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Abstract. We give a compact expression for the number of factorizations of any permutation into a minimal number of
transpositions of the form (14). Our result generalizes earlier work of Pak (Reduced decompositions of permutations
in terms of star transpositions, generalized catalan numbers and k-ary trees, Discrete Math. 204:329-335, 1999) in
which substantial restrictions were placed on the permutation being factored.

Résumé. Nous présentons une expression compacte pour le nombre de factorisations minimales d’une permutation
arbitraire de transposition de la forme (1 7). Ce résultat généralise le travail passé de Pak (Reduced decompositions of
permutations in terms of star transpositions, generalized catalan numbers and k-ary trees, Discrete Math. 204:329—
335, 1999) dans lequel des restrictions substantielles sont imposées sur la permutation étant factorisée.
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1 Introduction

It is well known that the symmetric group &,, is generated by various sets of transpositions, and it is
natural to ask for the number of decompositions of a permutation into a minimal number of factors from
such a set. For instance, a famous paper of Dénes [[1] addresses this question when the generating set is
taken to consist of all transpositions. Stanley [[10] has also considered the problem for the set of Coxeter
generators {(i ¢ +1) : 1 <i<n}.

More recently, Pak [9]] considered minimal decompositions of permutations relative to the generating
set S = {(14) : 2 <i < n}. The elements of S are called star transpositions because the labelled graph
on vertex set [n] = {1,...,n} obtained from them by interpreting (a b) as an edge between vertices a and
b is star-shaped. Pak proves that any permutation 7 € &,, that fixes 1 and has m cycles of length k£ > 2
admits exactly

E™(mk 4+ m)!

R E— ey
decompositions into the minimal number n + m — 1 of star transpositions. He leaves open the problem
of extending (1) to more general target permutations 7, and it is the purpose of this paper to answer this
question.
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Our result is best expressed in terms of minimal transitive star factorizations, which we now define.
A star factorization of m € &,, of length r is an ordered list f = (74,...,7,) of star transpositions 7;
such that 7y - - - 7. = 77@] We say f is minimal if 7 admits no star factorization of length less than r, and
transitive if the group generated by its factors acts transitively on [n].

Observe that a permutation © = (1 by - - - by, )(af ---a,)--- (af* - - - aj" ) € &, with m cycles admits
the transitive star factorization

m=(1bg,)(1 bgy—1) -~ (1 b2) (1 a})(1 a,)(1 ag, )~ (1 af) -

=(1 ba-by,) =(a3-a,
(L ai")(1 o] (1 ag, 1)~ (1 af")
=(apag,)

of length {1 — 1+ Y",(¢; + 1) = n + m — 2. Moreover, it is well known [4] Proposition 2.1] that any
transitive star factorization of 7 requires at least this many factors@ Thus a transitive star factorization
of 7 of length exactly n + m — 2 is said to be minimal transitive. It is easy to see that Pak’s factorizations
are minimal transitive.

Our main result is the following:

Theorem 1 Let m € &,, be any permutation with cycles of lengths {1, . .., L,,. Then there are precisely
—2)!
(tm=2, .,
n!

minimal transitive star factorizations of T.

Pak’s formula (I)) is recovered from Theorem [I| by setting /; = 1 and ¢ = --- = {;,11 = k and
observing that a star factorization of a permutation with no fixed points other than (possibly) 1 must be
transitive, since 7(a) # a means any star factorization of 7 involves the factor (1 a). It is straightforward
to deduce from Theorem [I|the number of minimal (not necessarily transitive) star factorizations of a given
permutation:

Corollary 2 Let m € G,, be any permutation with cycles of lengths {1, . . . , L., including exactly k fixed
points not equal to 1. Then there are

(n+m —2(k + 1))!

) Oyl

minimal star factorizations of T.

Given the special role played by the symbol 1 in star factorizations, the lack of bias towards this symbol
in the enumerative formula of Theorem [I]is quite surprising. Indeed, this symmetry is a very compelling
aspect of the theorem, and it is not yet understood. Further comments on this curious symmetry, and
recent extensions of these results, will be made in Section 4}

Below we outline a graphical approach to Theorem|[I]that employs the well-known connection between
factorizations of permutations and embeddings of graphs on surfaces (i.e. maps). Star factorizations

 We multiply permutations in the usual order, so po(j) = p(co(5)).
(D In fact, this holds true when arbitrary transposition factors are allowed.



Factorizations into Star Transpositions 509

Fig. 1: The planar map corresponding to (1234567) = (25)(36)(27)(35)(17)(34).

are thus seen to correspond with certain labelled trees, which can themselves be encoded as decorated
Dyck sequences and enumerated using the cycle lemma. An alternative proof, using methods deliberately
similar to those of [9], can be found in the full version of this extended abstract [[7].

2 A Graphical Correspondence

Transitive factorizations in the symmetric group are well known to be in correspondence with certain
classes of labelled maps, and this connection provides one elegant path to Theorem We shall use
a version of the factorization-map correspondence introduced in [6]. An alternative formulation of the
factorization-map correspondence, developed with great effect in [8]], can be applied here with equal ease.

Let f = (71,...,7) be a transitive factorization of 7 € &,,, where the factors 7; are arbitrary transpo-
sitions. (That is, the group generated by the 7; acts transitively on [n].) Then f naturally induces a graph
G on n labelled vertices and r labelled edges, as follows: the vertex set of G is [n], and there is an edge
with label 7 between vertices a and b whenever 7; = (a b). The transitivity of f ensures G is connected,
so Gy admits a 2-cell embedding in an orientable surface of minimal genus. A unique such map M; is
determined by insisting that the edge labels encountered on clockwise traversals of small circles around
the vertices are cyclically increasing. Faces of M correspond with the cycles of 7, and the Euler-Poincaré
formula thus implies M is planar precisely when f is minimal transitive.

Example 3 The factorization (1234567) = (25)(36)(27)(35)(17)(34) is minimal transitive. lts
corresponding planar map is shown in Figure O

The maps corresponding to minimal transitive star factorizations are particularly simple. Consider, for
example, the factorization

(1Tl9)(1?1)(1@;))(1742)(1?0)(1%)(1%)(1%)(171)(?;)(I%)(I%)(f?o)(?é) @)
of
7= (182)(3)(45107)(6)911) € &1;. 3)

The planar map associated with this factorization is drawn in Figure[2]

Since such a map must be planar with edge labels increasing clockwise around the central vertex 1, no
edge {1, a} can appear more than twice. When two copies of {1, a} are present they enclose a face of the
map. It is this face that is associated with the cycle of the target permutation containing symbol a, and a
vertex b of degree one lies within it precisely when b belongs to this same cycle.
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Fig. 3: From maps to trees.

The canonical labelling of edges around the central vertex makes all but one of the edge labels super-
fluous. Moreover, the labels of all vertices of degree 1 may be deduced from the target permutation and
the labels of the other vertices. Thus all maps corresponding to minimal transitive star factorizations may
be reduced in the manner demonstrated on the right of Figure

From this reduced form, create a tree as follows. Begin by placing a vertex with label 1 in the outer
face, so that every labelled vertex is naturally associated with one face of the map. Then draw an edge
between each labelled vertex and all (non-central) vertices that are incident with its associated face. See
Figure 3] for an example.

Let 7 € G,, be any permutation, and suppose it has cycles o1, ..., 0, listed in increasing order of
least element, with corresponding orbits Oy, ..., O, (that is, O; is the set of symbols moved by o;). Let
us write F,; for the set of all minimal transitive star factorizations of 7, and 7, for the set of all bicoloured
plane trees on m labelled white vertices and n — m black vertices in which

1. the root is white with label 1,
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2. the non-root white vertices are labelled {as, ..., an}, where a; € Oj,

3. the white vertex with label a; has |O,| — 1 black children, for j = 1,...,m.

Given a factorization f € F, the correspondences described above allow us to first transform f into a
planar map M, and then transform M into a plane tree Tr. Moreover, the full transformation f — T
is clearly bijective between F and 7, whence | F| = | 7|

3 Counting Star Factorizations

We now prove Theorem [I| by enumerating the trees of 7, for fixed 7 € S,,. The key is to observe that
each such tree can be encoded using a Dyck-type sequences.
Assume the notation of the previous section, and for convenience set ¢; = |O,| for 2 < j < n, and

r := n+m — 2. Consider the set of sequences (dy, d1, . . ., d,) whose entries d; are either 1 or —Egkj) for
some j € {2,...,m} and some k; € O;. Here the exponent (k;) is considered to be a formal decoration.
Of these sequences, let D, be the subset satisfying the following properties:

e aterm of the form —¢*)

;" appears exactly once, for 2 < 5 < m, and

e all partial sums (ignoring decorations) are positive.

Given a tree T' € T, create a sequence dr € D, as follows: Traverse the boundary of 7', beginning
at its root and proceeding clockwise, writing 1 whenever a vertex is encountered for the first time, and
—i(®) when a white vertex with label k > 2 and 7 — 1 black children is encountered for the last time. For
instance, the tree in Figure [3]yields the sequence

(1,1,1,-29,1,1,1,1,-1® 1,1,1, -1 409 1), 4)

The mapping T' — dr is readily seen to be bijective, and thus |Z;| = |D|. So we now turn to
enumerating D,.. Our main tool is the cycle lemma of Dvoretzky and Motzkin [2], one version of which
states that any sequence with integral entries < 1 and total sum s > 0 has exactly s cyclic rotations with
all partial sums positive.

Any sequence in D is of length » + 1, consisting of m — 1 terms of the form —€§-kj) along with
r+1— (m — 1) = n entries equal to 1. If we do not insist that partial sums are positive, there are exactly

|
CED
sequences of this type, where the factors £; account for all possible choices of the £;. The sequences
(do,ds,...,d,) € D we wish to count are further characterized by having all partial sums positive. But
since they have total sum (ignoring decorations)

Sdi=n-1—(la+-+ln)=n—(n—1l)=10,
=0

and since a sequence of length » + 1 = n + m — 1 admits n + m — 1 cyclic rotations, the cycle lemma
implies that
- 1! L
(ndm-Dt, o, b
n! n+m-—1
Theorem 1| now follows, since | 7| = || = |Dx|. O

|D7r| =
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4 Further Questions

Notice that Theorem [T]asserts that the number of minimal transitive star factorizations of a permutation 7
depends only on the conjugacy class of 7 (that is, the length of its cycles). This is certainly not obvious
from the formulation of the problem, since one would certainly expect that the length of the cycle of 7
containing symbol 1 would play a special role.

Moreover, Goulden and Jackson [5] have recently extended Theorem |l| to compute the number of
transitive star factorizations of any permutation into an arbitrary number of factors (that is, minimality is
not assumed). Interestingly, they witness the same symmetry in their results: the number of transitive star
factorizations of 7 of length r is dependent only on the conjugacy class of . Moreover, they observe a
very interesting connection between star factorizations and the Double Hurwitz Problem, a combinatorial
problem concerning transitive factorizations that is of much interest to geometers studying intersection
theory.

Finding a simple combinatorial explanation for this curious symmetry remains an interesting open prob-
lem. Further open questions regarding star factorizations and their role in the general interplay between
factorizations and geometry are discussed in [5]].
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