define several different categories of workers as illustrated by figure 2. We show different cost

bounds on each category in order to prove our main theorems. Let V = [fv, fz] be an optimal interval,

and W = (q, r, s) be a created worker.

• We say W is a cost-bearing worker of V if [fr, fs] ∩ V 6= ∅. Cost-bearing workers of V charge

some portion of their processing cost onto V in our analysis.

• We say W is a low-cost-bearing worker of V if it is cost-bearing and fq � fv . We say W is a high-

cost-bearing worker of V if it is cost-bearing and fq ≺ fv . Unlike high-cost-bearing workers, low-

cost-bearing workers pay per-input processing costs no worse than that of the optimal algorithm.

• We say W is an active worker of V if it is cost-bearing and fq ≺ fr ≺ fv . W is an inactive worker

of V if it is cost-bearing and fq ≺ fv � fr. We later show that inactive workers of V who quit are

replaced by low-cost-bearing or non-cost-bearing workers, while active workers who quit can be

replaced by high-cost-bearing workers. Note that active and inactive workers of V are by definition

high-cost-bearing workers of V . Since our algorithm never creates workers where q = r < s, all

high-cost-bearing workers of V are either active or inactive.

Fig. 2: Optimal Interval [fv, fz] followed by four different categories of created workers.

v z
t

t non-cost-bearing
t low-cost-bearing

t inactive (high-cost-bearing)
t active (high-cost-bearing)

4.6 Processing cost bound

Let V be an optimal interval and W = (q, r, s) a cost-bearing worker of V . We bound PROCSUB(I (W )∩
I (V )) by the corresponding cost incurred by ESA on ES(W ). We then show a bound on the total cost

charged against OPTINT(V ).

Lemma 4.3 Let W be a created worker and V = {fv, fv+1, ..., fz} be an optimal interval. Let k =

|I (W ) ∩ I (V )|. Then we know the following about PROC
ES(W )
ESA (k):

1. If W is a non-cost-bearing worker of V , then PROC
ES(W )
ESA (k) = 0.

2. If W is a low-cost-bearing worker of V , then PROC
ES(W )
ESA (k) ≤ kp(fv).

3. If W is a high-cost-bearing worker of V , then PROC
ES(W )
ESA (k) ≤ c(fv) + kp(fv).
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Proof: Let W = (q, r, s). If W is non-cost-bearing then k = 0; this shows statement 1. If W is low-cost-

bearing then fv � fq implying p(fq) ≤ p(fv). Seeing that ESA pays at most p(fq) for each input yields

statement 2.

For statement 3, we need to show that

PROC
ES(fq,fr)(k) ≤ PROC

ES(fq,fv)(k). (12)

Assuming equation (12) is true, we apply lemma 3.2 and the fact that the specific method of using fv for

k inputs is certainly no better than optimal method on k inputs; this yields

PROC
ES(fq,fr)(k) ≤ PROC

ES(fq,fv)(k) ≤ OPT
ES(fq,fv)(k) ≤ c(fv) + kp(fv).

To show equation (12), we consider the cases where W is inactive and W is active separately:

Case I. If W is inactive, then fq ≺ fv � fr. Equation (8) implies equation (12).

Case II. If W is active, then fq � fr ≺ fv . Let k∗ denote the number of inputs ESA must see on

ES(fq, fv) before it creates some specialization in [fr, fv]. By the quitting condition of W ,
∑s

j=v N [j] ≤ k∗, where N refers to the value of the local array in W . Note that equality can

hold only if W quits after seeing (but not processing) its k∗th input. Since k counts only the

inputs processed by W in [fv, fmin(s,z)], k < k∗. Applying equation (9) of lemma 3.7 yields

equation (12).

✷

Lemma 4.4 Let W be a created worker, and let S be an arbitrary subset of I (W ). Then

PROCSUB(S) ≤ PROC
ES(W )
ESA (|S|).

Proof: Let S ′ be the first |S| inputs that processed by W . Since W imitates the behavior of ESA on

ES(W ), PROCSUB(S ′) = PROC
ES(W )
ESA (|S|). We also know the per-input processing cost for worker W

decreases over time just as it does in ESA. Thus PROCSUB(S) ≤ PROCSUB(S ′). ✷

Lemma 4.5 Let V be an optimal interval. Let W be a non-active worker of V who quits, and let W ′ be

a new worker created to replace it. Then W ′ is a low-cost-bearing or non-cost-bearing worker of V .

Proof: Since any replacement worker for W = (q, r, s) is within the interval from r to s, the replacement

rules (figure 1) applied to the relevant worker types (figure 2) show the following:

• Non-cost-bearing workers are replaced with non-cost-bearing workers.

• Low-cost-bearing and inactive workers are replaced with one low-cost-bearing worker and up to

two additional non-cost-bearing or low-cost-bearing workers.

✷
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Lemma 4.6 Let V be an optimal interval. Let W be an active worker of V . Suppose W quits and is

replaced by new workers. Then one of the following conditions holds:

1. There are 2 replacement workers W1 and W2, where W1 is a non-cost-bearing worker of V , and

W2 is an inactive worker of V .

2. There are 3 replacement workers W1, W2, and W3. W1 is not a non-cost-bearing worker of V , and

at most one of W2 and W3 is an active worker of V . Furthermore, let |W | (resp. |Wi|) denote the

number of input types W (Wi) is responsible for. Then |W2| ≤ |W |/2, and |W3| ≤ |W |/2.

Proof: Let W = (q, r, s) be the active worker who quit, and let V = [fv, fz] be an optimal interval. Since

W is an active worker of V ,

fq ≺ fr ≺ fv � fs. (13)

This implies r < s. We now consider the manager’s behavior on the remaining two cases:

Case I. Suppose r + 1 = s. Since the manager sets m = ⌈(r + s)/2⌉ = r + 1, we know two workers

W1 = (r, r, r) and W2 = (r, r + 1, r + 1) are created, and fv = fr+1 to satisfy equation (13).

Thus W2 is an inactive worker of V , and W1 is a non-cost-bearing worker of V , satisfying

condition 1 of the lemma.

Case II. Suppose r + 1 < s. Then m = ⌈(r + s)/2⌉, where r < m < s. Thus three workers

W1 = (r, r, r), W2 = (r, r + 1,m), and W3 = (r, m + 1, s) are created, as illustrated in figure

3. We know W1 is a non-cost-bearing worker of V . We now consider the following cases:

(a) If v ≤ m, then W2 is active unless v = r + 1, and W3 is inactive or non-cost-bearing.

(b) If v > m, then W2 non-cost-bearing and W3 is active unless v = m + 1.

In both IIa and IIb, we have at most one of W2 or W3 is an active worker of V . Thus case II

satisfies condition 2, where the method of choosing m ensures the size bound.

✷

Corollary 4.7 Let V be an optimal interval. Let W be an active worker of V , and let |W | denote the

number of input types W is responsible for. Then |W | ≥ 2.

Proof: For active worker (q, r, s), the proof of lemma 4.6 starts by showing r < s. ✷

Lemma 4.8 If V is an optimal interval, then there are at most 2 log n high-cost-bearing workers of V .

Proof: Lemma 4.5 says only active workers of V that quit can be replaced with high-cost-bearing workers

of V , and that other workers that quit are not replaced with high-cost-bearing workers. By lemma 4.6, the

initial workers created by the manager include at most 2 high-cost-bearing workers of V , at most one of

which is active. Every time an active worker quits, its replacement workers include at most one active and

at most one inactive worker of V . Let k be the number of active workers of V created. Let W1,W2, ...,

Wk be the active workers of V , in order that they are created. There are at most k + 1 inactive workers:



112 Edwin S. Hong

Fig. 3: Optimal Interval [fv, fz], an active worker W , and its replacements.
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one for each inactive worker of V that was created at the same time as Wi, and one for the inactive worker

that could replace Wk. Thus there are at most 2k + 1 high-cost-bearing workers of V .

Now let |Wi| denote the number of input types Wi is responsible for. By lemma 4.6, for 1 ≤ i ≤ k− 1,

|Wi|/2 ≥ |Wi+1|. Corollary 4.7 shows |Wk| ≥ 2. Since |W1| ≤ n/2, we conclude that k ≤ (log n) − 1.

This implies there are at most 2 log n high-cost-bearing workers of V . ✷

Lemma 4.9 Let W be the set of all created workers, let V be an optimal interval. Then if n ≥ 2,

∑

W∈W

PROCSUB(I (W ) ∩ I (V )) ≤
∑

W∈W

PROC
ES(W )
ESA (|I (W ) ∩ I (V )|)

≤ (2 log n)OPTINT(V ).

Proof: Lemma 4.4 implies the first inequality of this lemma. Let W = W1∪W2∪W3, where W1 contains

non-cost-bearing workers of V , W2 contains low-cost-bearing workers of V , and W3 contains high-cost-

bearing workers of V . From lemma 4.3, we have a bound on PROC
ES(W )(|I (W ) ∩ I (V )|) for each

W ∈ Wi. Lemma 4.8 tells us |W3| ≤ 2 log n. We conclude that

∑

W∈W

PROCSUB(I (W )∩I (V )) =

3
∑

i=1

∑

W∈Wi

PROCSUB(I (W ) ∩ I (V ))

≤
3

∑

i=1

∑

W∈Wi

PROC
ES(W )
ESA (|I (W ) ∩ I (V )|)

≤ 0 +
∑

W∈W2

p(fv)|I (W ) ∩ I (V )| +
∑

W∈W3

(c(fv) + p(fv)|I (W ) ∩ I (V )|)

=
∑

W∈W2∪W3

p(fv)|I (W ) ∩ I (V )| +
∑

W∈W3

c(fv)

≤ pv|I (V )| + (2 log n)cv.

If n ≥ 2, then pv|I (V )| ≤ (2 log n)pv|I (V )|, and we get

pv|I (V )| + (2 log n)cv ≤ (2 log n)(pv|I (V )| + cv) = (2 log n)OPTINT(V ).

✷
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Theorem 4.10 (4.1) On problem P = MLS(F , c, p,≺), if n ≥ 2, then

∀σ, PROC
P
MLSA(σ) ≤ (2 log n)OPT

P(σ).

Proof: Let V be the set of all the optimal intervals, and Let W be the set of all the created workers. Now

simply sum over all optimal intervals and apply lemma 4.9, obtaining

PROC
P
MLSA(σ) =

∑

V ∈V

∑

W∈W

PROCSUB(I (W ) ∩ I (V ))

≤
∑

V ∈V

(2 log n)OPTINT(V )

= (2 log n)OPT
P(σ).

✷

4.7 Creation cost bound

Our strategy is to bound our creation cost of any created worker by the processing cost of ESA on the

corresponding simulated ES problem. These processing costs then be summed to get a total creation cost

bound relative to the optimal cost for the MLS problem.

Lemma 4.11 Let W be a created worker that quits. Then

CRESUB(W ) ≤ 5PROC
ES(W )
ESA (|I (W )|).

Proof: By the quitting condition of W , we can pick an i and an h that satisfy the following conditions:

1) r ≤ h ≤ i ≤ s and 2) ESA creates fh when run on ES(fq, fi) for
∑s

j=i N [j] inputs. Let k∗ be the

number of inputs ESA needs on ES(fq, fi) to create some specialization in [fr, fi]; let k′ be the number

of inputs ESA needs on ES(fq, fr) to create fr. We derive the following facts.

Fact 1.
∑s

j=i N [j] = k∗, by how i is chosen and the quitting condition.

Fact 2. −1 +
∑s

j=r N [j] < k′, since the quitting condition was false before the k∗th input.

Fact 3. −1 +
∑s

j=r N [j] = |I (W )|, since |I (W )| only counts processed inputs.

Fact 4. |I (W )| < k′, combining facts 2 and 3.

Fact 5. k∗ − 1 ≤ |I (W )|, combining facts 1 and 3.

Then we know

CRESUB(W ) = CRE
ES(fq,fr)(|I (W )|) + cr (since W simulates ESA on ES(W ) and

creates fr before quitting)

= CRE
ES(fq,fi)(k∗ − 1) + cr (by |I (W )| < k′ and eq. 10 of lemma 3.7)

≤ CRE
ES(fq,fi)(k∗ − 1) + c(fh) (since fh � fr)

= CRE
ES(fq,fi)(k∗) (by defn. of k∗, i, and h)

≤ 5PROC
ES(fq,fi)(k∗ − 1) (by lemma 3.5)

= 5PROC
ES(fq,fr)(k∗ − 1) (by eq. 9 of lemma 3.7)

≤ 5PROC
ES(fq,fr)(|I (W )|). (since k∗ − 1 ≤ |I (W )|)
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✷

Lemma 4.12 For any fixed i, 1 ≤ i ≤ n, there are at most log n created workers (q,r,s) satisfying q <
i < r.

Proof: Consider the tree where each node is a created worker, and the children of node S are the workers

created to replace the worker of node S. The root of this tree represents the manager and its children are

the initial workers created. Let Wk denote all workers (q, r, s) at depth k in this tree that satisfy q +1 < r.

In other words, Wk are all nodes at level k in the tree that are “relevant” in that they satisfy q < i′ < r for

some integer i′. If W = (q, r, s) and W ′ = (q′, r′, s′) are two workers in W, we can see that the intervals

[q+1, r−1] and [q′+1, r′−1] are disjoint due to the way manager replaces workers. We can also see that

with each successive level, the interval size decreases by a factor of two. These two facts are illustrated in

figure 4. This means that there is at most one created worker on each level satisfying the conditions of the

lemma, and that there are at most log n total levels in the tree. ✷

Fig. 4: Relevant workers at many different levels of the tree.
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Lemma 4.13 There are at most log n created workers W that satisfy

CRESUB(W ) > 5PROC
ES(W )
ESA (|I (W )|). (14)

Furthermore, each of these workers also satisfy CRESUB(W ) < OPT(σ).

Proof: Let W be the set of workers satisfying equation (14), and let W ∈ W . From lemma 4.11,

we know that W must be a created worker that does not quit. By the way the worker simulates ESA,

CRESUB(W ) = CRE
ES(W )(|I (W )|). Lemma 3.5 shows that any worker which uses at least 2 spe-

cializations and does not quit cannot belong in W ; thus W must use only one specialization. Thus

CRESUB(W ) = c′(fk), where fk is the specialization that W uses for its first input. Let W = (q, r, s).
Then we know k < r, because otherwise W would have quit. We also know k > q, because if k = q,

then CRESUB(W ) = 0, meaning W /∈ W .

Let fi denote the first specialization where pi < ci. This means pj < cj for all j ≥ i, and pj ≥ cj for

all j < i. We examine the possible workers in three cases.

Case I. i ≤ q. This implies pq < cq. Since fk was chosen to minimize the cost of processing one

input, we know ck + pk < pq; this results in the contradiction that ck < cq; thus this case

cannot occur.

Case II. q < i < r. Since the optimal must pay at least ck + pk to process one input in [fr, fs], clearly

CRESUB(W ) < OPT. Lemma 4.12 bounds the number of workers in this case by log n.
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Case III. i ≥ r. This implies i > k, which means that pk > ck, and that CRESUB(W ) = ck < pk =

PROC
ES(W )
ESA (1), which would contradict W ∈ W . Thus, this case cannot occur.

Thus there are a total of at most log n workers satisfying equation (14), and each one also satisfies

CRESUB(W ) < OPT(σ). ✷

Lemma 4.14 Let P denote MLS(F , c, p,≺). Let W be the set of all created workers. Then if n ≥ 2,
∑

W∈W

PROC
ES(W )
ESA (|I (W )|) ≤ (2 log n)OPT

P(σ).

Proof: Let V be the set of optimal intervals. For any given W we can apply lemma 3.4 to get

PROC
ES(W )
ESA (|I (W )|) ≤

∑

V ∈V

PROC
ES(W )
ESA (|I (W ) ∩ I (V )|).

If we sum over all W ∈ W and then apply lemma 4.9, we get
∑

W∈W

PROC
ES(W )
ESA (|I (W )|) ≤

∑

W∈W

∑

V ∈V

PROC
ES(W )
ESA (|I (W ) ∩ I (V )|)

=
∑

V ∈V

∑

W∈W

PROC
ES(W )
ESA (|I (W ) ∩ I (V )|)

≤
∑

V ∈V

(2 log n)OPTINT(V )

= (2 log n)OPT(σ).

✷

Theorem 4.15 (4.2) On problem P = MLS(F , c, p,≺), if n ≥ 2, then

∀σ, CRE
P
MLSA(σ) ≤ (1 + 11 log n)OPT

P(σ).

Proof: Let W denote all created workers W satisfying CRESUB(W ) < 5PROC
ES(W )
ESA (|I (W )|) and W ′

denote all created workers not satisfying the previous relation. Then applying lemma 4.13 followed by

lemma 4.14 yields

CRE(σ) = c(f1) +
∑

W∈W ′

CRESUB(W ) +
∑

W∈W

CRESUB(W )

≤ OPT(σ) + (log n)OPT(σ) + 5
∑

W∈W

PROC
ES(W )
ESA (|I (W )|)

≤ (1 + log n)OPT(σ) + 5
∑

W∈W ∪W ′

PROC
ES(W )
ESA (|I (W )|)

≤ (1 + log n)OPT(σ) + (10 log n)OPT(σ)

= (1 + 11 log n)OPT(σ).

✷
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5 Proof of lower bound

In this section, we describe an adversary that shows any online algorithm for the MLS problem has

competitive ratio at least Ω(log n). We consider the case where the following is true:

• ≺ is a total ordering on F , so ∀i > j, fj ≺ fi.

• ∀i ≥ 1, ci = 1.

• ∀i ≥ 1, pi = 2−i.

A description of the adversary is as follows: Start with S = F , and give inputs with specialization level

fn. This continues until the online algorithm decides to create a specialization fk. fk divides S into two

sets: {f1, f2..., fk−1}, and {fk, fk+1, ..., fn}. Pick the larger set, and recursively apply this adversary

to it. In other words, if k − 1 > n/2, then start giving inputs with specialization level fk−1; otherwise

continue giving inputs with specialization level fn. Recursive calls continue while there are at least h
methods in set S. We later choose h to maximize our lower bound.

This adversary is designed to maximize both the processing cost and the creation cost that the online

algorithm pays in relation to the cost of the optimal solution. The key idea behind the adversary is that

the online algorithm does not get to effectively use the specializations that it creates; any time it creates a

specialization, the next input is chosen so that either that specialization does not get used, or it gets used

but a more specialized version would have been better. The creation cost is maximized in that we expect

the algorithm to create logarithmically many specializations.

In order to analyze the behavior of an online algorithm A on our adversary for the MLS problem, we

provide the following definitions and invariants:

• Ik denotes the kth input given to A by the adversary.

• Define variables ℓ and r so that {fℓ+1, fℓ+2, . . . , fr} is the contiguous set of methods that the

adversary tracks as the online algorithm runs; these are methods which are not yet used by A. We

use ℓk and rk to denote the values of ℓ and r, respectively, at the time just before the adversary has

given the algorithm Ik. Initially, ℓ1 = 0 and r1 = n. By definition, the adversary chooses Ik to

have specialization level frk
.

• For all k > 1, ℓk ≤ ℓk+1.

• For all k > 1, ℓk + h ≤ rk.

• For all k > 1, rk+1 ≤ rk.

• Let m denote the total number of methods that A creates.

Lemma 5.1 Let A be an online algorithm given t inputs from the adversary. Let ℓ = ℓt and r = rt be

the left and right boundaries for the uncreated methods of A. Then on the t inputs,

• the optimal algorithm pays at most 1 + t2−r, and

• A pays at least 2−ℓ(t − m) + m.
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Proof: We know from the basic facts that all t inputs have specialization level lev(It) or higher, meaning

they can all be processed with frt
= fr at total cost cr + tpr = 1 + t2−r; this bounds the amount the

optimal pays. Now consider the costs for A as it processes input Ik. If it does not create a method,

then by the basic fact invariants, it must use a method less specialized than fℓk+1. Thus it pays at least

2−ℓk ≥ 2−ℓ. If it does create a method, then it pays at least 1. Thus, the total cost is at least m for the

methods created plus (t − m)2−ℓ for processing the t − m inputs that did not trigger method creation. ✷

Lemma 5.2 Suppose that the adversary never stops giving the online algorithm A inputs. Then the

competitive ratio for A must be at least 2h.

Proof: Because of the invariant ℓ + h ≤ r, we know that the adversary is paying at least 2h times more

than the optimal for processing each input. Since there are infinitely many inputs, creation costs are

insignificant. ✷

Lemma 5.3 Suppose that the adversary eventually stops giving A inputs. Then m ≥ ⌊log(n/h)⌋.

Proof: Define sk = rk − lk to be the size of the interval when producing input Ik. Each interval

size change corresponds to the online algorithm creating at least one method. Every time the interval size

changes, we know that the size of the new interval is at least half of the size of the old interval. This means

it takes at least ⌊log(n/h)⌋ size changes before the interval size drops below h. Since the adversary does

not stop until the size drops below h, we know A makes at least ⌊log(n/h)⌋ size changes; this is a lower

bound on m. ✷

Lemma 5.4 Suppose that the adversary eventually stops giving the online algorithm inputs. Then the

competitive ratio for this algorithm must be at least min(log⌊n/h⌋, 2h)/2.

Proof: Lemma 5.1 gives us a lower bound of

m + (t − m)2−ℓ

1 + t2−r

on the competitive ratio, where t is the total number of inputs given to the online algorithm. Since ℓ+h ≤ r
from our basic invariants, t2−r ≤ t2−ℓ−h, so we can rewrite our lower bound as

m + (t − m)2−ℓ

1 + t2−ℓ−h
.

Case I. Suppose t2−ℓ−h ≤ 1. Then certainly the denominator of our lower bound is less than 2, and

the competitive ratio is therefore at least m/2.

Case II. Suppose t2−ℓ−h > 1. This implies the denominator of the lower bound is no more than

2t2−ℓ−h. Define α = m/t, so that m = tα. Since m ≥ 0, we know α ≥ 0. We can now

rewrite the lower bound as follows:

m + (t − m)2−ℓ

1 + t2−ℓ−h
≥

αt + (t − αt)2−ℓ

2t2−ℓ−h
=

α + (1 − α)2−ℓ

2−ℓ−h+1



118 Edwin S. Hong

= α2ℓ+h−1 + (1 − α)2h−1 = 2h−1(α2ℓ + 1 − α).

Since the online algorithm must create a specialization after seeing its first input, ℓ ≥ 1. Thus

we have a lower bound of 2h−1.

Combining both cases, the ratio is at least min(m/2, 2h/2). By lemma 5.3, m ≥ ⌊log(n/h)⌋. ✷

Theorem 5.5 (2.2) Any online algorithm for the online monotone linearly-ordered specialization problem

has competitive ratio at least (log n)/4.

Proof: Since the competitive ratio must be at least 1, clearly the statement is true for n ≤ 24. Lem-

mas 5.2 and 5.4 taken together imply that the competitive ratio of any online algorithm must be at least

min(log⌊(n/h)⌋, 2h)/2. Assuming n > 24, choose h so that 2h ≤ log n < 2h+1. This implies that

2h > (log n)/2, and that h = ⌊log log n⌋. Our competitive ratio is therefore at least

min(log

⌊

n

⌊log log n⌋

⌋

,
log n

2
)/2.

Using the fact that n > 24, we know

log

⌊

n

⌊log log n⌋

⌋

≥ log

⌊

n

log log n

⌋

≥ log(
n

log log n
− 1) > log(

n

2 log log n
)

= log n − 1 − log log log n > (log n)/2.

Thus the competitive ratio is at least (log n)/4. ✷

6 Conclusion

In conclusion, we present an online algorithm that decides between many different methods for processing

input, where some inputs may be more specialized than others. Our algorithm is O(log n)-competitive,

and we also provide an Ω(log n) lower bound on the competitive ratio for any online algorithm. We

believe that our algorithm’s design provides intuition for constructing online algorithms for a variety of

practical problems, including the problem of dynamic compilation.

There are many ways to improve our current model. The most obvious one is to eliminate the restriction

on the partial ordering. Since log n is a rather poor bound for use in practice, it may be better to change

the model to a statistical one in order to derive better performance bounds that may be more practical.

These new models could include information on the frequency of occurrence or probability of occurrence

of various input types. The worst-case scenarios represented by the adversary may not actually happen in

practice.

Another future direction to explore for this problem is to consider the model where methods can expire

and must be created again to be used. This can model the problems where only a limited number of

methods can be active at any one time (due to limited resources), or where the machinery used to process

the inputs wears out over time. In the dynamic compilation application, having a limited number of

methods active corresponds to limiting the amount of memory available for specialized versions of code.

Exploring these alternative models would result in a better understanding of tradeoffs inherent in this

problem, and could lead to better design of algorithms for practical specialization problems.
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