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Staircase Macdonald polynomials and the
q-Discriminant

Adrien Boussicault and Jean-Gabriel Luque

Université Paris-Est, Marne-la-Vallée, Institut d’Électronique et d’Informatique Gaspard-Monge 77454 Marne-la-
Vallée Cedex 2.

Abstract. We prove that a q-deformation Dk(X; q) of the powers of the discriminant is equal, up to a normalization,
to a specialization of a Macdonald polynomial indexed by a staircase partition. We investigate the expansion of
Dk(X; q) on different bases of symmetric functions. In particular, we show that its expansion on the monomial basis
can be explicitly described in terms of standard tableaux and we generalize a result of King-Toumazet-Wybourne
about the expansion of the q-discriminant on the Schur basis.

Résumé. Nous montrons qu’une q-déformation Dk(X; q) des puissances du discriminant est égale, à un coefficient
de normalisation près, à un polynôme de Macdonald indexé par une partition escalier pour une certaine spécialisation
des paramètres. Nous examinons les développements de Dk(X; q) dans différentes bases de fonctions symétriques.
En particulier, nous montrons que son écriture dans la base des fonctions monomiales peut être explicitement décrite
en terme de tableaux standard et nous généralisons un résultat de King-Toumazet-Wybourne sur le développement du
q-discriminant dans la base de Schur.

1 Introduction
Let X = {x1, . . . , xn} be an alphabet. The q-discriminant

D1(X; q) :=
∏
i6=j

(qxi − xj),

is a polynomial encountered in different fields of mathematics. In particular, its specialization at q = 1 is
the discriminant which is an example of a symmetric function invariant under the transformation x→ x+1
and which has been the subject of many works in invariant theory (by Cayley, Sylvester and MacMahon).

Laughlin [14] described the ground state of the electrons in the fractional Quantum Hall effect as an
expression involving an even power of the Vandermonde determinant

Ψk
Laughlin(X) = ±D1(X; 1)kΨ0

Laughlin(X).

In this paper, we give the links between the q-discriminant and the Macdonald polynomials. More
precisely, our main result is that the “polarized powers” of the q-discriminant

Dk(X; q) :=
k∏
l=1

D1(X; q2l−1),
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appear when one evaluates some specialization of “staircase” Macdonald polynomials.
The powers of the discriminant (q = 1) are encountered also in the context of generalizations of the

Selberg integral [11, 13, 27]. These integrals are closely related to the notion of Hankel hyperdeter-
minant [20, 21] and Jack polynomials [9, 10]. The Selberg integral admits q-analogue involving the
q-discriminant (see e.g. [23] ex3 p374). It is interesting to remark that such integrals are related to Mac-
donald polynomials [29].

More generally, setting taqb = 1 rises deeper identities related to the generalization of the Izergin and
Korepin determinant due to Gaudin [19].

The paper is organized as follow. In Section 2, we recall notations and properties related to symmetric
functions. Section 3 is devoted to the main theorem of the paper. We prove that the polynomial Dk(X; q)
is a staircase Macdonald polynomial for a specialization of the parameters q and t. As an application,
in Section 4, we give a formula for the coefficients arising in the expansion of an even power of the
Vandermonde determinant in terms of monomial functions. Finally, in Section 5, we generalize a theorem
of King et al. about the expansion of the q-discriminant in terms of Schur functions.

2 Background and notations
2.1 Symmetric functions

We consider the C[[q, t, q−1, t−1]]-algebra Sym of symmetric functions over an alphabet X, i.e. the
functions which are invariant under permutations of commuting indeterminates called letters. There exists
various families of such functions. We shall need the generating series of complete function:

σz(X) :=
∑
i

Si(X)zi =
∏
x∈X

1
1− xz

.

This notation is compatible with the sum X + Y and the product XY :=
∑
x∈X,y∈Y xy in the following

sense

σz(X + Y) = σz(X)σz(Y) =
∑
i

Si(X + Y)zi

(see e.g. [18] 1.3 p 5), and

σz(XY) =
∑
i

Si(XY)zi =
∏
x∈X

∏
y∈Y

1
1− xyz

(see e.g. [18] 1.5 p13). In particular, if X = Y one has σz(2X) = σz(X)2. This definition can be extended
for any complex number α by putting σz(αX) = σz(X)α.

We will use the Schur basis whose elements Sλ are indexed by decreasing partitions and defined by

Sλ := det
(
Sλi−i+j

)
1≤i,j≤n ,

where Si(X) = 0 if i < 0, see e.g. [23] I.3.4 p41 and [18] 1.4.2 p8.
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2.2 Macdonald Polynomials
The Macdonald polynomials (Pλ(X; q, t))λ form the unique basis of symmetric functions orthogonal for
the standard q, t deformation of the usual scalar product on symmetric functions (see e.g. [23] VI.4 p322),
verifying

Pλ(X; q, t) = mλ(X) +
∑
µ≤λ

uλµmµ(X). (1)

where mλ is a monomial function in the notation of [23] I.2.1 p8. Their generating function is (see e.g.
[23] VI.4.13 p324)

Kq,t(X,Y) := σ1

(
1− t
1− q

XY
)

=
∑
λ

Pλ(X; q, t)Qλ(Y; q, t),

where Qλ(X; q, t) = bλ(q, t)Pλ(X; q, t) with

bλ(q, t) =
∏

(i,j)∈λ

1− qλi−jtλ
′
j−i+1

1− qλi−j+1tλ
′
j−i

,

see e.g. [23] VI.6.19 p339.
Alternatively, when X = {x1, . . . , xn} is a finite alphabet, the Macdonald polynomials can be defined

as the eigenfunctions of the Macdonald operator(i) M1 (see e.g [23] VI.3 p315 and VI.4 p325). Indeed,

Pλ(X; q, t)M1 = [[λ]]q,tPλ(X; q, t), (2)

where, for any v ∈ Nn, [[v]]q,t is defined as

[[v]]q,t := qv1tn−1 + qv2tn−2 + · · ·+ qvn . (3)

Denoting by R(X,Y) =
∏
x∈X,y∈Y(xi − yj) the resultant of two alphabets X and Y, this operator may

be defined in terms of divided differences

f(X)M1 = f(X− (1− q)x1)R(tx1; X− x1)∂1 . . . ∂n−1. (4)

where, for each i = 1 . . . n− 1, ∂i, denoted on the right, is the operator (see e.g. [16])

f(x1, . . . , xn)∂i :=
f(x1, . . . , xi, xi+1, . . . , xn)− f(x1, . . . , xi+1, xi, . . . , xn)

xi − xi+1
.

3 Staircase Macdonald polynomials
Let us denote by ρ := [n − 1, . . . , 1, 0] and set mρ := [m(n − 1), . . . ,m, 0] for m ∈ N. In this section,
we consider a strictly positive integer k. We need the following lemma.

(i) Sekiguchi [26] (and later Debiard [6]) introduced a family of differentials operators depending on a parameter α in the context of
the study of the Jack polynomials. Macdonald generalized their results by introducing q-analogues of these operators.
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Lemma 3.1 Under the specialization t → q
(1−2k)

2 , the Macdonald polynomial P2kρ(X; q, q
(1−2k)

2 ) be-
longs to an eigenspace of M1 whose dimension is 1 and its associated eigenvalue is

[[2kρ]]
q,q

1−2k
2

=
n∑
i=1

q(2k+1)(n−i)/2. (5)

Proof From Equation (3), the eigenvalue associated to a partition λ is

[[λ]]
q,q

1−2k
2

=
n∑
i=1

q(1−2k)(n−i)/2+λi .

Then, if [[λ]]
q,q

1−2k
2

= [[2kρ]]
q,q

1−2k
2

, there exists a permutation σ ∈ Sn such that, for each 1 ≤ i ≤ n,

one has 1
2 (2k + 1)(n− σ(i)) = 1

2 (1− 2k)(n− i) + λi. It follows that

λi − λi+1 =
1
2

(2k + 1)(σ(i+ 1)− σ(i))− 1
2

(1− 2k). (6)

Since λ is a partition and k > − 1
2 , one has necessarily λi−λi+1 ≥ 0 and Equality (6) implies σ(i+ 1)−

σ(i) ≥ 1−2k
1+2k > −1. This implies that σ is the identity and λ = 2kρ. 2

For simplicity, we set p := q−
1
2 and we will consider a finite alphabet X = {x1, · · · , xn}. Our main

result is that the polarized powers Dk(X, p) of the discriminant are staircase Macdonald polynomials for
the specialization considered here.

Theorem 3.2 One has
Dk(X; p) = (−p) 1

2k
2n(n−1)P2kρ(X; q, p2k−1). (7)

Proof Reordering factors in Dk(qx1, x2, . . . , xn; p)R(p2k−1x1; X− x1), one obtains

Dk(qx1, x2, . . . , xn; p)R(p2k−1x1; X − x1) = Dk(X; p)R(p−(2k+1)x1; X − x1). (8)

Hence, applying Equation (8), the polynomial Dk(X; p)M1 can be rewritten as

Dk(X; p)M1 = Dk(X; p)R(p−2k−1x1; X− x1)∂1 · · · ∂n−1.

Since the polynomial Dk(X; p) is symmetric in X, it commutes with ∂1, . . . , ∂n−1 and then

Dk(X; p)R(p−2k−1x1; X− x1)∂1 · · · ∂n−1 = R(p−2k−1x1; X− x1)∂1 · · · ∂n−1Dk(X; p).

The remaining factor R(p−2k−1x1; X− x1) is of total degree n− 1 and therefore is sent to a constant
k under ∂1 . . . ∂n−1. We use the following lemma to compute this constant.

Lemma 3.3 For any letters a, b,

R(ax1; bx2, · · · , bxn)∂1 · · · ∂n−1 =
∑

i+j=n−1

aibj . (9)
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Proof Rewrite R(ax1; bx2, . . . , bxn) as

Sn−1(ax1 − b(X− x1)) = Sn−1((a+ b)x1 − bX) =
∑

xi1Si(a+ b)Sn−1−i(−bX).

The image of this sum under ∂1 . . . ∂n−1 is Sn−1(a+ b)S0(−bX) as wanted. 2

Applying Lemma 3.3, one obtains the value of k,

k =
n∑
i=1

p(2k+1)(i−n) (10)

From Equality (5), since p = q−
1
2 , one recognizes that k = [|2kρ|]q,p2k−1 . This shows that

Dk(X; p) = βk,n(p)P2kρ(X; q, p2k−1), (11)

where βk,n(p) is a constant depending only on p, k and n. It remains to compute the coefficient βk,n(p).
Since we know that the dominant coefficient in P2kρ(X; q, p2k−1) is 1 by definition, it suffices to compute
the coefficient of the monomial x2k(n−1)

n · · ·x2k
2 in Dk(X, p). One finds

βk,n(p) = (−p) 1
2k

2n(n−1).

This ends the proof.2

Example 3.4 For k = 2 and n = 4, one obtains

P[12 840](x1 + x2 + x3 + x4; q, q−3/2) = q12
∏
i 6=j

(
(q−

1
2xi − xj)(q−

3
2xi − xj)

)

4 Expansion of Macdonald polynomials in terms of monomial func-
tions

Macdonald gives in [23] VI.7.10 p345 the following expansion of the polynomials Qλ in terms of mono-
mial functions:

Qλ(X; q, t) =
∑
µ

(∑
T

φT (q, t)

)
mµ(X), (12)

where the inner sum is over the tableaux of shape λ and evaluation µ and each φT (q, t) is an explicit
rational function given in [23] VI.7.11 p346.

Theorem 3.2 and Equality (12) furnish an expansion of Dk(X; p) according to the monomial basis,

Dk(X; p) =
(−p) 1

2k
2n(n−1)

b2kρ(q, p2k−1)

∑
λ

(∑
T

φT (q, p2k−1)

)
mλ(X) (13)

where the inner sum is over the tableaux of shape 2kρ and evaluation λ.
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Recall that Jack polynomials [9, 10] P (α)
λ (X) are obtained from Pλ(X; q, t) setting q = tα and taking

the limit when t tends to 1 (see [23] VI 10). One has

P
(α)
λ (X) = lim

t→1
Pλ(X; tα, t), and Q(α)

λ (X) = lim
t→1

Qλ(X; tα, t) = b
(α)
λ P

(α)
λ (14)

where b(α)
λ := limt→1 bλ(tα, t). Putting

φ
(α)
T := lim

t→1
φT (tα, t),

one get from Equation (13) an expansion of integral powers of the discriminant.

Corollary 4.1 One has

D1(X; 1)k = Dk(X; 1) = (−1)
kn(n−1)

2 P
(αk)
2kρ (X)

= (−1)
kn(n−1)

2

(
b
(αk)
2kρ

)−1∑
λ

(∑
T

φ
(αk)
T

)
mλ,

(15)

where αk = −2
2k−1 and the inner sum is over the tableaux of shape 2kρ and evaluation λ.

Example 4.2 Consider an alphabet X = {x1, x2, x3} of size 3. One has,

Q42(X; q, t) =
2 2
1 1 1 1

m42 +
2 3
1 1 1 1

m411 +
2 2
1 1 1 2

m33

+

„
2 3
1 1 1 2

+
2 2
1 1 1 3

«
m321 +

„
3 3
1 1 2 2

+
2 3
1 1 2 3

+
2 2
1 1 3 3

«
m222.

Each tableau T is interpreted as the function ΦT ,

Q42(X; q, t) =
“

1−t
1−q

”2 “
1−tq
1−q2

”2 “
1−t2q2

1−tq3

” “
1−t2q3

1−tq4

”
m42+“

1−t
1−q

”3 “
1−tq
1−q2

” “
1−t2q3

1−tq4

” “
1−t2q2

1−q3t

”
m411 + . . .

Setting q = t−2 and taking the limit t → 1, the algorithm described here allows one to compute the
expansion of the Jack polynomials according to the monomial functions. After simplification, one obtains

Q
(−2)
42 (X) =

1
280

m4,2 −
1

140
m4,1,1 −

1
140

m3,3 +
1

140
m3,2,1 −

3
140

m2,2,2.

And finally, D1(X; 1) = −m4,2 + 2m4,1,1 + 2m3,3 − 2m3,2,1 + 6m2,2,2.

Corollary 4.1 can be applied to expand Hankel hyperdeterminants. Hyperdeterminants are polynomials
defined by Cayley in the aim of generalizing the notion of determinant to higher dimensional arrays(ii) [4,
5]. Given a mth order tensor M = (Mi1...im)1≤i1,...,im≤n on a n dimensional space, its hyperdeterminant
is

Det(M) =
1
n!

∑
σ1,...,σm∈Sn

sign(σ1 . . . σm)
m∏
i=1

Mσ1(i)...σm(i).

(ii) Note that Cayley proposed several generalizations of determinants. The polynomial considered here is the simplest one in the
sense that it generalizes the expansion of a determinant as an alternated sum. Reader can refer to [20, 21, 22, 24, 28] for more
informations on the subject.
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Note that this polynomial vanishes when m is odd. Suppose that m = 2k is an even integer. An
Hankel hyperdeterminant is an hyperdeterminant whose entries depend only on the sum of the indices
Mi1...i2k

= f(i1 + · · ·+ i2k). This kind of hyperdeterminant has been already considered by the authors
in collaboration with Thibon and Belbachir [20, 21, 2]. In particular, it is shown that the coefficients
Cλ(n, l) arising in the expression

Det (Mi1+···+i2k
) =

∑
λ

Cλ(n, k)
n∏
i=1

f(λi),

are equal (up to a multiplicative term equal to the number of permutations of λ divided by n!) to those
arising in the expansion of Dk(X; 1) in terms of monomial functions.

Example 4.3 From the expansion of the Jack polynomial P (−2/3)
84 , for an alphabet of size 3,

P
(−2/3)
84 (x1 + x2 + x3) = m84 − 4m831 + 6m822 − 4m75 + 12m741 − 8m732 + 6m66 − 8m651

−22m642 + 48m633 + 48m552 − 36m543 + 90m44,

one deduces the expansion of the Hankel hyperdeterminant

Det (f(i1 + i2 + i3 + i4))0≤i1,i2,i3,i4≤3 = f(8)f(4)f(0)− 4f(8)f(3)f(1) + 3f(8)f(2)2

−4f(7)f(5)f(0) + 12f(7)f(4)f(1)− 8f(7)f(3)f(2)
+3f(6)2f(0)− 8f(6)f(5)f(1)− 22f(6)f(4)f(2)
+24f(6)f(3)2 + 24f(5)2f(2)− 36f(5)f(4)f(3)
+15f(4)3.

Furthermore, in [16] Lapointe et al. gave a determinantal expression of Jack polynomial in terms of
monomial functions. These computations leads naturally to a determinantal expression for Hankel hyper-
determinants.

Note that the formula for the Macdonald polynomials H̃λ, given by Haglund, Haiman and Loehr [8],
provides an expansion of Dk(X; q) in terms of modified monomial functions mλ(X(1 − t)) having a
combinatorial interpretation.

5 Expansion of the polarized powers of the q-discriminant in terms
of Schur functions

Di Francesco et al. [7] considered the problem of the expansion of the discriminant in terms of Schur
functions. They defined the n-admissible partitions to be the partitions in the interval [(n − 1)n], [2(n −
1), . . . , 2, 0] (with respect to the dominance order). They conjectured that they are exactly those occurring
in the expansion of the discriminant. This conjecture is false as shown by Scharf et al. [25]. However,
King et al. [12] proved that it becomes true when replacing the discriminant by the q-discriminant.

In this section, we generalize this property to Dk(X; q). We define (n,m)-admissible partitions to be
the partitions which appear in the expansion

mρ(X)m−1Sρ(X) =
∑
λ

bn,mλ mλ(X) (16)
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where X is an alphabet of size n. When m = 2k is even, the (n, 2k)-admissible partitions are those of
the interval [(k(n − 1))n], [2k(n − 1), . . . , 2k, 0]. We prove that a partition appear in the expansion of
Dk(X; q) in terms of Schur functions if and only if it is a (n, 2k)-partition.

5.1 Computing admissible partitions
Let us denote by An,m the set defined recursively by

An,1 := {λ = [λ1, . . . , λn]|ρ ≥ λ}
An,m := {((λ1 + σ(1)− 1, . . . , λn + σ(n)− 1))|σ ∈ Sn and λ ∈ An,m−1},

(17)

where ((µ1, . . . , µn)) is the only decreasing vector obtained by reordering the components of the vector
[µ1, . . . , µn] ∈ Rn.

Lemma 5.1 Let λ be a partition. The following assertions are equivalent.

1. The partition λ belongs to An,m.

2. The partition λ is (n,m)-admissible.

3. λ is a partition with n parts (eventually, some of theim equal zero)(iii) less or equal to mρ with
respect to the dominance order.

Proof The equivalence between the assertions 1 and 2 is straightforward from Equations (16) and (17).
Furthermore, from Equation (17), the maximal partition of An,m is mρ. It remains to prove 3 ⇒ 1.
We proceed by induction on m, if m = 1 then the result is trivial. Suppose that m > 1. Let λ be a
partition with n parts (a part may equal zero) less or equal to mρ with respect to the dominance order.
Then ((λ − ρ)) is a partition less or equal to (m − 1)ρ. Indeed, putting ((λ − ρ)) = (µ1, . . . , µn), for a
permutation σ ∈ Sn, one has µi = λσ(i) + n− σ(i). Hence, for each i

µ1 + · · ·+ µi ≤ λσ(1) + · · ·+ λσ(i) + n− σ(1) + · · ·+ n− σ(i)
≤ λ1 + · · ·+ λi + n− 1 + · · ·+ n− i
≤ (m− 1)(n− 1

2 i(i+ 1))

implies ((λ− ρ)) ≤ (m− 1)ρ for the dominance order.
By induction, ((λ − ρ)) belongs to An,m−1. Furthermore, there exists a permutation σ such that

((λ− ρ)) + ρσ = λ. Hence, from Equation (17), λ ∈ An,m.2

5.2 Counting admissible partitions
One considers the free commutative monoid T generated by the symbols T = {τ1, . . . , τn−1} acting on
the vectors of size n by

τi[v1, . . . , vn] = [v1, . . . , vi−1, vi − 1, vi+1 + 1, vi+1, . . . , vn].

For a given vector v ∈ Zn, T.v is the set of vectors w = [w1, . . . , wn] ∈ Zn of same weight (i.e.
v1 + · · · + vn = w1 + . . . wn) lower or equal to v for the dominance order. In particular, if v = λ is
(iii) One considers partitions which contain eventually some parts equal to 0. Hence, partitions with less than n parts are completed

to n parts by adding 0.
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a partition then T.λ contains all the partition of size n lower or equal to λ. To each vector v ∈ Zn, one
associates the monomial zv = zv1−v21 . . . z

vn−1−vn

n−1 . For a given weight, the monomial zv characterizes
completely v, furthermore v is a (decreasing) partition if and only if its weight is non negative and the
degree of the monomial zv in each variable zi is non-negative.

Example 5.2
z31

[4,1,1]

τ1 ↙ ↘ τ2
z1z2

[3,2,1]
z41z
−2
2

[4,0,2]

↙ ↘↙ ↘
z−1
1 z22

[2,3,1]
z21z
−1
2

[3,1,2]
z51z
−4
2

[4,−1,3]

↙ ↘↙ ↘↙ ↘
z−3
1 z32

[1,4,1]
1

[2,2,2]
z31z
−3
2

[3,0,3]
z61z
−6
2

[4,−2,4]

. . .

(18)

Acting on v by τi is equivalent to multiply zv by

ti =


zi−1zi+1

z2i
if 1 < i < n− 1

z2
z21

if i = 1
zn−2

z2n−1
if i = n− 1.

Since there are no algebraic relations between the t′is, each vector appears in T.v with multiplicity 0 or 1.
In other words, one has

σq(T ).zv =
∏
i

1
1− tiq

.zv =
∑
w≤v

qαv,wzw. (19)

where αv,w is the degree of the monomial acting on v to obtain w. Extracting the monomial which
encodes a partition is equivalent to extract the part of the series (19) constituted only with non-negative
exponents. This operation is performed by the MacMahon Omega operator (see e.g [1])

Ωx1,...,xp

∑
n1,...,np∈Z

αn1,...,np
xn1

1 . . . . .xnp
p =

∑
n1,...,np∈N

αn1,...,np
xn1

1 . . . . .xnp
p .

Example 5.3 One has

Ωz1,z2
z3
1

(1− z1
z22
q)(1− z2

z21
q)

= z3
1 + qz1z2 + q3

which implies that the set of the partitions of size 3 lower or equal to [411] is {[411], [321], [222]}.
Hence,

Proposition 5.4 The size n ≥ 2 of the alphabet being fixed, the generating series of the (n, k)-admissible
partitions is the rational function

An(q, t; z1, . . . , zn−1) = Ωz1,...,zn−1

(
(1− tz1 . . . zn−1)(1− z0z2

z2
1

q)(1− z1z3
z2
2

q) . . . (1− zn−2zn
z2
n−1

q)
)−1

,

where z0 = zn = 1.
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5.3 Characterization of the partitions arising in the expansion of Dk(X; q)

In this subsection, one extends the result of King-Toumazet-Wybourne to the polynomials Dk(X; q).

Theorem 5.5 Expand Dk(X; q) in terms of Schur functions,

Dk(X; q) =
∑
λ

cλ(q)Sλ(X).

Then, cλ(q) 6= 0 if and only if λ is a (n, 2k)-admissible partition.

Proof Let us prove first the only if part. From Theorem 3.2, the polynomial Dk(X; q) equals (up to
a multiplicative coefficient) a specialization of the Macdonald P2kρ(X; q, t). But it is well known that
the partitions arising in the expansion of P2kρ(X; q, t) in terms of Schur functions belong to the interval
[(k(n−1))n], 2kρ (see e.g. the determinantal expression of Macdonald polynomials given in [16]). From
Lemma 5.1, this is equivalent to the fact that λ is (n, 2k)-admissible.

Conversely, to prove that the admissibility of λ implies the non nullity of cλ(q), it suffices to prove it
for a specialization. We will set q = −1. In this case,

Dk(X;−1) =
∏
i 6=j

(xi + xj)k = Sρ(X)2k.

We will prove a stronger result showing that the coefficient cn,mλ in the expansion

Sρ(X)m =
∑
λ

cn,mλ Sλ(X)

is non-zero if and only if λ is (n,m)-admissible. We proceed by induction on m. Note that the initial
case (m = 2) has been proved by King-Toumazet-Wybourne in [12] Corollary 3.2 as a consequence of an
important result of Berenstein-Zelevinsky [3].

One needs the two following lemmas

Lemma 5.6 If λ is a (n,m)-admissible partition (m > 1), then ((λ − ρ)) is a (n,m − 1)-admissible
partition.

Proof From Equality (16), each (n,m)-admissible partition can be obtained by adding a permutation of
ρ to a (n,m− 1)-admissible partition. Our statement is a consequence of this fact. 2

Lemma 5.7 Let µ ⊂ λ be a partition and ν := ((λ1 − µ1, . . . , λn−1 − µn−1, λn − µn)). Then, the
Littlewood-Richardson coefficient cλµν = 〈Sλ, SµSν〉 equals 1.

Proof The Littlewood-Richardson coefficient cλµν is equal to the number of tableaux of shape ν and eval-
uation λ − µ. But λ − µ is a permutation of ν and Theorem 11.4.3 of [18] implies that such a tableau
exists and is unique. This ends the proof. 2

End of the proof of Theorem 5.5 Let λ be a (n,m)-admissible partition. Since ρ ⊂ λ, Lemma 5.6
implies that the partition µ = ((λ − ρ)) is (n,m − 1)-admissible. And by induction, Sµ appears with a
non-zero coefficient in Sm−1

ρ . The positivity of the Littlewood Richardson coefficients implies that each
partition ν such that cνµ,ρ 6= 0 appears with a non-zero coefficient in the expansion of Smρ . In particular,
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from Lemma 5.7, it is the case for λ. This shows that cn,mλ 6= 0 if and only if λ is (n,m)-admissible and
proves the Theorem.2.
Note that other expansions of Macdonald functions can be found in the literature (for example Hall-
Littlewood polynomials can be expanded in terms of plane partitions [17]), it should be interesting to
investigate the properties of Dk(X; q) which can be deduced from these expansions.
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