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Abstract. A combinatorial construction of Gelfand models for the syetne group, for its lwahori-Hecke algebra
and for the hyperoctahedral group is presented.

Keywords: symmetric group, hyperoctahedral group, Iwahori-Heckelata, descents, inversions, character formu-
las, Gelfand model

1 Introduction

A complex representation of a group or an algelra called aGelfand modefor A, or simply amode|
if it is equivalent to the multiplicity free direct sum afl A-irreducible representations.

Models (for compact Lie groups) were first constructed bynB&in, Gelfand and Gelfand [8]. Con-
structions of models for the symmetric group, using induegdesentations from centralizers, were found
by Klyachko [13, 14] and by Inglis, Richardson and Saxl [198g also [6, 21, 4, 3, 5]. Our goal is to
determine an explicit and simple combinatorial action whiéves a model for the symmetric group and
its lwahori-Hecke algebra and for the hyperoctahedral grothe descent set of a permutation plays a
crucial role in the construction and in a resulting chanafciemula.

The rest of the paper is organized as follows. Main resuétgaen in Sections 2—4. Proofs are sketched
in Sections 5—7. Section 8 concludes with remarks and oparigms.

This is an extended abstract. For a more detailed versiofikee

2 The Symmetric Group

Let S,, be the symmetric group on letters, S = {si,...,s,—1} the set of simple reflections if,,
I, = {m € S, | n* = id} its the set of involutions, ant,, := spang{C.,, |w € I,,} a vector space over
Q formally spanned by the involutions.

Recall the standard length function on the symmetric group
£(m) :=min{l |7 = 54,54, -5, , 55, €S (Vj)},

the descent set
Des(m) := {s € S|l(ns) < l(m)},
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and the descent numbéss(7) := #Des(7).
Defineamap : S — GL(V,,) by

p(8)Cy = sign(s; w) - Cyus (Vs e S,w e I,)

where
-1, if sws = w ands € Des(w);
1 otherwise.

(1)

sign(s; w) := {

Theorem 2.1 p determines ar$,,-representation.

Theorem 2.2 p determines a Gelfand model 8y, .

3 Hecke Algebra Action
ConsiderH,, (¢), the Hecke algebra of the symmetric grogip(say over the field(¢'/?)), generated by
{T; |1 < i < n} with the defining relations
(Ti+g)(Ti=1)=0 (i),
TT; =TyT;  if |i—j| > 1,
TTiTs =Ty TiTiyy  (1<i<n-—1).

Note that some authors use a slightly different notatioth @jj consistently replaced byT;. The current
definition gives a more convenient description of the chigracsee Proposition 3.3 below.

In order to construct an extended signed conjugation, whiels a model fot,,(¢), we extend the
standard notions of length and weak order. Recall that & (keak ordex;, on S, is the reflexive and
transitive closure of the relatiomy <z, ws if s € S andl(w) + 1 = £(sw).

Definition 3.1 Define theinvolutive lengthof an involutionw € I, with cycle typg1"—2%2%) as
{(w) := min{l(v) |w = vs1s3 - s9p_1v "},

wherel(v) is the standard length af € S,,.
Define the'nvolytive weak prdelgl on I,, as the reflexive and transitive closure of the relatian=;
sws if s € Sandf(w) + 1 = £(sws).

Define amap, : S — GL(V,,) by

—qCly, if sws =w ands € Des(w);
po(Ts)Cop 1= Cu, if sws = w ands ¢ Des(w); @
B (1—=q)Cy + qCsws, If w <1 sws;
Cisws, if sws <7 w.

Theorem 3.2 p, is a Gelfand model foff,,(¢) (¢ indeterminate); namely,
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(1) pq is anH, (q)-representation.
(2) pq is equivalent to the multiplicity free sum of all irreduaidf,, (¢)-representations.

The proof involves Lusztig’s version of Tits’ deformatiomebrem [17]. For other versions of this
theorem see [$4], [10, §68.A] and [7].

Lety = (g1, po, - - ., it¢) be a partition of: and leta; := Zle i (0 < j <t). Apermutationr € S,
is p-unimodalif for every0 < j < t there existd < d; < p;41 such that

Ta;+1 < Ta;+2 <--e < Ta;+d; > Taj+d;+1 > Ta;+d;+2 > > Tajqr-

The character op, may be expressed as a generating function for the desceritanavery-unimodal
involutions.

Proposition 3.3

Tr (pg(Ty)) = Z (*Q)des(w)

{wel, | wis p-unimodal

whereT), := Th'Ty - T, —1Tp, 41 Tpy+...4u.—1 IS the subproduct dfy 75 - - - T,,_; omitting the fac-
torsT), 4.4, forall 1 <i < t.

4 The Hyperoctahedral Group

Let B,, be the Weyl group of typ#, SZ - the set of simple reflections iR,,, I - the set of involutions
in B, andV,? := spany{C,, |w € IZ} a vector space ovéd spanned by the involutions. Recall that
B, = ZsS,, so that each element € B,, is identified with a paifv, o), wherev € Z% ando € S,,.
Denote|w| := 0.

Define a map? : SB — GL(V,,) by

pB(5)Cy = sign(s; w) - Caus (Vs € S8 w € IP)
where, fors = so = ((1,0,...,0),id), the exceptional Coxeter generator, the sign is

-1, if sws =w andsy € Des(w);
1, otherwise,

sign(sp; w) := {

and fors # sg the sign is

-1, if sws =w ands € Des(Jw|);
1 otherwise.

sign(s; w) := {

Theorem 4.1 p? is a Gelfand model foB,,.

For a proof and generalizations see [2].
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5 Characters

5.1 Character Formula

The following classical result follows from the work of Fretius and Schur, see [184] and [23,§7,
Ex. 69].

Theorem 5.1 Let G be a finite group, for which every complex representationgisivelent to a real
representation. Then for evety € G

Z x(w) = #{u € G|u® = w},
XEG*

whereG* denotes the set of the irreducible charactersiof

It is well known [22] that all complex representations of aylgroup are equivalent to rational repre-
sentations. In particular, Theorem 5.1 holds@be S,,. One concludes

Corollary 5.2 Letw € S,, have cycle structurg?:292 ... n4, Then

S x(m) = [[ £ d).

XESH* r=1
where
0, if r is even andi, is odd
) = (27"1'f72) pde /2 if » andd,. are even
T Ldr/2]
S (g_on'ss. o) 7", ifrisodd.

In particular, f(r,0) = 1 for all r.
For a proof see [1].

5.2 Proof of Theorem 2.2

We shall compute the character of the representatiamd compare it with Corollary 5.2.
Recall the definition of the inversion set of a permutattoa S,,,

Inv(m) := {{é, 7} (G —9) - (7(§) — 7(4)) < O}.

Definition 5.3 For an involutionw € I,, let Pair(w) be the set of 2-cycles of (considered as unordered
2-sets). For a permutation € S,, and an involutionu € I, let

Inv, (7) := Inv(7) N Pair(w)

and
inv,, () := #Inv, (7).
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Proposition 5.4 [1, equation (4)]
p(m)Cy = (=)o . (Vi e Snwel,).

It follows that

Te(p(m) = Y (=),

wEI,,NSty, ()
whereSt,, () is the centralizer ofr in S,, (i.e., the stabilizer ofr under conjugation).

Observation 5.5 Letr € S,,, w € I, N St,(7) anda; € [n] any letter. Then one of the following holds:
(1) (a1,as9,...,a,)isacycleinm (r > 1); a1, as, ..., a, are fixed points ofv.

(2) (a1,a9,...,a,)and(ar41,...,as,) are cyclesinr (r > 1); (a1, ar+1), (a2, arg2), - - ., (ar, az;)
are cycles inw.

(3) (a1,asa,...,a2y)isacycleinr (m > 1); (a1, am+1), (a2, Gm12), - - -, (Am, a2m) are cycles inw.

For everyA C [n] let S4 := {7 € S, |Supp(w) C A} be the subgroup of, consisting of all
permutations whose support is containedlin

For everyr € S, andl < r < nlet A(w,r) C [n] be the set of all letters which appear in cycles of
lengthr in 7. In other words,

A(m,r) = {i € [n]| 7" (i) =i and(Vj < r) 7 (i) # 4}

For exampleA(w, 1) is the set of fixed points aof.
Denote byr,. the restriction ofr to A(w, ). Thenw), may be considered as a permutatioigy ).
By Observation 5.5,

Corollary 5.6 Fix = € S,,. Eachw € I, N St,,(7) has a uniqgue decomposition
w = H Wy
r>1

where
w’r' E ISA(,,,T) m StSA(Tr,T) (ﬂ."l“) (VT)

with A(7, ), m), and S, ) as defined above; and
Inv, () = U Invy, (7)),
r>1

a disjoint union.

Hence, it suffices to prove thai(p(7)) is equal to the right hand side of the formula in Corollary,5.2
for 7 of cycle typer™/”. Sincep is a class function, we may assume that

= (1,2,....,7)(r+1,....2r)---(n—r+1,n—r+2,...,n). 3
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Observation 5.7 Letr be a positive integer.

(1) If ¢ andj are distinct nonnegative integers,as in (3) above, andy = (ir + 1, jr + o(1))(ir +
2,jr+0(2)) - - (ir+r, jr+o(r)) (whereo is some power of the cyclic permutatatidn?2, ..., r)),
then

(_1)invw(ﬂ') -1,

(2) Ifr =2miseveny asin (3) above, and = (1,m + 1)(2,m +2) - - - (m, 2m), then

(71)invw(7r) - 1.

Lemma 5.8 For every odd- and a permutationr as in (3) above,

[n/2r]
_qyinva(m) _ = "y i
Z ( 1) _#(Inﬂstn(ﬂ'))— Z (n/T2k72a27""2) .

wEI,NSty, () k=0

Proof of Lemma 5.8. If r is odd then only cases (1) and (2) in Observation 5.5 are lplessThe first
equality in the statement of the lemma then follows from @¥estion 5.7(1). The second equality follows
from Observation 5.5(1)(2), counting the involutianse I,, N St,, (7) with #Supp(w) = 2rk.

O

Lemma 5.9 For every even and a permutationr as in (3) above,

Z (71)invw (m) _ 0, if n/ris Odd
(M) -2 ifniris even

w€ I, NSty (1)

.....

Proof of Lemma 5.9. Let ¢; = (ir + 1,ir + 2,...,ir + r) be one of the cycles af, as in (3). By
Observation 5.5, an involutiom € I,, N St,,(7) has one of the following three types with respect;to

Type (1): Each element of; is a fixed point ofw.
Type (2): w mapsc; onto a different cycle of:.
Type (3): r = 2m is even, and; is a union of 2-cycles ofy:
{ir +t,ir +t+ m} € Pair(w) (1<t<m).
Denote
Py :={w € I, N St,(7) |w is of type (2) w.r.t. all cycles of }.

Foranyw € (I, N Sty (7)) \ P, let

i(w) := min{i | w is of type (1) or (3) w.r.t. the cycle; }.

Denote
Py :={w € (I, NSt,(m)) \ P>|wis of type (1) w.r.t. the cycle;,, }
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and
P3 :={w € (I, NSty (m)) \ P> |wis of type (3) w.r.t. the cycle;(,, }.

The mapy : P1 — P3 which changes the action af on ¢;(,, from type (1) to type (3) is clearly a

well-defined bijection; and, by Observation 5.7(2), it ness the sign of—1)™V=(™), The contributions
of P; and P; to the sum therefore cancel each other. Each element of tmang setP, contributesl,
by Observation 5.7(1). Lemma 5.9 follows.

O

Lemmas 5.8 and 5.9 complete the proof of Theorem 2.2.
O

6 The Involutive Length

Recall the definition of the involutive Ieng!ﬁ(Definition 3.1). In order to prove Theorem 3.2 we need
the following combinatorial interpretation of the invake length?.

Lemma 6.1 Letw € S,, be an involution of cycle typgF1"—2*. Then

E(w) = |: Z t— (Qk; 1)] +% [inv(w|Supp(w)) - k} : (4)
)

teSupp(w

Proof: Denote the right hand side of (4) bfi{w). It is easy to verify thatf (w) = 0 when/(w) = 0,
i.e., whenw = s1s3---sop—1. Letu andv = s;us; be involutions inS,, with £(v) = ¢(u) + 1. Then
[{é,% + 1} N Supp(u)| > 0. If |{i,%+ 1} N Supp(u)| = 1 then

doot— Y =41

teSupp(v) teSupp(u)

andinv(v|5upp(v)) = inv(u‘supp(u)). If |{Z,Z + 1} N Supp(u)| = 2then

oot= >t

teSupp(v) teSupp(u)

andinv (v|supp(v)) — IV (U|supp(u)) € 12,0, —2}. Thus in both caseg (v) — f(u)| < 1. This proves, by
induction on?, that f (w) < #(w) for every involutionw.
On the other hand, ifv is an involution with f(w) > 0 then eithery", ..oyt > (*571), or

> tesupp(uw) b = (**) andinv(wjsupp(w)) > k. In the first case there exists+ 1 € Supp(w) such
thati ¢ Supp(w). Thenf(s;ws;) = f(w) — 1. In the second casgupp(w) = {1,...,2k}. Since
inv(w|gupp(w)) > k, w # s153 - - - s2p—1. Thus there must exist a minimasatisfyingw(i) > i + 1. De-
notingj := w(i)—1 > i we cannothave(j) < i (by minimality of), and thereforev(j) > i = w(j+1)
andf(s;ws;) = f(w) — 1. We conclude that(w) < f(w) for every involutionw.

O
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7 The Hecke Algebra

7.1 Proof of Theorem 3.2(1).
We prove thap, is an H,,(¢)-representation by verifying the defining relations.

First, consider the braid relatich,7;17; = T;+171;T;+1. To verify this relation observe that there
are six possible types of orbits of an involutianunder conjugation bys;, s;+1) - the subgroup irf,,
generated by; ands; ;. These orbits differ by the action of on the letters, i + 1,i 4+ 2:

1. 4,i+1,i4+ 2 ¢ Supp(w).

2. Exactly one of the letterisi + 1,7 + 2 is in Supp(w).

3. Exactly two of the letters, i + 1,7 + 2 are inSupp(w), and these two letters form a 2-cycleun

4. Exactly two of the letters i + 1,4 + 2 are inSupp(w), and these two letters do not form a 2-cycle
in w.

5.4,i+ 1,74 2 € Supp(w), and two of these letters form a 2-cycleun

6. 4,9+ 1,7 + 2 € Supp(w), and no two of these letters form a 2-cycleun

Note that an orbit of the first type is of order one; orbits &f #econd, third and fifth type are of order
three; and orbits of the fourth and sixth type are of orderigreover, by Lemma 6.1, orbits of the same
order form isomorphic intervals in the weak involutive ar@eee Definition 3.1). In particular, all orbits
of order six have a representativeof minimal involutive length, such that the orbit has thenfiar

Si8i4+15;WS;Si4+154
Ve N
S$i8i41WSi4154 Si4+1S;WS;Si41
! | (5)
Si+1WSit1 5;WS;
N /
w

All orbits of order three are linear posets:
W <] S;WS; < Si+1SiWS;Sit1, (6)

or
W <] Si41WSjt1 =T SiSi+1WSi4+1Si- (7
Thus the analysis is reduced into three cases.
Case (a).An orbit of order six. By (2) and (5), the representation ricas of the generators with respect
to the ordered basiS,,, Cs;ws;» Cs,y1siwsisisrr Csisiprsiwsisizisir Osivrwsizrr Csisiprwsizrs; are

1-¢ 1 0 0 0 0

g 0 0 0 0 0
o 0o1-¢g1 0 o0

0 0 0 0 1—¢q 1

0 0 0 0 g¢q O
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and

OO OO+~ O
_ o O o oo
OO O OO
o O O O

0
0
pa(Tiv1) = |
q
0

It is easy to verify that indeed

Pq(T3)pq(Tiv1)pq(Ti) = pq(Tit1)pq(T3)pq(Tis1).
Case (b). An orbit of order three. With no loss of generality, the origitof type (6); the analysis of
type (7) is analogous. Thenjws;11 = w ands;(8;+18;Ws;Si+1)Si = Si+15;WS;S;+1. Itis shown

in [1] thatsl-H € Des(w) if and Only if S; € Des(siJrlsiwsisiJrl).
Given the above, by (2), the representation matrices of émeiators with respect to the ordered basis

W <71 S;WS; <1 S;+18;WS;8;41 ale
1-q 1 0
pe(Ti)=1 ¢ 0 0
0 =z

T 0 0
pq(Tix1) =0 1—q 1],
0 q 0

wherez € {1, —q}. These matrices satisfy the braid relation.

and

Case (c). An orbit of order one. Ther;ws; = w, s;1+1ws;+1 = w ands;, s;+1 ¢ Des(w). By (2),
Pq(T3)pq(Tix1)pg(Ti)Cw = pg(Tit1)pq(Ti)pe(Tis1)Cw = Cy, completing the proof of the third rela-
tion.

The proof of the other two relations is easier and will be fefthe reader.
Remark 7.1 Substituting; = 1 proves Theorem 2.1.

7.2 Proof of Theorem 3.2(2).
We apply Lusztig’s version of Tits’ deformation theorem toye thatp, is a Gelfand model.

Consider the Hecke algeb#d, (¢) as the algebra ove(¢'/?) spanned by(T, |v € S, } with the
multiplication rules
T, T, = Ty if £(vu) =4L(v) + £(u)

and
(Ts+q)(Ts—1)=0  (Vs€S).
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By Lusztig's version of Tits’ deformation theorem [17, Them 3.1], the group algebra &, over
Q(¢"/?) may be embedded iff,,(¢). In particular, every element € S,, may be expressed as a linear

combination
w = Z mv,w(ql/2)Tva
veES,

wherem,, ., is a rational function of'/2.
It follows thatp, may be considered as &h-representation, via

pq(w) = Z mv,w(ql/Q)pq(Tv) (Vw € Sp).

veES,

The resulting character valugg(w) are rational functions of'/2. By discreteness of the,, character
values, each such function is locally constant wherever dtefined, and is thus constant globally. each
such fu By Theorem 2.2,|,=1 = p is @ model for the group algebra 6f,. This completes the proof.

O

7.3 Proof of Proposition 3.3

LetSYT,, be the set of all standard Young tableaux of ordeand letSYT()\) C SYT,, be the set of all
standard Young tableaux of shajeFor each partition of n, fix a standard Young tabled®, € SYT()\).
By [20, Theorem 4], the value of the irreducitﬂél(q)—characterxj at7, is

Xa (1) = > (—q)*),
{w—(Py,Q) | wis p-unimodal andQ € SYT(\)}

where the sum runs over allunimodal permutations € S,, which are mapped under the Robinson-
Schensted (RS) correspondencé®y, Q) for some@ € SYT()). By [23, Lemma 7.23.1], the descent
set of suchw € S, is determined by). Hence

Tr pg(Ty,) = Z XQ(T;L)) = Z Z (—q)des(w)
A

A {w—(Px,Q) | wis p-unimodal and? € SYT(\)}

¥ > (gt

A A{w—(Q,Q) | wis p-unimodal and) € SYT(\)}

— Z (_q)des(w) _ Z (_q)des(w).

{w—(Q,Q)| Q € SYT,, andw is p-unimodal {wel, | wis p-unimodal

The last equality follows from the well known property of tR& correspondencer — (P, Q) if and
onlyif w=! — (Q, P) [23, Theorem 7.13.1]. Thus is an involution if and only ifw — (Q, Q) for some
Q € SYT,.

O
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8 Remarks and Questions

Models for classical Wey!l groups of type,, for oddn were constructed in [6, 5]. These constructions
fail for evenn. A natural question is whether there exists a signed cotipméor a representation of
typepsCw = as,wCw + bs,Csws) Which gives a model foDs,,. It is also desired to find representation
matrices for the models of the Hecke algebras of tyBesnd D which specialize a§ = 1 to models of
the corresponding group algebra.

We conclude with the following questions regarding an aalojt Coxeter groupy’.

Question 8.1 Find a signed conjugation which gives a Gelfand modellidy Find a representation of
the formp;Cy, = as,4,Cw + bs,wCsws, Which gives a Gelfand model for the Hecke algebrélof

Question 8.2 Find a character formula for the Gelfand model of the Heclgeala of|/W.

9 Added in Proof

First, it should be acknowledged that an equivalent reféatian of Theorem 2.2, with a different proof,
was given by Kodiyalam and Verma [15].

A third proof of Theorem 2.2, along the lines of [11], was segigd by an anonymous referee of [1].
Here is a brief outline.

Let x* (™ denote the one dimensional charactef given by the parity of the number of negative
signs, and consider the natural embeddin@ggf= Z, @ .S,, into Ss,,. Combining [18, Ch. §8 Ex 6, and
Ch. VII (2.4)] with the Littlewood-Richardson rule impligisat

:) 45 Sn
((X(D’(k) TBik) ®1s, 2) TS %8 o

is a multiplicity free sum of all irreducible Specht moduiedexed by partitions with exactly — 2k odd
columns. A natural basis for this representation is givembglutions withn — 2k fixed points. Finally,
it is straightforward to show that the action of a Coxeteragators; on this basis is identical with the
signed conjugation defined in (1).

O

Corollary 9.1 The signed conjugatiop, when restricted to the conjugacy classes of involutior wit
n — 2k fixed points, is a multiplicity free sum of all irreducibleegit modules indexed by partitions with
exactlyn — 2k odd columns.

This gives an algebraic proof to the following enumeratigsult: The number of involutions with
n — 2k fixed points is equal to the number of standard Young tablediishapes with exactly, — 2k
odd columns. Another proof for this fact may be obtained gitire Robinson-Schensted correspondence.
One concludes th&f* is a factor of the restriction gf to a conjugacy class of cycle tygé1m—2% if and
only if X\ is the shape of some pair of (equal) standard Young tableaggponding to an involution of
this cycle type.
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