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Abstract. We prove a collection of conjectures due to Abuzzahab-KetseMeyer, Reiner, and White regarding
the cyclic sieving phenomenon as it applies to jeu-de-tagubmotion on rectangular tableaux. To do this, we use
Kazhdan-Lusztig theory and a characterization of the dambnical basis of[z11, ..., znx»] due to Skandera. Af-
terwards, we extend our results to analyzing the fixed pahtsdihedral action on rectangular tableaux generated
by promotion and evacuation, suggesting a possible sighiegomenon for dihedral groups. Finally, we give appli-
cations of this theory to cyclic sieving phenomena invajvieduced words for the long elements of hyperoctohedral
groups, handshake patterns, and noncrossing partitions.
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1 Introduction

Let X be a finite setC = (c) be a cyclic group acting oiX, and X (¢) be a polynomial inZ[g]. Let

¢ € C be a primitive]C|*" root of unity. Following Reiner, Stanton, and White (15), s&y that the triple
(X, C, X(q)) exhibits thecyclic sieving phenomend&SP) if for alld € N, |X°’d| = X(¢%). Thatis,

the cardinality of the fixed sex’ is given by the polynomiak (¢) evaluated ay = ¢<. In particular,
X(1)=|X|.

In their paper, Reiner et. al. give several examples of cyadtions and polynomials which exhibit
the CSP. For example, if we 1éf be the set ok-subsets ofn] andC = Z/nZ act onX by the long
cycle(1,2,...,n) € S,, then the triple( X, C, [Z}q) exhibits the CSP, Whergjq is the g-analogue of
the binomial coefficien{}). That is, [’Ijq = m where[m!], := [m],[m — 1],---[1], and
[i]q == % The same authors exhibit another CSP by letfiigpe the set of all triangulations of the
n-gon andC' = Z/nZ act onX by rotation. Again in this cas& (¢q) is equal to the-analogue of X|.

Given a partition\ - n, let SYT()\) denote the set of all standard Young tableaux of shapk is
known that jeu-de-taquin promotion defines a cyclic actiothe setSY 7'(\). Moreover, the hook length
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formula is a well-known way to computé® := |SYT()\)| given by

n!

i (1.1)

- g genhiy’

whereh,; is the hook length ik corresponding to the positidg, j). In the pattern of the above examples,
one might suspect that there is another instance of a CSPXvithSY T'(\), the cyclic group being the
action of jeu-de-taquin, an (¢) the g-analogue of the hook length formula,

_ [nlly
Xla) = i jyealhijle (12)

Unfortunately, this conjecture is false in general. It isgible to show that it holds for hook shaped
A, and in this case reduces to the aforementioned CSP-$oibsets ofn]. However, even for the shape
A = (3,2) the aforementioned conjecture does not hold. The first ntegorem of this paper proves a
conjecture of Reiner et. al. this this holds wheris a rectangle. We also prove a related conjecture
of the same authors which predicted a CSP given by leting= C'ST(\, k), the set of column strict
tableaux of a rectangular shapewith entries bound by some numbler> ¢()\’), letting jeu-de-taquin
promotion act onX, and lettingX (¢) be (up to a power of) the principal specialization of the Schur
function sy given bysy(1,q,...,¢*1). (It should be noted that, for us, the entries in a columretstri
tableaux will increase weakly across rows and strictly doasumns. A tablead’ is row strict if and only
if the conjugatel” is column strict and the set of row strict tableaux of shaped entries bounded By
is RST(\ k).)

While CSPs are combinatorially interesting phenomena ith @inthemselves, they often allude to
deeper algebraic structure. Often, while the initial probf CSP is a brute force counting argument,
further analysis reveals that a more elegant and revedlijgdpenic approach exists. One tool used in the
proof of the CSP or([z]) was Springer’s results (21) on regular elements, and tlail§ sb used again in
our work. Our main strategy throughout will be to model théacof promotion via representations.

More specifically, letX be either the se§YT'(\) or theCST (A, k). In either case, we shall form a
representation of degreé&’| with basis vectors, indexed by elements € X. We will also give an
operatorT in the image of this representation such that, up to a pradietsign, we have th&t(f,) =
[ always, wherg () is the image of: under jeu-de-taquin promotion. With this set-up, counting
number of fixed points of various powers of the opergtr equivalent to evaluating the trace of various
powers ofI" and this latter problem can be attacked with the technigfieepoesentation theory.

A hint at how to do this for the casgé = SYT'()\) is provided by the work of Berenstein and Zelevinsky
(3) and Stembridge (24) regarding Stembridge’s —1 phenomenon. The = —1 phenomenon is the
special case of a CSP where the cyclic group has order 2. drctise, the specification of the cyclic
action is equivalent to specifying an involution on the séiick is acted upon. Evacuation on either
standard or column strict tableaux was one such involut@rsiclered by Stembridge. Given- n an
arbitrary partition, we have the Kazhdan-Lusztig (leftldar representation correspondingtavhich
has basis vectors identified wiy7'(\) and is isomorphic as a#,,-module to the Specht moduf*
corresponding to.



Cyclic Sieving, Promotion, and Representation Theory 395

Theorem 1.1 (Berenstein, Zelevinsky (3), Stembridge {23gnote the\-KL cellular representation by
p. Letw, € S, be the long element.

Then, up to a plus or minus sign, we have thai,) is the linear operator which sendB to e(P),
wheree is evacuation.

We prove an analogous result (Proposition 3.5) which reguwirto be rectangular, replaceswith 7,
and replaces the long elemens € S,, with the longcyclec,, = (1,2,...,n) € S,. The rectangularity
of A is essential in the proof of Proposition 3.5 for reasonsteel#do a symmetry of the Klu-function
(Proposition 3.2), a cyclic action on a new combinatorigeobcalled the ‘extended descent set’ related
to rectangular tableaux (Lemma 3.3), and the preservafioreducibility of S,,-modules corresponding
to rectangular shapes upon restrictiorbtp ;.

The proof of the column strict conjecture builds from theecasstandard tableaux. We first consider a
basis of anS,,-module dual to the KL cellular basis which can be interptéteterms of images of certain
polynomials called ‘immanants’ under a certain projecticep. This leads to a basis indexed by column
strict tableaux for a module over the general linear groufckviturns out to be irreducible of highest
weight\. This uses a characterization of Lusztig’s dual canoniaaldbdue to Skandera (20).

There exist fancier versions of the CSP in which the groumads not cyclic. Barcelo, Reiner, and
Stanton (2) consider an action of a product of two cyclic goan complex reflection groups and prove
a ‘bicyclic sieving phenomenon’. In our situation, it fog that for rectangular shapes we have a
dihedral action on any o$YT'(\), column strict tableaux with uniformly bounded entriesy@w strict
tableaux with uniformly bounded entries given by the groepearated by the actions gfande. We
determine the size of the fixed point set corresponding tocamjugacy class of this dihedral group,
interpreting this as a step towards an occurrence of a ‘détasteving phenomenon’. This result proves
a conjecture of Abuzzahab, Korson, Li, and Meyer (1) androe4ps one of their theorems, as well as a
theorem of Stembridge (24).

The organization of this paper is as follows. In Section 2 exdaw some background regarding com-
positions, partitions, tableaux, and Kazhdan-Lusztigtieln Section 3 we prove our CSP for the case
of standard tableaux. In Section 4 we prove our CSPs for colstmict tableaux. In Section 5 we prove
results concerning the dihedral action of promotion andgation. In Section 6 we apply our results to
obtain a CSP for a cyclic action on the set of reduced wordthlong element of the Coxeter groisp
of signed permutations o¢f]. In Section 6 we also use our results to get a CSP for nonagpsirtitions
and handshake patterns. Most proofs are omitted for thenebetd abstract; for more details, see (17).

2 Background

A more detailed exposition of the material in this section ba found in, for example, (22), (23), (19),
and (9). Givenn € N, by acompositiona of n we mean a finite sequence of nonnegative integers
(a1,...,ak) such thate; + --- + ax = n (some of thew; are allowed to be zero). Define thength

of a to be/l(a) := k. Write « | n to denote thatv is a composition ofx. Also write ¢.« for

the composition(ay, a1, . .., ax—1) of n andw,a& for the compositiona, ag—1,...,a1) of n. Any
compositiona = n of lengthk defines a functiofin] — [k], also denoted by, given bya(i) = j if

i€ (g4 +a_1,a1 + -+ ;). For example, i = 6 andk = 7 andy is the composition 06



396 Brendon Rhoades

given by(0,2,0,0, 1, 3,0), we have that the associated funct{6h— [7] is given bya(1) = «(2) = 2,

a(3) = 5, anda(4) = a(5) = a(6) = 6. A partition of n is a weakly decreasing composition of
with no entries equal to zero. Define a statigtion partitions by<(\) = 0A1 + 1A2 + 2X3 + - - -, where
A= (Al,...,)\k)l—n.

For any compositionx = n with {(«) = k, defineCST (A, k, ) (resp. RST(A, k, ) to be the set
of column strict (resp. row strict) tableaux of shapand content.. If A - n is a hon-skew shape and
T € SYT (M), write D(T') for the descent set &f.

For eachi € [n — 1] we denote by, the adjacent transpositidn, ¢ + 1) in the symmetric grou,,.
In this paper, writingz < w for permutations; andw will always mean that; andw are comparable in
Bruhat order. Given permutatiomsandw, definel(u, w) = ¢(w) — £(u) to be the difference in lengths
between: andw. We will sometimes identify permutations with their onadinotations = wiws . . . wy,
meaning thatv sendsl to wy, 2 to ws, and so on. We leg; act onS,, on the left by swapping the letters
in positions; and: + 1, whatever those letters may be. For exampje, 142563 = 124563. Define the
long elementw, € S, to be the permutation whose one-line notation(s — 1) ... 1. For two standard
tableauxP and@ of shape\, we will always writew — (P, ) to denote that the permutatianmaps to
(P, @) under RSKrow insertion.

Given a tablead” € CST(\, k, «), define the imagg(T") of T under jeu-de-taquin promotigito be
the element oC'ST (A, k, c,.«) obtained by replacing evedyin T' by a dot, playing jeu-de-taquin dh
to move all of the dots into the upper left hand corner, insiregevery entry of the resulting tableau by
1, and replacing every dot withla Observe thaj(T) is in particular well defined fof” € SYT'(\)(=
CST (A, n,1™) and mapsSYT () toitself. If T € RST (A, k, o), we have thaf’ € CST (N, k, «) and
J(T) := j(T")'. Also denote by the operation of Schutzenberger evacuation on eithenaobtrict or
standard tableaux.

Kazhdan and Lusztig studied representations of Hecke edgeh (12) and introduced a basis for
the Hecke algebrdl,,(¢) which specializes a = 1 to a basis for the classical group algeliis,,].
The definitions of these bases involve certain polynomigls(q) € Nlq] defined for ordered pairs of
permutationgu, v) called theKL polynomials These polynomials have been studied extensively ((5),
(7), (8)) and we record a couple of their basic properties her

Lemma 2.1 Let u, w be permutations iff,,. We have thaf, .,(q) # 0 if and only ifu < w and the

. L(w)—~L(u)—1
degree ofP, ,,(q) is at most%.

w)—£(u)—1
2

In light of the above result, define(u,w) to be the coefficient o&f]“ in P, .(q). Thatis,
u(u, w) is the coefficient of the maximum possible powegaf P, .,(q), if it appears. We shall also use
a symmetrized versiopn[u, w] of u defined byu[u, v] := max(u(u, v), u(v, w)).

We have the following change-of-label result which reldates. function to the RSK algorithm. (9)

Lemma2.2 LetA - nandletP, Q, S, andT be standard tableaux of shape Identify permutations
with their images under RSK.
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We have that

u[(va>a(st)] :/L[(PaT)a(QvT)]a (21)
M[(Pa S)? (P, T)] = M[(Qv S), (QvT)] (2.2)

In light of the above lemma, we defindP, ] for two standard tableauR and( of the same shape
to be the numben[(P,T), (Q, T)], where we identify permutations with their images under RBIKT
is an arbitrary standard tableau of the same shapgeasd().

Kazhdan-Lusztig theory leads to an important avatar ofrileelucible representations of the symmetric
group. Fix a partitiomn\ - n and define an action of the adjacent transpositipon the vector space
C[SYT(N)] by:

op {P if i € D(P) 2.3)

P+ icpo P QlQ ifi¢ D(P)

fori e [n —1]andP € SYT ().
Remarkably, this action of the adjacent transpositigmespects the Coxeter relations for the symmet-
ric groupS,, and so make€[SY T'())] into anS,,-module. Again remarkably, this module is isomorphic

to the irreducible representation 8f, indexed by\ and called théleft cellular) KL representation cor-
responding to\.

3 Promotion on Standard Tableaux

Given a rectangular shape= b with ab = n, we want to determine how the operation of jeu-de-taquin
promotion onSYT'()\) interacts with the left KL cellular representatiéit of shape\. Our first goal

is to show that the promotion operatpmteracts nicely with the: function. Define a deletion operator
d:SYT(b*) — SYT(b*~1(b— 1)) by lettingd(U) be the (standard) tableau obtained by deletingithe
in the lower right hand corner @f.

Lemma 3.1 ForanyU,T € SYT(b*), we have thau[U,T| = u[d(U),d(T)].

It is well known (see (6)) that[e(P), e(Q)] = u[P, Q] for any standard tableaur and@ having the
samearbitrary shape. We use this fact and the above result to get the désatembout the action of.

Proposition 3.2 Let P, ) be standard tableaux which are either both9&7°(6%) or SY T (b*~1(b—1)).
We have that[P, Q] = u[j(P),j(Q)].

This lemma says that, in the special case that our shape idangée or a rectangle missing its outer
corner, the action of promotion preserves th&unction. This does not hold in general for other shapes
(A = (3,1) is a counterexample).

To better understand the action of promotion, we introduoeva combinatorial set related to rectan-
gular tableaux. Given a standard tabldaof rectangular shapk', define theextended descent set of P
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D.(P) C [n], as follows. Forl < ¢ < n — 1, say thati € D.(P) if and only if 7 is in the ordinary
descent seD(P). LetU be the tableau with entrie2, 3, ..., n} obtained by deleting thé in P and
playing jeu-de-taquin to move the resulting hole to the lovight hand corner. The entry is either
immediately above orimmediately to the left of the hole ia lbwer right hand corner d@f . Say that is
contained inD.(P) if and only if » appears above this holelin D.(P) is therefore the ordinary descent
setD(P) C [n — 1], with the possible addition of the letter

Lemma 3.3 LetP € SYT(b*). For anyi, i € D.(P) (modn) ifand only ifi + 1 € D.(j(P)) (modn).

We record a technical lemma about the image of the long cyudethe KL representation. Its proof is
straightforward, albeit somewhat tedious. For the reledefinitions, see (17).

Lemma3.4 Lete, = (1,2,...,n) € S, be the long cycle. LeXt = b* be a rectangle. Identify permuta-
tions with their images under RSK. The coefficient of the KiisbelemenCéj(CSS(A)) Cssm)(l) in the

expansion o, Clg51) css(n) (1) in the KL basis 0[S, ] is (—1)a—t,

We now have all of the ingredients necessary to analyze thgamrship betweeri and the KL represen-
tation. Specifically, we show that up to a predictable sc¢alacts like the long cycl€l, 2,...,n) € S,.

Proposition 3.5 Let A = b* be a rectangular shape withh = n and letp : S,, — GL(S*) be the
associated KL cellular representation, with basis ideetifivith SYT'(\). Letc, denote the long cycle
(1,2,...n) € S,,. Define aC-linear map.J : S* — S* by extending/ (P) = j(P).

We have thap(c,,) = (—1)*~1J.

Proof: We show thatfoi = 1,2,...,n — 2 we have

I p(en)p(si) = p(si) I~ plen).

Given a standard tabled®?, let j~!(P) be the unique tableau which mapsRounder promotion. From
the corresponding conjugation relation in the symmetraugrit follows that

pen)p(si) = p(siv1)p(cn). 3.1)

On the other hand, because< i < n — 2, we have that for any € SYT'(\),

—J~Y(P) ifi+1¢e D (P

)
<>+2HEDQMWQ] Q) Wit1¢ D(P) 3.2

I p(si1)(P) = {

_ ( if i € De(71(P)) (3.3)
)+ ZleD Q) WP QLIHQ) ifi ¢ De(j71(P)) '
{ o EDGTP) g g
+ ZleD S RUTHP), S THQ)] i g De(57H(P))
= p(si)J H(P). (3.5)
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The first equality is the definition of the KL representatitiie second is Proposition 3.2, the third is
Lemma 3.3, and the fourth is again the definition of the KL esentation.

The above discussion implies that the operatot p(c,,) commutes with the action of the parabolic
subgroupsS,,_; of S,, on the irreducibleS,,-moduleS*. Since)\ is a rectangle)\ has a unique outer
corner and by the branching rule for symmetric groups, te&iotion 5* LS __remains an irreducible
Sn—1-module. Therefore, by Schur's Lemma, we conclude thattisea numbew € C so that

J =vp(cn).

We want to show thay = (—1)2~L. This follows from Lemma 3.4. a

The above result states that for Specht modules of rectanghbpe the image of the long cyelg
under the KL representation is plus or minus the permutatiatrix which encodes jeu-de-taquin pro-
motion. It is not true that any conjugate of in S,, enjoys this property - indeed, many are not even
permutation matrices. Observe the analogy to Theorem lidhvgtates that the image of the loagg-
mentw, under the KL representation for an arbitrary shape is plusiaus a permutation matrix which
encodes evacuation.

Also notice that ifA is a partition of any nonrectangular shape, themas more than one outer corner.
This implies that the restricted moduse lngl is not irreducible and the above proof breaks down.

As a corollary to this we get a result due to Haiman (10) on tldeioof promotion.
Coroallary 3.6 For A - n rectangular, every element 6fv'T'()\) is fixed by;™.

The order of promotion oY T'(\) for arbitrary shapes is unknown. Haiman proved the converse of
the above result, as well.

Let s,, denote the “affine” transpositiofi,n) in .S,,. As another corollary, we get a formula for the
image ofs,, under the KL representation in terms of the extended desent

Corollary 3.7 Let A = b be a rectangular shape and identify the basis of the cornedpgy left KL
cellular representation witl5Y T'(\).

-r if n € D.(P)
= i 3.6
| {PJF > onen. (@ MPQIQ ifn ¢ D(P). (3.6)

We have that

Proof: Using the notation of the proof of the above proposition, \aeenthats,,_; commutes with the
action of J=1p(c,,). It follows thatJ~'s,, (P) = s,_1J~1(P). The desired formula follows. O

Finally, the above analysis leads to many equalities obefficients.

Corollary 3.8 Let\ - n be a rectangle and I6t” andY” be two orbits ofSYT'(\) under the action of
which have relatively prime orders. GivéhQ € Y and P’, Q' € Y’ we have thau[P, P'] = u[Q, Q'].
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For example, when = 6 and\ = (2, 2,2), we have thatSYT'(\)| = 5 and the cyclic action of on
SYT()\) breaksSYT'(\) into one cycle of siz& and one cycle of siz&. Explicitly, the operatoy acts
onSYT((2,2,2)) via:

14 12 13 13 1 2
25 35 24 2 5 3 4 (3.7)
36,46 ,56 46 ,5 6

Mapping the elements of these orbits to their column readiogls inSg, the above Corollary implies
that whenv is any element of the sdB21654, 521643, 431652} C S andw is any element of the set
{421653, 531642} we have thap[v, w] is a constant. Sincé21653 covers321654 in Bruhat order, we

see that this common value pfis equal tol.

An application of the above proposition yields our desireduit on cyclic sieving in the action of
jeu-de-taquin on standard tableaux.
Theorem 3.9 Let A\ = b* be a rectangular shap&; = Z/nZ act onX = SYT()\) by jeu-de-taquin
promotion, andX (¢) = f*(q) be the g-hook length formula.

The triple (X, C, X (q)) exhibits the cyclic sieving phenomenon.

In the above example of the action of promotion®¥iT'((2, 2, 2)), we have that

F22)(g) = 164 — (gt A1+t +¢+qh (3.8)

Letting¢ = ¢%, we compute directly that
e =5 fR2I(Q =0 fe22() =2

f(2,2,2)(c3) =3 f(2,2,2)(c4) -9 f(2’2’2) (CS) —0. (3-9)
This is in agreement with the fixed point set sizes:
ISYT((2,2,2)' =5 [SYT((2,2.2)))| =0 |SYT((2,2,2))|=2 (3.10)

ISYT((2,2,2))7°| =3 |SYT((2,2,2))" | =2 |SYT((2,2,2))°| =0,

as predicted by Theorem 3.9.

27i

Proof: (Sketch) By Corollary 3.6, C does indeed act on X by promotibet { = e¢™» . Viewingc =
(1,2,...,n)as apermutation matrix i, C G L, (C), we getthat is conjugate to diad( ¢, ¢?,...,¢(" ).
This means that for any > 0, ¢¢ is conjugate to diag( ¢?, ¢3¢, ..., ¢4 n=1),

Let x* denote the character of the irreducible representatiofi,,oforresponding of\ A result of
Springer (21) on the fake degree polynomial for the coirargralgebra of typed,,_; implies that, for
anyd > 0, we have the formula* (c?) = ¢ fA(¢?), wherex()\) = 0\; + 1A + 2X3 + - --. Since
A = b%, we can compute that(\) = 2421 which implies thag< (") = (~1)4-1),

On the other hand by Proposition 3;5)(c?) is equal to the trace of—1)4*~1).j¢, where.J is the
permutation matrix which records promotion. This tracé-id )4@—1 times the number of fixed points

| X7 | of the action ofj? on X. The desired CSP follows. O
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4 Promotion on Column Strict Tableaux

The goal in this section is to extend the results of the lagdt@®concerning rectangular standard tableaux
to the more general setting of rectangular column stridetalx. To do this, we will use Skandera’s (20)
characterization of the dual canonical basi€df,, ..., x,,]. In order to present this characterization,
we introduce the notion of immanants.

For a positive integen € N, letz = (z,;)1<: j<n D€ ann x n matrix of commuting variables and
let Clz11, . .., %nn] be the complex polynomial ring in these variables. We wilihetimes abbreviate
the latter ring asC[z;;]1<; j<n. Call @ polynomial inC[z;;]1<i,j<» animmanantif it belongs to the
C-linear span of the permutation monomigls, .1y - - Ty, w(n) |w € Sp}. Thus, immanants form an
nl-dimensional complex vector space. Given any polynotfifah 1, ..., znn) € Clz;j]i<i j<n and an
n x n matrix A = (a;;) with entries in any commutativE—algebraR, definef(A) to be the element
f(a11,--.,an,) Of R obtained by applying to A.

Following (18), define for anw € S,, thew-Kazhdan-Lusztig immanahtum,, (z) by the equation

Imm,, (z) = Z (*Ue(w’v)Pwovywow(Uzl,v(l) © T y(n)-

v>w

Specializing to the identity permutation, we have thatn, (z) = det(x).

More generally, given any pair of compositionss = n with, we define the matrix, g to be
(Ta(),8(j))1<i,j<n- Note that either or both af(«) or £(3) may exceedh. We also construct the corre-
sponding polynomial rind[z.;),a(;)]1<i,j<n. FOr a permutatiom € S, denote byimm,,(z.,3) the
element ofC[z, (), 5(;)]1<i,j<n Which results in applying the-Kazhdan-Lusztig immanant to the matrix
Za,p. S0, for example, we have thehm,, (x) = Imm,, (21~ 1»). In this paper we will mostly be inter-
ested in the case whefe= 1". Skandera showed that Lusztig’s dual canonical basis caotsructed
from polynomials of the formimm,, (z.,g), and we will use these polynomials in our results, as well.

Theorem 4.1 (Skandera (20)Let £ > 0. The nonzero elements of the $&tm,,(z, g)}, wherew
ranges ovels,, anda and§ range over all possible compositionsiohaving lengthk, are linearly inde-
pendent and a subset of the dual canonical basis of the pofiaioing Clx11, . . . xxx] in k? variables.

LetY = CF andZ = C" be two complex vector spaces of dimensiarendn, respectively. Let
andZ* denote their dual spaces with standard bdges . ., yx } and{z1, ..., z, }, respectively. Now the
tensor product’™ ® Z* has basig;; := y; ® z;, for1 <i < kandl < j < n. In this way, we identify
an action of the general linear groGfl.(Y') = GL(CF), where matrices act on the first component of
simple tensors by - (f ® h) := (fg~!) ® h. Takingn = k andi € [n — 1], viewing the adjacent
transpositiors, as an element of,, C GL(C™), we quote a result from (18) about this action.

Lemma4.2 Letw € S,,. We have that

—I w % )
silmmu,(x) _ { mm (x) S;w > w 4.1)

Imm,, (2) + Imms,o (2) + 32, .o, p(w, 2)Imm,(z)  siw < w.
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One can show that the Kazhdan-Lusztig immanants form a fmadise vector space of immanants. In
fact, identifying permutations with their images under R$# any A\ - n andT € SYT()), we have
that the space

Wrpan = C{Imm g py(z) [P € SYT(N)} @ @ C{lmm ) (z)|U, S € SYT(v)}  (4.2)

U>domA

is closed under the left action 6f,. Moreover, the quotient space

Vinan =Wrni/( @ C{Immy,s)(2)|U, S € SYT(v)}) (4.3)

U>domA

carries the irreduciblé,, -representation corresponding to the shapa basis forlr,, 1~ is given by the
image of the sefImm 7, p)(x) [P € SYT(A)} under the canonical projection map. Lettihg (P) de-
note the image dfmm p, p () under this projection, we can write this basig{ds. (P) [P € SYT()\)}.
By a change of label argument, the representatid$),aén the quotient spader ,, ;» does not depend on
the choice of the tabledl, and is given by

—I1n (P) if i € D(P)
L (P) + Y pioy HIP. QI (Q) i1 ¢ D(P).

The next lemma computes the effect of multiplication by thegl cycle inS,, on ;- (P) for rectangular
shapes.

Lemma4.3 Let\ = b® be arectangle and leP € SYT()). Lete, = (1,2,...n) € S, be the long
cycle. We have that, I(P) = (—1)°"1I1. (j(P)).

Working towards our goal of understanding the action of prtam on semistandard tableaux, we
define the operations of standardization arsemistandardization on tableaux. These operations give u
a means to transform row strict tableaux into standard &aisi@nd vice versa, when possible.

It is always possible to transform a row strict tableau ingtamdard tableau. Given a partitiart- n
and a row strict tablea®® € RST(\, k, «) for somea = n, define thestandardizationstd(P) of P to
be the element oY T'(\) given by replacing they; 1sin P with the numbersl, 4] increasing down
columns, replacing thes 2s in P with the numbersa; + 1, a1 + asg] increasing down columns, and so
on.

Given A - n and a standard tabledu € SYT'()\) along with a compositiom: = n, say thatT is
a-semistandardizablég D(T") contains the union of the intervalls, o), [ + 1, a2), .... Define the
a-semistandardizationst, (T") of T' a-semistandardizable to be the elemenR&T (), k, «) formed by
replacing the numbers i, 4] in T by 1s, the numbers iy + 1, a1 + 2] in T by 2s, and so on.

Lemma4.4 LetT € SYT()\) bea-semistandardizable. We have tad(rst, (1)) = T. Moreover, if
U € RST(\ k, a), thenstd(U) is a-standardizable.

Therefore, for any composition = n, standardization inject®ST (), k, ) into SYT()\) and a-
semistandardization gives a bijection betweentfeemistandardizable elementsGf 7'(\) andRST(\, k, ).
These operations relate to promotion in the following way.
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Lemma4.5 Let A - n be a rectangle andv = (a4, ...,ax) &= n. We have the following equality of
operators onSYT'(\):

(&2

jorsty =7ste a0, (4.5)
where the right hand side is defined if and only if the left hside is defined.

KL immanants are related to the above operations in theviatig way.

Lemma4.6 LetU,T € SYT()) and letk € N. We have thalmm g 7y (z4,1») = 0 if and only if U
is nota-semistandardizable. Moreover, the $&étm ;7 1) (z4s,1»)} ranging over all possibley’ |= n
with £(a’) <k, U’, T € SYT()\), andU’ that area’-semistandardizable, is linearly independent.

For rectangular shapes, the polynomialsn ;7 (4,1~ ) for standard tableaux which aren-semistandardizable
will project onto elements of a basis of a certain quotieatgpwhich will carry arb), action under which
the long elementl, 2, ..., k) will act as (essentially) jeu-de-taquin promotion. To fnt work toward
this result, givery |= n, we define an epimorphisfi-algebrasr,, : Clzj]i<ij<n — Clza)jli<ij<n
by the formular,, (z:;) = Ta(i);-

Lemmad4.7 LetU,T € SYT()\). We have thatr, (Imm g, 7)(z)) is nonzero if and only it/ is a-
semistandardizable, in which casg(Immy, ) (z)) = Imm g, 1) (Ta,17)-

One of the main advantages of the epimorphismis that they relate the action 6, onClx;;]1 <4 j<n
and the action 0F), on Clz,(;);]1<i<k,1<j<n- This is made precise in the following lemma.

Lemma4.8 Letc, = (1,2,...,n) be the long cycle it,, and letc, = (1,2,..., k) be the long cycle in
Sk. Fora = (au,...,ax) = nwe have aleftaction af, onClz;]1<i j<n andex MapsClzq;li<ij<n
into Clzc,a(i);]1<i,j<n- We have the following commutative square.

o]

Cn

Clzijli<ij<n  —  Clzili<igzn
Ta ! l Ten.a (4.6)
Clzagyhi<ij<n — Clae,.atjli<ii<n
ck

We are now in a position to define tit#g-modules which will yield our desired result. For aye
SYT(X), defineWr. ;. to be the space

C{Imm(T,U)($a71n)}€B @ C{Imm(P7Q)(xa/71n)}, 4.7)
v<domA

where the first set ranges over all compositions= n such that'(«)) < k and allU € SYT(\) which
area-semistandardizable and the second set ranges over allositiopsa’ = n with £(a’) < k and all
pairs of tableauw, Q € SYT(v).

Lemma4.9 Wy, is a leftGL(C*)-module.
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We defineVr ;, to be the quotiens-module given by

WTI’,k/ @ (C{Imm(pr) (xa/71n, )}

U>domA

Basis elements ofr . are given by the images of the polynomidism g, r)(z«,1») for compositions
a= (ai,...,a;) = nanda-semistandardizablEé. The image of the above polynomial ¥y ; shall be
abbreviated,, (U’), whereU’ is the unique element @ST(\, k, a) such thattd(U’) = U. Fora fixed,
define the spac®r . to be the span of all thé&, (U’) for a-semistandardizableé. The commutative
square in Lemma 4.8 induces the following commutative sgjuahere the maps induced by, are also
calledr,,.
ck
V/\,n,ln — V/\,n,ln
Ta | | Tepa - (4.8)
Vika — Vrikera
Ck

Using this square, we can relate the actiom;0bn V1, to promotion.

,a) for A = b* rectangular andv = (s, ..., ax) = n, we have
).
Corollary 4.11 For X rectangular, the order of on RST (A, k) (or CST (), k)) is equal tok unlessix
consists of a single column ard= |A|.

Proposition 4.10 GivenU € RST(\ k
thatCkIa(U) = (—1)ak(b_1)lck.a(j( )

For example, if\ = (2,2) andk = 3, the setCST((2, 2), 3) containss elements and promotion acts
as the following permutation:
2 1 1 1 2 1
3, 3 3 2 3,3

1 1 2
2 2 , 3
which does indeed have order=

Theorem 4.12 Let A = b® be a rectangular partition of, k € N, andX = CST(\, k). LetC = Z/kZ
act onX by jeu-de-taquin promotion. Lt (¢) = ¢ *Msy(1,q,¢>,...,¢" ).

2 11
3723), (4.9)

3

The triple (X, C, X (q)) exhibits the cyclic sieving phenomenon.

The proof of this CSP uses the representatigpg and is similar in spirit to the proof of Theorem
3.9. Keeping with the earlier example af= (2,2) andk = 3, we compute thak((2,2)) = 2 and

5(2,2) (21,72, 23) = 2223 + 2323 + 2323 + 12303 + 112203 + 232023. Maintaining the notation of
2

Theorem 4.12, we therefore have thétq) = 1 + ¢ + 2¢* + ¢° + ¢*. Letting¢ = e’5", we see that
X(1)=6 X({)=0 X(¢?) =0o.
These numbers agree with the fixed point set sizes:

ICST((2,2),3)'| =6 |CST((2,2),3))] =0 |CST((2,2),3)"] =0,
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as predicted by Theorem 4.12.

As a pair of corollaries, we get CSPs which were originallgyen by Reiner, Stanton, and White in
(15).

Corollary 4.13 Let1 < k < n and letX be the set ok-subsets ofn|. Let the cyclic groug®’ = Z/nZ
act on X by the long cycld1,2,...,n) € S,. LetX(q) = ["]q be theg-analogue of the binomial

k
coefficient(}).

Then, the triplg X, C, X (¢)) exhibits the cyclic sieving phenomenon.

Corollary 4.14 Letk andn be positive integers and I&f be the set of all multisets of sizavith elements
in [n]. Let the cyclic grou’ = Z/nZ actonX by the long cyclé1,2,...,n) € S,,. LetX (q) = ["+k]q

be theg-analogue of the binomial coefficie(it}*).

Then, the triplg X, C, X (¢)) exhibits the cyclic sieving phenomenon.

Fix a rectangular partition. = »* with ab = n, a positive integek and a compositioa: = n with
¢(a)) = k such thate has some cyclic symmetry. That is, there is an intefjersuch thate; = «;
whenever; = j (modd). We have a fixed point enumeration involving the action ataia powers
of promotion on the sef ST (A, k, ) and the Kostka-Foulkes polynomials. In representationrite
terms, this corresponds to a weight space refinement of €heérl2. Sincg maps the set'ST(\, k, «)
into the setC'ST (), k, cx.a), we have that the*” powerj? of j maps the se€ ST (), k, «) into itself.
Note that for the special cage= 1, k¥ = n, anda = 1™ this is the statement thgtacts on the set
SYT(\) of standard tableaux of shape Sincej acts with ordef on the setC'ST' (), k), we have that
j generates an action of the cyclic grafip(£Z) on CST (A, k, ).

For a partition\ - n and a composition: |= n, let K ,(q) € N[¢] be the associated Kostka-Foulkes
polynomial. The Kostka-Foulkes polynomials ar@nalogues of the Kostka numbéis, , which enu-
merate the number of column strict tableaux with shaped contentv. In particularky (1) = K
always. The Kostka-Foulkes polynomials are the generdtingtion for the charge statistic on tableaux
and are also the coefficients of the change of basis matnm 8ohur functions to Hall-Littlewood sym-
metric functions. For more details on these polynomials,(d&). The proof of this next theorem uses
results on ribbon tableaux from (14).

Theorem 4.15 Let A = b be a rectangular partition ol. = ab, k be a positive integer, and =
(cu,...,ar) be a composition of of lengthk. Assume that there is some numbgr so thate; = «;
whenevei = j (modk). Let¢ € C be a root of unity of 0rde§.

en, for anym > 0, the number of fixed poin T(\, ,ajm is equal to| Ky o (¢™)].
Then, f h ber of fixed point€' ST (), k, a)” | (¢

5 Dihedral Actions

Let A\ = b be a rectangular partition withb = n and letk > 0. It is possible to show that we have
eje = j~! as operators o' ST (A, k). Moreover, we know that the order of the operatas equal to
k while the order of the operateris equal to2. This implies that the grouge, j) generated by and
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J, considered as a subgroup of the symmetric gr8gpr(»,x), is dihedral of ordegk. Similar remarks
hold for the action ot andj on RST'(\, k) andSYT'(\).

We have already determined that the actiop ofi the above sets of tableaux is modeled by the action of
the long cycle of an appropriate symmetric group on an apfatgpmodule. By Stembridge-Berenstein-
Zelevinsky, the action of can be modeled by the action of the long element So, corresponding to
the dihedral group acting on the s€&X$T'(\, k), RST' (A, k), andSYT'()), we get an associated dihedral
group generated by the long cycle amg sitting insideS%, Sk, andS,,, respectively, equipped with an
epimorphism onto our group of combinatorial operators.ethgr with our previous results, this gives us
the number of fixed points of the operaterandej on standard tableaux as a character evaluation.

Proposition 5.1 Let A = b* be a rectangular partition of, let ¢,, be the long cycle irf5,,, and let
x> : S, — C be the irreducible character df,, corresponding to\.

We have that
ISYT(N)?| = [x* (w,)|
1SYT ()| = [x* (wocn)|
Extending the Stembridge-Berenstein-Zelevinsky resuléwacuation to the dual canonical basis and

a statement about modules over the general linear group etvihg following statement about column
strict tableaux. Details about its proof can be found in (bu} are omitted for this extended abstract.

Theorem 5.2 Let\ = b* be a rectangular partition of. and letk > 0. Assume that &t is odd. We have
that

|CST(\ )¢ = |sa(1, —1,1,...,(=1)*1)
= |CST (A k).
On the other hand, i is even, we have that
|CST (N k)°| = |sa(1, —1,1,...,(=1)*1)]

(CST(\ k)| = lsa(1,—1,..., (71)::?, (—D)F2 (=1)F2)| ifa ano.lb are both even or odd
[sx(1,—=1,...,(=1)1)] otherwise
Proof: Omitted. The claims about the operataare Theorem 3.1 of (24). O

6 Square Shapes and Type B, 2 x n Shapes and Handshake Pat-
terns and Noncrossing Partitions

In this section we apply our results on tableaux to get CSPstfeer combinatorial objects. For a positive
integern, let B,, denote the Coxeter group of signed permutatiorjepfiaving orde2™n!. It is possible

to show that reduced words for the long elemenBafare mapped to other reduced words to the long
element under cyclic rotation.



Cyclic Sieving, Promotion, and Representation Theory 407

Theorem 6.1 Let X be the set of reduced words for the long elemenjn LetC = Z/n?Z acton X
by cyclically rotating words. LeK (¢) = f™" (¢) be theg—hook length formula. We have that the triple
(X, C, X (q)) exhibits the cyclic sieving phenomenon.

Proof: (Sketch) By (10), there is a bijection between standardetabt of shape: x n and reduced
expressions for the long element®Bf, under which jeu-de-taquin promotion maps to cyclic rotatibhe
desired CSP follows. O We now apply our

results for2 x n standard tableaux to prove CSPs for handshake pattern®andissing partitions. This
gives a new proof of a result of White (25) which is alludedri@4), as well as a new proof of results of
Heitsch (11) which have biological applications relatedRtdA secondary structure.

Givenn € N, ahandshake pattern of size 2ansists of a circle around which the poihig, . .., 2n are
written clockwise and a perfect matching on the[8ef such that, when drawn on the circle, none of the
arcs in this matching intersect. This can be thought of asyaimahich the people labellet 2, ..., 2n
can all shake hands so that no one crosses armg}, etenote the set of all handshake patterns of size
2n.

Forn € N, anoncrossing partition ofn] is a set partition Py | P,| ... |Py) of [n] so that whenever
there are integers, b, ¢, d, i, andj with 1 < a < b < ¢ < d < nanda,c € P; andb,d € P;, we must
necessarily have that= j. Drawing the numbers, 2, . .., n clockwise around a circle, a partitionf [»]
is noncrossing if and only if when the blocksofare drawn on the circle, none of the regions intersect.

The setNC'(n) of all noncrossing partitions df] is a lattice with respect to the partial order given by
refinement. The lattic&VC'(n) is complemented, and given a noncrossing partitiaof [n], Kreweras
complementation (see (13) for its definition) gives a wayrdpice a complement afin NC(n).

Both of the sets,, and NC(n) have cardinality given by the Catalan numiggr = —+ (*™). More-
over, these sets both carry an action of the cyclic groupaéi@n - in the case of{,, given by the action
of rotating the table clockwise by one position and in theeaafsV C'(n) given by Kreweras complemen-

tation. As a corollary of our tableaux results, we get resoftWhite (25) and Heitsch (11).

Theorem 6.2 Letn € Nand letC = Z/(2nZ). Let X (¢) be theg-Catalan number

0= 1],

Let X be eitherH,, equipped with the”-action of rotation orNC(n) equipped with the”-action of
Kreweras complementation.

Then, the triplg X, C, X (¢)) exhibits the cyclic sieving phenomenon.

We also have a result concerning dihedral actions and desigluations.

Proposition 6.3 Let X be either the sel/,, or the setNVC'(n). X carries an action oD,,,, wherer ands
have the action described above in the casé/pfand act by reflection about the line througlbisecting
the circle and Kreweras complementation in the cas& 6f(n). Letw, denote the long element 6%,,
and letes,, denote the long cycldl, 2,...,2n) in Sa,.
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Then, the number of fixed points of the operatoamdrs on X are given by the formulae:

X7 = [ (wo)|
1X70] = X" (woczn)|
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