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Nestings of Matchings and Permutations and
North Steps in PDSAWS

Martin Rubey
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Abstract. We present a simple bijective proof of the fact that matchiaf[2n] with N nestings are equinumerous
to partially directed self avoiding walksonfined to the symmetric wedge definedipy= +z, with n east steps and
N north steps. A very similar construction connects pernutatwith NV nestings andPDSAWsemaining below
the z-axis, again withN north steps. Furthermore, both bijections transport sévambinatorially meaningful
parameters.
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1 Introduction

This article exhibits a connection, at first maybe surpgsibetween two at present very actively re-
searched, yet classic, areas of combinatorics. The firattaree mentioned concerns the enumeration of
matchings, set-partitions and permutations, keepind tnhgarious statistics such as crossings and nest-
ings. For example, it was observed only rather recently bytiM&lazar and Marc Noy (see Section 1
of [6]) that the joint distribution of crossings and ness8maf matchings is symmetric. A little later, this
proved to be true also for set-partitions, as shown by Ar&sraoui and Jiang Zeng [4], and finally by
Sylvie Corteel [1] for permutations.

The other area concerns counting self avoiding walks orcéettunder various restrictions. These
objects are not only interesting from a purely combinatgr@nt of view, but also for physicists, who
seem to use them as models for polymers in dilute solutiomfortiinately, self avoiding walk models
are usually intractable from a combinatorial point of viddowever, imposing some sort of directedness
on the walks, we obtain models that are easier to deal withhreMrecisely, in this article we will consider
self avoiding walks that aneartially directed

Definition 1.1 A partially directed self avoiding wajlshortPDSAWis a walk in the plane, starting at the
origin and taking unit east, north, and south steps, wheogydver, a north step must not be immediately
followed or preceded by a south step. Within this articleregtrict our attention to walks that either stay
within the symmetric wedge, defineddpy= +x, or the asymmetric wedge enclosed by thaxis and

y = —x. Furthermore, we require that the paths end at some point en—z.
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Research Network “Analytic Combinatorics and Probalidistumber Theory”.
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a. A PDSAW in the symmetric wedge b. A PDSAW in the asymmetedge
with 12 east and 1 north steps, with 4 east and. north steps,
2 factors and length of last desceént 3 factors,6 descents, and
length of last descent

Fig. 1: Examples for PDSAWSs in wedges.

1.1 PDSAWSs in the symmetric wedge

An example of a walk in the symmetric wedge can be found in féigua. Since a walk is entirely
determined by the-coordinates of its east steps, it is immediate that the tteber of walks withn
eaststepsis givenlgn—1)!! = 1-3...(2n—3)(2n—1). Note that this is also the number of matchings
of the set2n] = {1,2,...,2n}.

By introducing the iterated kernel method, Janse van Regsbthomas Prellberg and Andrew Rech-
nitzer [11] were able to derive a rather complicated expoesfor the generating function of PDSAWSs
according to theéotal number of steps. Using that expression they also compugeasymptotic number
of such paths.

Intriguingly, the generating function they found was corsgw of pieces which all seemed to have a
combinatorial interpretation. Roughly, it consisted obdternating series of powers of Catalan generating
functions, albeit shifted by a quadratically growing powinting at the distinct possibility of a more
direct combinatorial derivation. When one of them relateid to Philippe Flajolet, he pointed out an
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apparent similarity to a formula counting the number of ratgs with respect to crossings. Following
up on this connection, they discovered the surprising featt the generating function for PDSAWSs with
n east steps, whekemarks the number of north steps, is as simple as

et () (L)

i>0
This formula is known aJouchard-Riordan Formulaand counts the number of matchings of the set
[2n] according to crossings, i.e., pairs of matched pofatg} and{k,} withi < k < j < [, pictorially:

1 k J l
A bijective proof of the latter fact was given by Jean-Guy &eh[8], exhibiting a whole zoo of combi-
natorial objects counted by these numbers, including icehtarizontally convex polyominoes.

Of course, we would now like to see a bijection between PDSAWhe symmetric wedge withV
north steps and matchings withi crossings. It is the main purpose of this article to descsibeh a
bijection. However, it turns out that it is more convenientbnsider matchings with nestings instead,
that is, pairs of matched poin{s, j} and{k, 1} with: < k < < j:

1 k J l
Note that nestings and crossings in matchings (and, in &®b, in partitions and permutations, given
appropriate definitions) are equidistributed, see thelagiby Anisse Kasraoui and Jiang Zeng, and Sylvie
Corteel [1, 4].
The bijection we present in Sections 2.1 and 2.2 will tramspeveral combinatorially meaningful

statistics on PDSAWSs and matchings. In particular, it wiprfactors of PDSAWS to factors of matchings:

Definition 1.2 A factorof a PDSAW in the symmetric wedge is a sub-path startirig,ata) and ending
at (b, —b), such that

all east steps after the poift, —a) are below the line) = « — 2aq,
all east steps after the poif, —b) are below the lingy = = — 2b

for somes and somé.
Afactorof a matching is a sub-matching such that all elements ofubeisterval{a,a+1,...,b} are
matched within that interval.

As an example, the PDSAW in Figure 1.a has two (prime) facttrish are separated by the dotted line.
Theorem 1.3 PDSAWSs with: east steps,

» N north steps,
* parity of area enclosed by the path and the line- —x equal toA, and

* length of the last descent equalid — 1
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Fig. 2: The matching of24] corresponding to the PDSAW in Figure 1.a.

are in bijection with matchings of the sét] with
» N nestings,
* parity of the number of crossings equalAg and
* 1 being matched witti/.

Moreover, factors are preserved, the last factor of the Pl¥S#eing mapped to the first factor of the
matching.

(To compute the area enclosed by the path and the liae- 2, we only count full squares and disregard
triangles. The length of the last descent is the number dhssiaps after the last east step of the PDSAW.)

1.2 PDSAWSs in the asymmetric wedge

We now shift our attention to PDSAWS in the asymmetric wedfjgain, it is immediate that the total
number of such walks withw east steps equats. Indeed, after performing a few computations and
consulting the on-line encyclopedia of integer sequent8} fone will be convinced that these paths
should be in bijection with permutations, north steps beimmpped to nestings as defined by Sylvie
Corteel [1], or, alternatively, to the number of occurrenoéthe (generalised) pattedi-2. Similar to
the case of matchings, there is a formula for the generatingtion of permutations dh| according to
nestings, as shown by Sylvie Corteel [1] building on work afiken Williams [13]:

n k—1
—k? i an ki [TV k—i n
ro= S St (e () @
Sure enough, just a few days (or were it mere hours?) aftagipeesented with this conjecture, Philippe
Nadeau came up with a surprisingly simple bijection betweBBSAWS that remain below theaxis with
N north steps and permutations that contain the generalaeip31-2 N times. Motivated by this, and
given the definitions of Sylvie Corteel [1], it was not hardital another bijection to permutations with
nestings, that again transports factors and the lengthedéitt descent nicely. Of course, in this situation,
factorsandnestingshave to be defined slightly differently:

Definition 1.4 Afactorof a PDSAW in the asymmetric wedge is a sub-path startigg,ata) and ending
at (b, —b), that stays below the ling = —a, for somex and somé.

Afactorof a permutation is a sub-permutation such that all elemkaststhare are mapped to elements
less thar, and all elements greater thdrnare mapped to elements greater than

A weak exceedands an occurrence aof (i) > i.
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Fig. 3: A graphical representation of the permutatich? £ 15§ 7 § % 19 11 12 13 14 corresponding to the PD-
SAW in Figure 1.b.

An arc (i,0(i)) of a permutation isestedby an arc(j,o(j)), if j < i < o(i) < o(j)orj > i >
o(i) > o(j). Two arcs(i,o(i)) and (j,0(j)) crossif i < j < o(i) < o(j) (the middle inequality is
weak!) oro(j) < o(i) < j < i.

Analogous to Theorem 1.3 we can prove:
Theorem 1.5 PDSAWSs that stay below theaxis, withn east steps,
» N north steps,
» I’ descents and
* length of the last descent equal ié
are in bijection with permutations ¢f] with
* N nestings,
» E weak exceedances and
* 1 being mapped td/.

Moreover, factors are preserved, the last factor of the PlVS#eing mapped to the first factor of the
permutation.

(A descent of a PDSAW is an east step followed by a south step.)

2 The bijection for PDSAWS in the symmetric wedge

In this section we exhibit a bijective proof of Theorem 1.3 W so by taking a slight detour over certain
weighted Dyck paths, known as ‘histoires de Hermite’'.

2.1 A bijection between matchings and weighted Dyck paths

For convenience, we introduce a group of objects which aogkrto be in bijection with matchings (see,
for example, the article by Anisse Kasraoui and Jiang Zefyg flamely Dyck paths with weights on
the south-east steps. Byck pathis a path starting at the origin, taking north-east and seast steps,
returning to ther-axis but never going below it. THeeightof a step is thg-coordinate of the point where

it ends, and we allow a non-negative weight on each southségs, at most as big as its height. These
objects are also known as ‘histoires de Hermite’, becauseedf connection to the Hermite orthogonal



696 Martin Rubey

.0
A
° 3 o . 1
.2 ./\.0 .2 ./ \.2
NN ¥ Ne 20

J N & A
7 N’ N,
2 3210 2 4321 10

Fig. 4: A Dyck path with12 south-east steps corresponding to the PDSAW in Figure hahg&ights of the south-east
steps are written along theaxis.

polynomials. An example of such a path is given in Figure 4.lFevity, we will refer to these weighted
Dyck paths always simply as ‘Dyck paths’.

To be able to keep track of all the statistics mentioned inofém 1.3, we need to describe their
meaning also on Dyck paths:

Definition 2.1 Thetotal weightof a Dyck path is the sum of the weights of its south-east st&pe
complementary weightf a step is the difference of its height and its weight, arectbmplementary
weightof a Dyck path is the sum of the complementary weights ofgpsst

Afactorof a Dyck path is a subpath that starts and ends atttexis, but does not return to theaxis
otherwise.

The following are trivial consequences of the bijectionibited in the article by Anisse Kasraoui and
Jiang Zeng [4], which is a variant of bijections in PhilippajBlet’'s and Xavier Viennot's articles [2, 12]:
Proposition 2.2 Matchings of the sd2n] with

* N nestings,
» C crossings, and
* 1 being matched witti/,
are in bijection with Dyck paths with south-east steps,
* total weight/V,
» complementary weigfit' and
» M being the position of the first south-east step with weigitt ze

Moreover, factors are preserved.
(Thepositionof the first step in a Dyck path is one, the second step hasqosito, etc.)

2.2 A bijection between weighted Dyck paths and PDSAWSs

In this section we present a bijection between weighted Dpatks and PDSAWS, thus proving Theo-
rem 1.3. As a side remark, for PDSAWSs without north stepsrigwesformation is particularly simple: it
consists of rotating the PDSAW counterclockwiset5§ and reflecting the result at a vertical line, giving
all south-east steps weight zero.
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Let P be a PDSAW, given by thg-coordinates of its east steps. We proceed recursivelye isenly
one PDSAW with a single east step, so we assumeRtasn > 1 east steps. LeP’ be obtained from
P by removing its last east step.

If the length of the last descent &f is minimal, i.e., one, we map to the Dyck path obtained by
prepending”™3 to the Dyck pathD’ corresponding td”'.

Otherwise, let” be the PDSAW obtained frot? by lowering the last east step by one andiebe the
corresponding Dyck path. LGM(D) be the position of the first south-east step’inwith weight zero.
We consider the step immediately before and the step imnedgiafter, and produce the Dyck paih
corresponding td according to the following five local transformation rules:

0 .
[ ] 0 [ ] ./ \9
./ \./ — ./
(I fork >0
[ ]
0
./ \0 k/’ [ k/’ o 0
No L N N
(1)
0 Ny
N AN
N \
(V)
[ ] [ )
N I
.\0 .\k +1
N 0
\. — \.
% N
. +
li 0.,° ./ \.\0
NS .

We observe that for a given Dyck path, exactly one of thessrapplies, and each of them is invertible.
Furthermore, the rules imply that (D) = M (D) + 1. It remains to check that also the other statistics in
Theorem 1.3 are correctly mapped.

First, we remark that the five local transformation rulesrf@n automaton as in Figure 5: transforma-
tion (1) can only be followed by one of the transformations (ll) or (ll1), and so on.

We now show that the last two steps of the PDSAW have the gacm®rdinate precisely when trans-
formation (1) applies, i.e., the first south-east stephwiteight zero is preceded by a north-east step and
followed by another south-east step with weight zero:

Suppose that the last descent of the PDSRWhas lengthV/ — 1. By induction,M is the position of
the first south-east step @’ with weight zero. To obtaitD, we first prepend”™} to D’. In this new
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Fig. 5: The automaton corresponding to the local rules from Se&i2n

path, the second south-east step with weight zero is nowsitigroM + 2. Then, if the last two east steps
of P have the samg-coordinate, we must apply exactly — 1 times some local transformation. This
will move the first south-east step having weight zero fromsitian 2 to positionM + 1, i.e., just before
the second south-east step with weight zero. We concludethanly applied transformations of type (1)
and (1), and end up in a configuration as described in theeuliag paragraph.

Since (1) and (ll) preserve the total weight of the Dyck patihd (l11), (IV) and (V) increase it by one,
the bijection indeed transforms the number of north stefustire total weight of the Dyck path.

A simple computation reveals that transformations (I) avidificrease the complementary weight by
one, while the other transformations decrease it by oneeasing the/-coordinate of the final east step
of a PDSAW by one also increases the area enclosed by theméthaliney = —x by one. Thus, we
find that the parity of the area and of the complementary weigimcides.

It remains to show that the bijection preserves prime fagtiog., factors that do not contain a smaller
factor. To start with, we observe that transformations (1)) and (IV) preserve prime factors, while (1)
and (V) merge the first two prime factors, given that the nedstep in the preimage has height zero.

The preimage of transformation (l), with middle step havieight zero corresponds exactly to the sit-
uation where the last east step of the PDSAW is minimal. Thaényage must occur at the very beginning
of the Dyck path, since a step preceding it would have to beithseast step at height zero, and therefore
necessarily of weight zero.

Finally, the preimage of transformation (V), with middlegthaving height zero corresponds exactly
to the situation where the last east step of the last printerfa¢ the PDSAW is maximal, i.e., making it
higher would merge the last two prime factors. This is beeaussouth-east step before the middle step
in the preimage can have weight zero. Therefore, the middfeaf the preimage marks the end of the
first prime factor of the Dyck path, and the length of this prifactor minus one is also the length of the
last descent in the PDSAW.

3 The bijection for the asymmetric wedge

The aim of this section is to present a construction for PDSAMthe asymmetric wedge analogous to
the one presented in the preceding section. The rble playeekighted Dyck paths in Section 2 is now
taken by weighted Motzkin paths, or ‘histoires de Laguerkite that the bijection presented in the last
section doesot seem to restrict nicely to PDSAWSs in the asymmetric wedgeleast, we were unable
to find a good characterisation of those weighted Dyck pdiaisdorrespond to these PDSAWS.
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Fig. 6: A Motzkin path with 14 steps corresponding to the PDSAW in Figure 1.b. Only nowo-zeeights are
indicated.

3.1 A bijection between permutations and weighted bicoloured Motzkin Paths

We employ a slight variation of a bijection due to Dominiqueata and Doron Zeilberger that maps
permutations to weighted bicoloured Motzkin paths.

A bicoloured Motzkin paths a path starting at the origin, taking north-east, sou$i;eeast and
coloured east steps, returning to theaxis but never going below it. Thieeightof a step is they-
coordinate of the point where it ends, and we allow a non-iegaeight on every step as follows:

south-east steps and east steps have weight at most as bardeeight, and
north-east steps and coloured east steps have weight éesthtkir height.

Note that this implies that coloured east steps must havghhgreater than zero. Such paths are also
referred to as ‘histoires de Laguerre’. An example of suchth s given in Figure 6. For brevity, we will
refer to weighted Motzkin paths always simply as ‘Motzkirhsa.

Thetotal weightof a Motzkin path is the sum of the weights of its stepgaétor of a Motzkin path is
a subpath that starts and ends atikexis. Thus, an east step of height zero constitutes a pawstert

Proposition 3.1 Permutations ofn] with
» N nestings,
» C crossings,
+ E weak exceedances and
* 1 being mapped ta/
are in bijection with Motzkin paths with steps,
* total weight/V,
» complementary weightt,
» [ east and north-east steps and
» M being the position of the first east or south-east step witlyleé.

Moreover, factors are preserved.

The path is created as follows: ketbe a permutation df:], then the™" step is

north-east, if < min (o(i),01(i)),
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south-east, if > max (o(i), 071 (i)),
east, ifo~1(i) <i < o(i), and
coloured east, if (i) < i < o~ 1(i).

The weight of the™ step is the number of arcs nestiftg—' (i), ). We remark that this definition differs
slightly from Sylvie Corteel’s in [1], where the weight wasken to be the number of arcs nestingr (7))
instead.

Let us show thatr(1) = M entails that thel/™ step is the first east or south-east step with weight
zero: since it is impossible to nest the féﬂ(;a(l)), the M™ step certainly has weight zero. Since either
M > max (o(M),0" (M) =1) orc~(M) =1 < M < o(M), it must be south-east or east. Finally,
suppose that thd" step, withi < M, is east or south-east. We then must havé(i) < i, so it is nested
by (1,0(1)) and has therefore non-zero weight.

To prove that prime factors are preserved, we remark thdt fatgor of a permutation is a permutation
by itself and therefore mapped to a Motzkin path, and viceeer

3.2 Abijection between weighted Motzkin paths and PDSAWSs below the z-axis

For brevity, we refer in this section to PDSAWSs that remaitotethe z-axis simply as PDSAWSs. The
bijection we are about to describe is very similar to the en8éction 2.2, so we allow ourselves to keep
the description shorter.

Let P be a PDSAW withn > 1 east steps and I’ be obtained fronP by removing its last east step.
If the length of the last descent &f is minimal, we map it to the Motzkin path obtained by prepegdi
an east step to the Motzkin paitt’ corresponding td’.

Otherwise, let” be the PDSAW obtained frodt by lowering the last east step by one andii&be the
corresponding Motzkin path. We consider the first east otrseast step it/ that has weight zero, along
with the step immediately after it. Then we produkecorresponding ta® according to the following
local transformation rules:

(I) if the first step of the pair is an east step, and the secendtian east or south-east step with weight
zero, exchange the two steps;

(1) if the first step of the pair is an east step, and the seds@th east step with weight zero, replace
them with a north-east step followed by a south-east steth,with weight zero;

(1 if the first step of the pair is an east step, and the sddsra south-east step with weight zero,
replace them with a coloured east step followed by a souhstep, both with weight zero;

(IV) otherwise, that is, if the first step of the pair is a soe#st step, increase the weight of the second
step by one and exchange the two steps and their weights.

Again, these rules form an automaton, which is depictedguifé 7. Note however that this automaton
differs structurally from the one in described in Sectio: 2here, one of transformations (II) or (lII)
applies if the final east step of the PDSAW is just below itstsiexast east step. l.e., there are two
transient states, and the transition ocdoe$orethe final two east steps of the PDSAW have the same
y-coordinate. Since we enter state (IV) when the final eaptaté’ is at the same height as the next-to
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(I)/ (In \(IV)
O,

Fig. 7: The automaton corresponding to the local rules from Se&i2n

last east step oP, and each transformation in state (IV) increase the weightrie, every north step
between the last two east stepsfotontributes one to the total weight of the resulting Motzbath.

The number of east and north-east steps is decreased by stagan (I1) and (lIIl), while it remains
constant in the other two states. This proves that the nuofb&eak exceedances is indeed mapped to
the number of descents.

We have to remark that the bijection in this section doesnaoisform the number of crossings of the
permutation into a meaningful statistic on PDSAWSs. Thislittla disappointing, given the other parallels
between Theorems 1.3 and 1.5.

3.3 Philippe Nadeau's bijection

In this section we present Philippe Nadeau'’s bijectionclvhiias already mentioned in the introduction.
The theorem it proves is almost identical to Theorem 1.5:

Theorem 3.2 PDSAWS that stay below theaxis, withn east steps,
* N north steps and
* length of the last descent equalid
are in bijection with permutations ¢f] with
» N occurrences of the pattei-2 and
* 1 being mapped td/.

Moreover, prime factors are preserved, the last prime facfthe PDSAW being mapped to the first factor
of the permutation.
Let P be a PDSAW withn east steps and le&® = {1,2,...,n}. We construct the corresponding
permutationr as follows: fori in1,2,...,n,
let h be 1 minus they-coordinate of thén — i + 1) east step of?,
leto (i) be theh-largest element ifk, and
delete this element frorR.

It is immediate that is mapped ta\/, since fori = 1 we haveh = 1 — (M — n). To prove that north
steps are translated to occurrences of the pae2y note that for every east step thatkisinits above
the preceding step we introdugeoccurrences of the patteBi-2 in o. (Of course, this does not mean,
that the images of the steps undewould differ by k!)
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Apart from being extremely simple, this bijection has amotheautiful property: it is identical to the
composition of the bijection presented in the previousisaawith the bijection given by Sylvie Corteel
in [1], although this does not appear obvious at all.

We have to remark, unfortunately, that we were unable to fietinélar bijection between matchings
and PDSAWSs in the symmetric wedge. In particular, we couldfind a ‘nice’ definition of a pattern in
matchings, such that the number of occurrences thereofdwmutespond to the number of north steps in
PDSAWSs in the symmetric wedge.

4 The end of the story?

A brieflook at the literature will convince us that there r@ns a fair bit of work to be done. Most pressing
is the question whether we can derive the generating fumetidtained by Janse van Rensburg, Thomas
Prellberg and Andrew Rechnitzer [11] for PDSAWSs endamywhere according to theotal number of
steps. For example, for the symmetric wedge they obtait, wit

P=+/(1—)(1-52)
Q= (1-3t*—P)/2t.

the generating function

> ent” = 1 (1+t)t—(1—t>—P) Z(—l)”t"zQ"

_ __ 42
= t(1 — 2t — 2) =
=14+t+3t2+5t3 4+ 13t 4 ...

Although the bijections described here treat the lengtihefiast descent of the PDSAW nicely, we were
unable to derive a formula for PDSAWS for a fixed value of thddistic, or a generating function keeping
track of it.

Apart from that, it might be worth exploring whether thereaigeneralisation of PDSAWSs that cor-
respond to partitions. Since the bijection of Anisse Kasramd Jiang Zeng also applies to these more
general objects, it would not be too surprising to find suctemegalisation. Maybe this would involve
PDSAWSs allowing diagonal steps.

Related to this, we would like to point out the link to contbfractions and orthogonal polynomials.
Indeed, the machinery developed by Philippe Flajolet [2] Zavier Viennot [12] teaches us to interpret
the expression in Equation (1) as the™ moment of ag-analogue of the Hermite polynomials, and the
expression in Equation (2) as th® moment of aj-analogue of the Laguerre polynomials. The generating
function ., M,,2™ has the continued fraction expansion
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while the generating functiop .., P,«™ has the expansion

Finally, we would like to explain why we chose to present tijedtions in terms of automatons. The
reason, although realised only after having found the tijas, is that they are unique in the following
sense: given that the bijections should preserve the paeasres described in Theorems 1.3, and there
should belocal rules displacing the first occurrence of a south-east stép weight zero to the right,
the rules in Section 2.2 are already determined. Of coungedbes not exclude the possibility of other
bijective proofs, as demonstrated very recently by SvatRoznanovi€ [9].
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