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1 Introduction
A complex representation of a group or an algebraA is called aGelfand modelfor A, or simply amodel,
if it is equivalent to the multiplicity free direct sum ofall A-irreducible representations.

Models (for compact Lie groups) were first constructed by Bernstein, Gelfand and Gelfand [8]. Con-
structions of models for the symmetric group, using inducedrepresentations from centralizers, were found
by Klyachko [13, 14] and by Inglis, Richardson and Saxl [11];see also [6, 21, 4, 3, 5]. Our goal is to
determine an explicit and simple combinatorial action which gives a model for the symmetric group and
its Iwahori-Hecke algebra and for the hyperoctahedral group. The descent set of a permutation plays a
crucial role in the construction and in a resulting character formula.

The rest of the paper is organized as follows. Main results are given in Sections 2–4. Proofs are sketched
in Sections 5–7. Section 8 concludes with remarks and open problems.

This is an extended abstract. For a more detailed version see[1].

2 The Symmetric Group
Let Sn be the symmetric group onn letters,S = {s1, . . . , sn−1} the set of simple reflections inSn,
In = {π ∈ Sn |π2 = id} its the set of involutions, andVn := spanQ{Cw |w ∈ In} a vector space over
Q formally spanned by the involutions.

Recall the standard length function on the symmetric group

ℓ(π) := min{ℓ |π = si1si2 · · · siℓ
, sij

∈ S (∀j)},

the descent set
Des(π) := {s ∈ S | ℓ(πs) < ℓ(π)},
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and the descent numberdes(π) := #Des(π).

Define a mapρ : S → GL(Vn) by

ρ(s)Cw := sign(s; w) · Csws (∀s ∈ S, w ∈ In)

where

sign(s; w) :=

{

−1, if sws = w ands ∈ Des(w);

1, otherwise.
(1)

Theorem 2.1 ρ determines anSn-representation.

Theorem 2.2 ρ determines a Gelfand model forSn.

3 Hecke Algebra Action
ConsiderHn(q), the Hecke algebra of the symmetric groupSn (say over the fieldQ(q1/2)), generated by
{Ti | 1 ≤ i < n} with the defining relations

(Ti + q)(Ti − 1) = 0 (∀i),

TiTj = TjTi if |i − j| > 1,

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n − 1).

Note that some authors use a slightly different notation, with Ti consistently replaced by−Ti. The current
definition gives a more convenient description of the characters, see Proposition 3.3 below.

In order to construct an extended signed conjugation, whichgives a model forHn(q), we extend the
standard notions of length and weak order. Recall that the (left) weak order≤L onSn is the reflexive and
transitive closure of the relation:w ≺L ws if s ∈ S andℓ(w) + 1 = ℓ(sw).

Definition 3.1 Define theinvolutive lengthof an involutionw ∈ In with cycle type(1n−2k2k) as

ℓ̂(w) := min{ℓ(v) |w = vs1s3 · · · s2k−1v
−1},

whereℓ(v) is the standard length ofv ∈ Sn.
Define theinvolutive weak order≤I on In as the reflexive and transitive closure of the relation:w ≺I

sws if s ∈ S and ℓ̂(w) + 1 = ℓ̂(sws).

Define a mapρq : S → GL(Vn) by

ρq(Ts)Cw :=



















−qCw, if sws = w ands ∈ Des(w);

Cw, if sws = w ands 6∈ Des(w);

(1 − q)Cw + qCsws, if w ≺I sws;

Csws, if sws ≺I w.

(2)

Theorem 3.2 ρq is a Gelfand model forHn(q) (q indeterminate); namely,
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(1) ρq is anHn(q)-representation.

(2) ρq is equivalent to the multiplicity free sum of all irreducibleHn(q)-representations.

The proof involves Lusztig’s version of Tits’ deformation theorem [17]. For other versions of this
theorem see [9,§4], [10,§68.A] and [7].

Let µ = (µ1, µ2, . . . , µt) be a partition ofn and letaj :=
∑j

i=1 µi (0 ≤ j ≤ t). A permutationπ ∈ Sn

is µ-unimodalif for every0 ≤ j < t there exists1 ≤ dj ≤ µj+1 such that

πaj+1 < πaj+2 < · · · < πaj+dj
> πaj+dj+1 > πaj+dj+2 > · · · > πaj+1 .

The character ofρq may be expressed as a generating function for the descent number overµ-unimodal
involutions.

Proposition 3.3

Tr (ρq(Tµ)) =
∑

{w∈In |w is µ-unimodal}

(−q)des(w)

whereTµ := T1T2 · · ·Tµ1−1Tµ1+1 · · ·Tµ1+...+µt−1 is the subproduct ofT1T2 · · ·Tn−1 omitting the fac-
torsTµ1+···+µi

for all 1 ≤ i < t.

4 The Hyperoctahedral Group
Let Bn be the Weyl group of typeB, SB - the set of simple reflections inBn, IB

n - the set of involutions
in Bn, andV B

n := spanQ{Cw |w ∈ IB
n } a vector space overQ spanned by the involutions. Recall that

Bn = Z2 ≀ Sn, so that each elementw ∈ Bn is identified with a pair(v, σ), wherev ∈ Zn
2 andσ ∈ Sn.

Denote|w| := σ.
Define a mapρB : SB → GL(Vn) by

ρB(s)Cw := sign(s; w) · Csws (∀s ∈ SB, w ∈ IB
n )

where, fors = s0 = ((1, 0, . . . , 0), id), the exceptional Coxeter generator, the sign is

sign(s0; w) :=

{

−1, if sws = w ands0 ∈ Des(w);

1, otherwise,

and fors 6= s0 the sign is

sign(s; w) :=

{

−1, if sws = w ands ∈ Des(|w|);

1 otherwise.

Theorem 4.1 ρB is a Gelfand model forBn.

For a proof and generalizations see [2].
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5 Characters
5.1 Character Formula

The following classical result follows from the work of Frobenius and Schur, see [12,§4] and [23,§7,
Ex. 69].

Theorem 5.1 Let G be a finite group, for which every complex representation is equivalent to a real
representation. Then for everyw ∈ G

∑

χ∈G∗

χ(w) = #{u ∈ G |u2 = w},

whereG∗ denotes the set of the irreducible characters ofG.

It is well known [22] that all complex representations of a Weyl group are equivalent to rational repre-
sentations. In particular, Theorem 5.1 holds forG = Sn. One concludes

Corollary 5.2 Letπ ∈ Sn have cycle structure1d12d2 · · ·ndn . Then

∑

χ∈Sn
∗

χ(π) =

n
∏

r=1

f(r, dr),

where

f(r, dr) =



















0, if r is even anddr is odd;
(

dr

2,...,2

)

· rdr/2, if r anddr are even;
⌊dr/2⌋
∑

k=0

(

dr

dr−2k,2,2,...,2

)

· rk, if r is odd.

In particular,f(r, 0) = 1 for all r.

For a proof see [1].

5.2 Proof of Theorem 2.2

We shall compute the character of the representationρ and compare it with Corollary 5.2.
Recall the definition of the inversion set of a permutationπ ∈ Sn,

Inv(π) := { {i, j} | (j − i) · (π(j) − π(i)) < 0}.

Definition 5.3 For an involutionw ∈ In let Pair(w) be the set of 2-cycles ofw (considered as unordered
2-sets). For a permutationπ ∈ Sn and an involutionw ∈ In let

Invw(π) := Inv(π) ∩ Pair(w)

and
invw(π) := # Invw(π).
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Proposition 5.4 [1, equation (4)]

ρ(π)Cw = (−1)invw(π) · Cπwπ−1 (∀π ∈ Sn, w ∈ In).

It follows that
Tr(ρ(π)) =

∑

w∈In∩Stn(π)

(−1)invw(π),

whereStn(π) is the centralizer ofπ in Sn (i.e., the stabilizer ofπ under conjugation).

Observation 5.5 Letπ ∈ Sn, w ∈ In ∩ Stn(π) anda1 ∈ [n] any letter. Then one of the following holds:

(1) (a1, a2, . . . , ar) is a cycle inπ (r ≥ 1); a1, a2, . . ., ar are fixed points ofw.

(2) (a1, a2, . . . , ar) and(ar+1, . . . , a2r) are cycles inπ (r ≥ 1); (a1, ar+1), (a2, ar+2), . . ., (ar, a2r)
are cycles inw.

(3) (a1, a2, . . . , a2m) is a cycle inπ (m ≥ 1); (a1, am+1), (a2, am+2), . . ., (am, a2m) are cycles inw.

For everyA ⊆ [n] let SA := {π ∈ Sn | Supp(π) ⊆ A} be the subgroup ofSn consisting of all
permutations whose support is contained inA.

For everyπ ∈ Sn and1 ≤ r ≤ n let A(π, r) ⊆ [n] be the set of all letters which appear in cycles of
lengthr in π. In other words,

A(π, r) := {i ∈ [n] |πr(i) = i and(∀j < r) πj(i) 6= i}

For example,A(π, 1) is the set of fixed points ofπ.
Denote byπ|r the restriction ofπ to A(π, r). Thenπ|r may be considered as a permutation inSA(π,r).
By Observation 5.5,

Corollary 5.6 Fix π ∈ Sn. Eachw ∈ In ∩ Stn(π) has a unique decomposition

w =
∏

r≥1

wr

where
wr ∈ ISA(π,r)

∩ StSA(π,r)
(π|r) (∀r)

with A(π, r), π|r andSA(π,r) as defined above; and

Invw(π) =
⋃

r≥1

Invwr
(π|r),

a disjoint union.

Hence, it suffices to prove thatTr(ρ(π)) is equal to the right hand side of the formula in Corollary 5.2,
for π of cycle typern/r . Sinceρ is a class function, we may assume that

π = (1, 2, . . . , r)(r + 1, . . . , 2r) · · · (n − r + 1, n− r + 2, . . . , n). (3)
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Observation 5.7 Letr be a positive integer.

(1) If i andj are distinct nonnegative integers,π as in (3) above, andw = (ir + 1, jr + σ(1))(ir +
2, jr+σ(2)) · · · (ir+r, jr+σ(r)) (whereσ is some power of the cyclic permutatation(1, 2, . . . , r)),
then

(−1)invw(π) = 1.

(2) If r = 2m is even,π as in (3) above, andw = (1, m + 1)(2, m + 2) · · · (m, 2m), then

(−1)invw(π) = −1.

Lemma 5.8 For every oddr and a permutationπ as in (3) above,

∑

w∈In∩Stn(π)

(−1)invw(π) = # (In ∩ Stn(π)) =

⌊n/2r⌋
∑

k=0

(

n/r

n/r − 2k, 2, 2, . . . , 2

)

· rk.

Proof of Lemma 5.8. If r is odd then only cases (1) and (2) in Observation 5.5 are possible. The first
equality in the statement of the lemma then follows from Observation 5.7(1). The second equality follows
from Observation 5.5(1)(2), counting the involutionsw ∈ In ∩ Stn(π) with #Supp(w) = 2rk.

2

Lemma 5.9 For every evenr and a permutationπ as in (3) above,

∑

w∈In∩Stn(π)

(−1)invw(π) =

{

0, if n/r is odd;
(

n/r
2,...,2

)

· rn/2r , if n/r is even.

Proof of Lemma 5.9. Let ci = (ir + 1, ir + 2, . . . , ir + r) be one of the cycles ofπ, as in (3). By
Observation 5.5, an involutionw ∈ In ∩ Stn(π) has one of the following three types with respect toci:

Type (1): Each element ofci is a fixed point ofw.

Type (2): w mapsci onto a different cycle ofπ.

Type (3): r = 2m is even, andci is a union of 2-cycles ofw:

{ir + t, ir + t + m} ∈ Pair(w) (1 ≤ t ≤ m).

Denote
P2 := {w ∈ In ∩ Stn(π) |w is of type (2) w.r.t. all cycles ofπ}.

For anyw ∈ (In ∩ Stn(π)) \ P2, let

i(w) := min{i |w is of type (1) or (3) w.r.t. the cycleci}.

Denote
P1 := {w ∈ (In ∩ Stn(π)) \ P2 |w is of type (1) w.r.t. the cycleci(w)}
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and
P3 := {w ∈ (In ∩ Stn(π)) \ P2 |w is of type (3) w.r.t. the cycleci(w)}.

The mapϕ : P1 → P3 which changes the action ofw on ci(w) from type (1) to type (3) is clearly a
well-defined bijection; and, by Observation 5.7(2), it reverses the sign of(−1)invw(π). The contributions
of P1 andP3 to the sum therefore cancel each other. Each element of the remaining setP2 contributes1,
by Observation 5.7(1). Lemma 5.9 follows.

2

Lemmas 5.8 and 5.9 complete the proof of Theorem 2.2.
2

6 The Involutive Length
Recall the definition of the involutive lengtĥℓ (Definition 3.1). In order to prove Theorem 3.2 we need
the following combinatorial interpretation of the involutive lengthℓ̂.

Lemma 6.1 Letw ∈ Sn be an involution of cycle type2k1n−2k. Then

ℓ̂(w) :=





∑

t∈Supp(w)

t −

(

2k + 1

2

)



 +
1

2

[

inv(w|Supp(w)) − k
]

. (4)

Proof: Denote the right hand side of (4) byf(w). It is easy to verify thatf(w) = 0 when ℓ̂(w) = 0,
i.e., whenw = s1s3 · · · s2k−1. Let u andv = siusi be involutions inSn with ℓ̂(v) = ℓ̂(u) + 1. Then
|{i, i + 1} ∩ Supp(u)| > 0. If |{i, i + 1} ∩ Supp(u)| = 1 then

∑

t∈Supp(v)

t −
∑

t∈Supp(u)

t = ±1

andinv(v|Supp(v)) = inv(u|Supp(u)). If |{i, i + 1} ∩ Supp(u)| = 2 then

∑

t∈Supp(v)

t =
∑

t∈Supp(u)

t

andinv(v|Supp(v))− inv(u|Supp(u)) ∈ {2, 0,−2}. Thus in both cases|f(v)− f(u)| ≤ 1. This proves, by

induction onℓ̂, thatf(w) ≤ ℓ̂(w) for every involutionw.
On the other hand, ifw is an involution withf(w) > 0 then either

∑

t∈Supp(w) t >
(

2k+1
2

)

, or
∑

t∈Supp(w) t =
(

2k+1
2

)

and inv(w|Supp(w)) > k. In the first case there existsi + 1 ∈ Supp(w) such
that i 6∈ Supp(w). Thenf(siwsi) = f(w) − 1. In the second caseSupp(w) = {1, . . . , 2k}. Since
inv(w|Supp(w)) > k, w 6= s1s3 · · · s2k−1. Thus there must exist a minimali satisfyingw(i) > i + 1. De-
notingj := w(i)−1 > i we cannot havew(j) < i (by minimality ofi), and thereforew(j) > i = w(j+1)

andf(sjwsj) = f(w) − 1. We conclude that̂ℓ(w) ≤ f(w) for every involutionw.
2
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7 The Hecke Algebra
7.1 Proof of Theorem 3.2(1).
We prove thatρq is anHn(q)-representation by verifying the defining relations.

First, consider the braid relationTiTi+1Ti = Ti+1TiTi+1. To verify this relation observe that there
are six possible types of orbits of an involutionw under conjugation by〈si, si+1〉 - the subgroup inSn

generated bysi andsi+1. These orbits differ by the action ofw on the lettersi, i + 1, i + 2 :

1. i, i + 1, i + 2 6∈ Supp(w).

2. Exactly one of the lettersi, i + 1, i + 2 is in Supp(w).

3. Exactly two of the lettersi, i + 1, i + 2 are inSupp(w), and these two letters form a 2-cycle inw.

4. Exactly two of the lettersi, i + 1, i + 2 are inSupp(w), and these two letters do not form a 2-cycle
in w.

5. i, i + 1, i + 2 ∈ Supp(w), and two of these letters form a 2-cycle inw.

6. i, i + 1, i + 2 ∈ Supp(w), and no two of these letters form a 2-cycle inw.

Note that an orbit of the first type is of order one; orbits of the second, third and fifth type are of order
three; and orbits of the fourth and sixth type are of order six. Moreover, by Lemma 6.1, orbits of the same
order form isomorphic intervals in the weak involutive order (see Definition 3.1). In particular, all orbits
of order six have a representativew of minimal involutive length, such that the orbit has the form :

sisi+1siwsisi+1si

ւ ց
sisi+1wsi+1si si+1siwsisi+1

↓ ↓
si+1wsi+1 siwsi

ց ւ
w

(5)

All orbits of order three are linear posets:

w ≺I siwsi ≺I si+1siwsisi+1, (6)

or
w ≺I si+1wsi+1 ≺I sisi+1wsi+1si. (7)

Thus the analysis is reduced into three cases.

Case (a).An orbit of order six. By (2) and (5), the representation matrices of the generators with respect
to the ordered basisCw, Csiwsi

, Csi+1siwsisi+1 , Csisi+1siwsisi+1si
, Csi+1wsi+1 , Csisi+1wsi+1si

are :

ρq(Ti) =

















1 − q 1 0 0 0 0
q 0 0 0 0 0
0 0 1 − q 1 0 0
0 0 q 0 0 0
0 0 0 0 1 − q 1
0 0 0 0 q 0
















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and

ρq(Ti+1) =

















1 − q 0 0 0 1 0
0 1 − q 1 0 0 0
0 q 0 0 0 0
0 0 0 0 0 q
q 0 0 0 0 0
0 0 0 1 0 1 − q

















It is easy to verify that indeed

ρq(Ti)ρq(Ti+1)ρq(Ti) = ρq(Ti+1)ρq(Ti)ρq(Ti+1).

Case (b). An orbit of order three. With no loss of generality, the orbitis of type (6); the analysis of
type (7) is analogous. Thensi+1wsi+1 = w andsi(si+1siwsisi+1)si = si+1siwsisi+1. It is shown
in [1] thatsi+1 ∈ Des(w) if and only if si ∈ Des(si+1siwsisi+1).

Given the above, by (2), the representation matrices of the generators with respect to the ordered basis
w ≺I siwsi ≺I si+1siwsisi+1 are

ρq(Ti) =





1 − q 1 0
q 0 0
0 0 x





and

ρq(Ti+1) =





x 0 0
0 1 − q 1
0 q 0



 ,

wherex ∈ {1,−q}. These matrices satisfy the braid relation.

Case (c). An orbit of order one. Thensiwsi = w, si+1wsi+1 = w andsi, si+1 6∈ Des(w). By (2),
ρq(Ti)ρq(Ti+1)ρq(Ti)Cw = ρq(Ti+1)ρq(Ti)ρq(Ti+1)Cw = Cw, completing the proof of the third rela-
tion.

The proof of the other two relations is easier and will be leftto the reader.
2

Remark 7.1 Substitutingq = 1 proves Theorem 2.1.

7.2 Proof of Theorem 3.2(2).
We apply Lusztig’s version of Tits’ deformation theorem to prove thatρq is a Gelfand model.

Consider the Hecke algebraHn(q) as the algebra overQ(q1/2) spanned by{Tv | v ∈ Sn} with the
multiplication rules

TvTu = Tvu if ℓ(vu) = ℓ(v) + ℓ(u)

and
(Ts + q)(Ts − 1) = 0 (∀s ∈ S).
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By Lusztig’s version of Tits’ deformation theorem [17, Theorem 3.1], the group algebra ofSn over
Q(q1/2) may be embedded inHn(q). In particular, every elementw ∈ Sn may be expressed as a linear
combination

w =
∑

v∈Sn

mv,w(q1/2)Tv,

wheremv,w is a rational function ofq1/2.
It follows thatρq may be considered as anSn-representation, via

ρq(w) :=
∑

v∈Sn

mv,w(q1/2)ρq(Tv) (∀w ∈ Sn).

The resulting character valuesρq(w) are rational functions ofq1/2. By discreteness of theSn character
values, each such function is locally constant wherever it is defined, and is thus constant globally. each
such fu By Theorem 2.2,ρq|q=1 = ρ is a model for the group algebra ofSn. This completes the proof.

2

7.3 Proof of Proposition 3.3

Let SYTn be the set of all standard Young tableaux of ordern, and letSYT(λ) ⊆ SYTn be the set of all
standard Young tableaux of shapeλ. For each partitionλ of n, fix a standard Young tableauPλ ∈ SYT(λ).
By [20, Theorem 4], the value of the irreducibleHn(q)-characterχλ

q atTµ is

χλ
q (Tµ) =

∑

{w 7→(Pλ,Q) |w is µ-unimodal andQ ∈ SYT(λ)}

(−q)des(w),

where the sum runs over allµ-unimodal permutationsw ∈ Sn which are mapped under the Robinson-
Schensted (RS) correspondence to(Pλ, Q) for someQ ∈ SYT(λ). By [23, Lemma 7.23.1], the descent
set of suchw ∈ Sn is determined byQ. Hence

Tr ρq(Tµ) =
∑

λ

χλ
q (Tµ)) =

∑

λ

∑

{w 7→(Pλ,Q) |w is µ-unimodal andQ ∈ SYT(λ)}

(−q)des(w)

=
∑

λ

∑

{w 7→(Q,Q) |w is µ-unimodal andQ ∈ SYT(λ)}

(−q)des(w)

=
∑

{w 7→(Q,Q) | Q ∈ SYTn andw is µ-unimodal}

(−q)des(w) =
∑

{w∈In |w is µ-unimodal}

(−q)des(w).

The last equality follows from the well known property of theRS correspondence:w 7→ (P, Q) if and
only if w−1 7→ (Q, P ) [23, Theorem 7.13.1]. Thusw is an involution if and only ifw 7→ (Q, Q) for some
Q ∈ SYTn.

2
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8 Remarks and Questions
Models for classical Weyl groups of typeDn for oddn were constructed in [6, 5]. These constructions
fail for evenn. A natural question is whether there exists a signed conjugation (or a representation of
typeρsCw = as,wCw + bs,wCsws) which gives a model forD2n. It is also desired to find representation
matrices for the models of the Hecke algebras of typesB andD which specialize atq = 1 to models of
the corresponding group algebra.

We conclude with the following questions regarding an arbitrary Coxeter groupW .

Question 8.1 Find a signed conjugation which gives a Gelfand model forW ; Find a representation of
the formρsCw = as,wCw + bs,wCsws, which gives a Gelfand model for the Hecke algebra ofW .

Question 8.2 Find a character formula for the Gelfand model of the Hecke algebra ofW .

9 Added in Proof
First, it should be acknowledged that an equivalent reformulation of Theorem 2.2, with a different proof,
was given by Kodiyalam and Verma [15].

A third proof of Theorem 2.2, along the lines of [11], was suggested by an anonymous referee of [1].
Here is a brief outline.

Let χ∅,(n) denote the one dimensional character ofBn given by the parity of the number of negative
signs, and consider the natural embedding ofBn = Z2 ≀ Sn into S2n. Combining [18, Ch. I§8 Ex 6, and
Ch. VII (2.4)] with the Littlewood-Richardson rule impliesthat

((χ∅,(k) ↑S2k

Bk
) ⊗ 1Sn−2k

) ↑Sn

S2k×Sn−2k

is a multiplicity free sum of all irreducible Specht modulesindexed by partitions with exactlyn− 2k odd
columns. A natural basis for this representation is given byinvolutions withn − 2k fixed points. Finally,
it is straightforward to show that the action of a Coxeter generatorsi on this basis is identical with the
signed conjugation defined in (1).

2

Corollary 9.1 The signed conjugationρ, when restricted to the conjugacy classes of involution with
n− 2k fixed points, is a multiplicity free sum of all irreducible Specht modules indexed by partitions with
exactlyn − 2k odd columns.

This gives an algebraic proof to the following enumerative result: The number of involutions with
n − 2k fixed points is equal to the number of standard Young tableauxof shapes with exactlyn − 2k
odd columns. Another proof for this fact may be obtained using the Robinson-Schensted correspondence.
One concludes thatSλ is a factor of the restriction ofρ to a conjugacy class of cycle type2k1n−2k if and
only if λ is the shape of some pair of (equal) standard Young tableaux corresponding to an involution of
this cycle type.
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