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Abstract. The sandpile group of a graph G is an abelian group whose order is the number of spanning trees of G.
We find the decomposition of the sandpile group into cyclic subgroups when G is a regular tree with the leaves
are collapsed to a single vertex. This result can be used to understand the behavior of the rotor-router model, a
deterministic analogue of random walk studied first by physicists and more recently rediscovered by combinatorialists.
Several years ago, Jim Propp simulated a simple process called rotor-router aggregation and found that it produces a
near perfect disk in the integer lattice Z2. We prove that this shape is close to circular, although it remains a challenge
to explain the near perfect circularity produced by simulations. In the regular tree, we use the sandpile group to prove
that rotor-router aggregation started from an acyclic initial condition yields a perfect ball.
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In this extended abstract, we summarize recent progress in understanding the shapes of two combina-
torial growth models, the rotor-router model and the chip-firing or abelian sandpile model. We touch on
a few of the highlights and main ideas of the proofs. The details and proofs omitted here can be found in
the references [13, 16, 18].

1 Chip-Firing and Rotor-Routing on Zd

Rotor-router walk is a deterministic analogue of random walk, first studied by Priezzhev et al. [22] under
the name “Eulerian walkers.” At each site in the integer lattice Z2 is a rotor pointing north, south, east
or west. A particle starts at the origin; during each time step, the rotor at the particle’s current location is
rotated clockwise by 90 degrees, and the particle takes a step in the direction of the newly rotated rotor. In
rotor-router aggregation, introduced by Jim Propp, we start with n particles at the origin; each particle in
turn performs rotor-router walk until it reaches a site not occupied by any other particles. Let An denote
the resulting region of n occupied sites. For example, if all rotors initially point north, the sequence will
begin A1 = {(0, 0)}, A2 = {(0, 0), (1, 0)}, A3 = {(0, 0), (1, 0), (0,−1)}. The region A1,000,000 is
pictured in Figure 1. In higher dimensions, the model can be defined analogously by repeatedly cycling
the rotors through an ordering of the 2d cardinal directions in Zd.

Jim Propp observed from simulations in two dimensions that the regions An are extraordinarily close
to circular, and asked why this was so [12, 23]. The first result in this direction [17] says that if An is

1365–8050 c© 2008 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAJind.html


588 Itamar Landau, Lionel Levine and Yuval Peres

Fig. 1: Rotor-router aggregate of one million particles in Z2. Each site is colored according to the direction of its
rotor.

rescaled to have unit volume, the volume of the symmetric difference of An with a ball of unit volume
tends to zero as a power of n, as n ↑ ∞; the main outline of the argument is summarized in [19]. Fey and
Redig [10] also show that An contains a diamond. However, these results do not rule out the possibility
of “holes” in An far from the boundary or of long tendrils extending far beyond the boundary of the ball,
provided the volume of these features is negligible compared to n.

More recently, we have obtained a stronger shape theorem which rules out the possibility of holes far
from the boundary or of long tendrils in the rotor-router shape. For r ≥ 0 let

Br = {x ∈ Zd : |x| < r},

where |x| = (x2
1 + . . . + x2

d)
1/2 is the usual Euclidean norm on Zd. Thus Br consists of all the lattice

points in an open ball of radius r. Our main result in Zd is the following.

Theorem 1.1 [18] Let An be the region formed by rotor-router aggregation in Zd starting from n parti-
cles at the origin and any initial rotor state. There exist constants c, c′ depending only on d, such that

Br−c log r ⊂ An ⊂ Br(1+c′r−1/d log r)

where r = (n/ωd)1/d, and ωd is the volume of the unit ball in Rd.
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Fig. 2: Abelian sandpile aggregate of one million particles in Z2. Colors represent the number of grains at each site.

In the abelian sandpile or chip-firing model [1, 4], each site in Zd has an integer number of grains of
sand; if a site has at least 2d grains, it topples, sending one grain to each neighbor. If n grains of sand
are started at the origin in Zd, write Sn for the set of sites that are visited during the toppling process; in
particular, although a site may be empty in the final state, we include it in Sn if it was occupied at any
time during the evolution to the final state.

Until recently, the best known constraints on the shape of Sn in two dimensions were due to Le Borgne
and Rossin [15], who proved that

{x ∈ Z2 |x1 + x2 ≤
√
n/12− 1} ⊂ Sn ⊂ {x ∈ Z2 |x1, x2 ≤

√
n/2}.

Fey and Redig [10] proved analogous bounds in higher dimensions. The following result improves on the
bounds of [10] and [15].

Theorem 1.2 [18] Let Sn be the set of sites that are visited by the classical abelian sandpile model in
Zd, starting from n particles at the origin. Write n = ωdr

d. Then for any ε > 0 we have

Bc1r−c2 ⊂ Sn ⊂ Bc′1r+c′2

where
c1 = (2d− 1)−1/d, c′1 = (d− ε)−1/d.

The constant c2 depends only on d, while c′2 depends only on d and ε.
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Fig. 3: Known bounds on the shape of the classical abelian sandpile in Z2. The inner diamond and outer square are
due to Le Borgne and Rossin [15]; the inner and outer circles are those in Theorem 1.2.

Note that Theorem 1.2 does not settle the question of the asymptotic shape of Sn, and indeed it is not
clear from simulations whether the asymptotic shape in two dimensions is a disc or perhaps a polygon
(Figure 2). To our knowledge even the existence of an asymptotic shape is not known.

2 The Sandpile Group of a Tree
To any finite graph G is associated a finite abelian group SP (G), the sandpile group, whose order is the
number of spanning trees of G. This group was defined by Dhar [8], who was motivated by models in
statistical physics, and independently by Lorenzini [20] in connection with arithmetic geometry. In the
combinatorics literature, other common names for this group are the critical group [3] and the Jacobian
[2]. If G has vertices x1, . . . , xn, the sandpile group is defined as the quotient

SP (G) = Zn/∆

where ∆ ⊂ Zn is the lattice
∆ = 〈∆x1 , . . . ,∆xn−1 , δxn〉.

Here ∆xi is the vector in Zn taking value 1 at each neighbor of xi, value −deg(xi) at xi, and value 0
elsewhere; and δxn is the elemenary basis vector taking value 1 at xn and 0 elsewhere.

The sandpile group can be understood combinatorially in terms of chip-firing. A nonnegative vector
u ∈ Zn may be thought of as a chip configuration on T with ui chips at vertex xi. A vertex x 6= xn is
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unstable if u(x) ≥ deg(x). An unstable vertex may fire, sending one chip to each neighbor. Note that the
operation of firing the vertex x corresponds to adding the vector ∆x to u. The vertex xn is not permitted
to fire, and acts as a sink; we will often denote it s.

We say that a chip configuration u is stable if every non-sink vertex has fewer chips than its degree,
so that no vertex can fire. If u is not stable, one can show that by successively firing unstable vertices,
in finitely many steps we arrive at a stable configuration u◦. Note that firing one vertex may cause other
vertices to become unstable, resulting in a cascade of firings in which a given vertex may fire many times.
The order in which firings are performed does not affect the final configuration u◦; this is the “abelian
property” of abelian sandpiles.

The operation (u, v) 7→ (u + v)◦ gives the set of chip configurations the structure of a commutative
monoid. The sandpile group is a subgroup of this monoid. A chip configuration u is called recurrent if
there is a nonzero chip configuration v, such that (u+v)◦ = u. One can show that every equivalence class
mod ∆ has a unique recurrent representative. Thus the sandpile group SP (G) may be thought of as the
set of recurrent configurations under the operation (u, v) 7→ (u+ v)◦ of addition followed by chip-firing.
For proofs of these basic lemmas about recurrent configurations and the sandpile group, see, for example
[7, 11].

The following result gives the decomposition of the sandpile group of a regular tree as a product of
cyclic groups. We use the notation Zqp for the group (Z/pZ)⊕ . . .⊕ (Z/pZ) with q summands.

Theorem 2.1 [16] Let Tn be the regular tree of degree d = a+ 1 and height n, with leaves collapsed to
a single sink vertex and an edge joining the root to the sink. The sandpile group of Tn is given by

SP (Tn) ' Za
n−3(a−1)

1+a ⊕ Za
n−4(a−1)

1+a+a2 ⊕ . . .⊕ Za−1
1+a+...+an−2 ⊕ Z1+a+...+an−1 .

In the next section we give an application of this result to the rotor-router model on regular trees.
The presence of an edge connecting the the root to the sink is crucial in our analysis. It allows us to

understand the group recursively by relating the sandpile groups of Tn and Tn−1. This approach is detailed
below, beginning with Proposition 2.3. If one is interested in slightly coarser information about the group,
however, it is often possible to remove this extra edge. Toumpakari [24] studied the sandpile group of the
ball Bn inside the infinite d-regular tree. Her setup differs from ours in that there is no edge connecting
the root to the sink. She found the rank, exponent, and order of SP (Bn) and conjectured a formula for the
ranks of its Sylow p-subgroups. In [16], we use Theorem 2.1 to give a proof of Toumpakari’s conjecture.

We remark that Chen and Schedler [5] study the sandpile group of thick trees (i.e. trees with multiple
edges) without collapsing the leaves to the sink. They obtain quite a different product formula in this
setting.

The first step in proving Theorem 2.1 is to characterize explicitly the recurrent chip configurations on a
tree. Our characterization applies to any finite tree T , not necessarily regular. We will always work with
the “wired” tree formed from T by collapsing the leaves to a single sink vertex, and adding an edge from
the root to the sink. Denote by C(x) the set of children of a vertex x ∈ T . We will use the following
recursive definition.

Defintion. A vertex x ∈ T is critical for a chip configuration u if x 6= s and

u(x) ≤ #{y ∈ C(x) | y is critical}. (1)

In particular, if x is a leaf, then x is critical if and only if u(x) = 0.
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Fig. 4: A recurrent configuration on the ternary tree of height 5. Critical vertices are circled; if any of the circled
vertices had fewer chips, the configuration would not be recurrent.

Lemma 2.2 A configuration u ∈ SP (T ) is recurrent if and only if equality holds in (1) for every critical
vertex x.

Note that if v is a nonnegative configuration, its recurrent representative is given by

v̂ := (e+ v)◦,

where e is the identity element of SP (G) (the recurrent representative of 0); indeed, v̂ is recurrent since
e is recurrent, and v̂ ≡ v (mod ∆) since e ∈ ∆.

We write δx for a single chip at a vertex x, and denote by x̂ = (e + δx)◦ its recurrent form. Write 〈x̂〉
for the cyclic subgroup of the sandpile group generated by x̂.

The principal branches of T are the subtrees T 1, . . . , T k rooted at the children r1, . . . , rk of the root
of T . We include in T i an edge from ri to the sink; thus ri has the same degree in T i as in T , as the edge
from ri to r has been replaced by an edge from ri to the sink.

Proposition 2.3 Let T be a finite tree, and let T 1, . . . , T k be its principal branches. Then

SP (T )/〈r̂〉 '
k⊕
i=1

SP (T i)/〈(r̂1, . . . , r̂k)〉 (2)

where r, ri are the roots of T , T i respectively.

The idea behind this result is that chips in different branches of T interact only via the root. Modding out
by 〈r̂〉 removes this interaction, so that the addition of chip configurations can be carried out independently
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r̂ 2r̂ 3r̂ 4r̂ 5r̂ 6r̂ 7r̂ 8r̂ 9r̂ 10r̂ 11r̂ 12r̂ 13r̂ 14r̂ 15r̂ = e

2 0 1 2 0 1 2 2 2 0 1 2 0 1 2
0 1 1 1 2 2 2 2 0 1 1 1 2 2 2
2 2 2 2 2 2 2 0 1 1 1 1 1 1 1

Fig. 5: Multiples of the root r̂ in the ternary tree of height 4. Each column vector represents a chip configuration
which is constant on levels of the tree.

in each branch. Since firing the root in T sends a single chip to each ri, we need to mod out on the right
by the cyclic subgroup of

⊕
SP (T i) generated by the element (r̂1, . . . , r̂k).

Next we show that for regular trees, Proposition 2.3 can be strengthened to express SP (T ) as a direct
sum. Let Tn be the wired regular tree of degree d and height n, i.e., the regular tree with leaves collapsed
to a sink vertex and an edge added from the root to the sink. The chip configurations which are constant on
the levels of Tn form a subgroup of SP (Tn). If each vertex at height k has ak chips, we can represent the
configuration as a vector (a1, . . . , an−1). If such a recurrent configuration is zero on a level, all vertices
between that level and the root are critical, so by Lemma 2.2 they must have d − 1 chips each. The
recurrent configurations constant on levels are thus in bijection with integer vectors (a1, . . . , an−1) with
0 ≤ ai ≤ d− 1 subject to the constraint that if ai = 0 then a1 = . . . = ai−1 = d− 1.

The following lemma uses the lexicographic order given by a < b if for some k we have an−1 =
bn−1, . . . , ak+1 = bk+1 and ak < bk. In the cyclic lexicographic order on recurrent vectors we have also
(d− 1, . . . , d− 1) < (d− 1, . . . , d− 1, 0).

Lemma 2.4 If u, v are recurrent configurations on Tn that are constant on levels, write u ; v if v follows
u in the cyclic lexicographic order on the set of recurrent vectors. Then for every integer k ≥ 0, we have

kr̂ ; (k + 1)r̂.

Figure 4 illustrates Lemma 2.4 for the 15 recurrent vectors on the ternary tree of height 4.

Lemma 2.5 Let Tn be the wired regular tree of degree d and height n, and let R(Tn) be the subgroup of
SP (Tn) generated by r̂. Then R(Tn) consists of all recurrent configurations that are constant on levels,
and its order is

#R(Tn) =
(d− 1)n − 1

d− 2
. (3)

Proposition 2.6 Let Tn be the wired regular tree of degree d and height n, and let R(Tn) = (r̂) be the
subgroup of SP (Tn) generated by the root. Then

SP (Tn) ' R(Tn)⊕ SP (Tn−1)⊕ . . .⊕ SP (Tn−1)
(R(Tn−1), . . . , R(Tn−1))

with d− 1 summands of SP (Tn−1) on the right side.

Proposition 2.6 is proved by defining a projection map p of the full group SP (Tn) onto the subgroup
R(Tn). Since R(Tn) consists of the configurations constant on levels, we can define such a map by
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symmetrizing:
p(u)(x) = (d− 1)n−|x|

∑
|y|=|x|

u(y). (4)

By construction, p(u) is constant on levels, so the image of p lies in R(Tn) by Lemma 2.5. If u is already
constant on levels, then since there are (d− 1)|x| terms in the sum (4), we obtain

p(u) = (d− 1)nu = u

where the second inequality follows from (3).
We remark that Proposition 2.6 fails for general trees. For example, if T is the tree consisting of a

root with 2 children each of which have 3 children, then SP (T ) ' Z/40Z, and R(T ) ' Z/10Z is not a
summand.

Theorem 2.1 follows directly from Lemma 2.5 and Proposition 2.6 by induction.

3 The Rotor-Router Model on Regular Trees
Let T be the infinite d-regular tree. In rotor-router aggregation, we grow a cluster of points in T by
repeatedly starting chips at the origin o and letting them perform rotor-router walk until they exit the
cluster. Beginning with A1 = {o}, define the cluster An inductively by

An = An−1 ∪ {xn}, n > 1

where xn ∈ T is the endpoint of a rotor-router walk started at o and stopped on first exiting An−1. We do
not change the positions of the rotors when adding a new chip. Thus the sequence (An)n≥1 depends only
on the choice of the initial rotor configuration.

A rotor configuration is acyclic if the rotors form no oriented cycles. Since we are working on a tree,
this is equivalent to the requirement that for any two neighboring vertices x and y, if the rotor at x points
to y, then the rotor at y does not point to x.

Let
Br = {x ∈ T : |x| ≤ r}

be the ball of radius r centered at the origin o ∈ T . Here |x| is the length (in edges) of the shortest path
from o to x. Write

br = #Br = 1 + d
(d− 1)r − 1

d− 2
.

Theorem 3.1 [13] Let An be the region formed by rotor-router aggregation on the infinite d-regular tree,
starting from n chips at o. If the initial rotor configuration is acyclic, then

Abr = Br.

Thus, provided we start with an acyclic configuration of rotors, the occupied cluster An is a perfect ball
for suitable values of n. It follows that at all other times the cluster is as close as possible to a ball: if
br < n < br+1, then Br ⊂ An ⊂ Br+1.

The proof of Theorem 3.1 uses the sandpile group of a finite regular tree, whose structure is given
by Theorem 2.1. We first define the rotor-router group of a graph and show that it is isomorphic to the



Chip-Firing and Rotor-Routing on Zd and on Trees 595

sandpile group. Although our application is to trees, this construction works for any graph. Let G be a
strongly connected finite directed graph without loops. Fix a sink vertex s in G. Given a configuration
of rotors R, write ex(R) for the rotor configuration resulting from starting a chip at x and letting it walk
according to the rotor-router rule until it reaches the sink. (Note that if the chip visits a vertex infinitely
often, it visits all of its neighbors infinitely often; since G is strongly connected, the chip eventually
reaches the sink.) We view R as a subgraph of G in which every vertex except the sink has out-degree
one.

We write Rec(G) for the set of oriented spanning trees ofG rooted at the sink, that is, acyclic spanning
subgraphs of G in which every vertex except the sink has out-degree one.

Lemma 3.2 If R ∈ Rec(G), then ex(R) ∈ Rec(G).

Lemma 3.3 If R1, R2 ∈ Rec(G) and ex(R1) = ex(R2), then R1 = R2.

Thus for any vertex x ofG, the operation ex of adding a chip at x and routing it to the sink acts invertibly
on the set of states Rec(G) whose rotors form oriented spanning trees rooted at the sink. In this sense
the oriented spanning trees are analogous to the recurrent states in chip-firing. We define the rotor-router
groupRR(G) as the subgroup of the permutation group ofRec(G) generated by {ex}x∈G. One can show
that the operators ex commute, so the group RR(G) is abelian; for a general discussion and proof of this
property, which is shared by a wide class of models including the abelian sandpile and the rotor-router,
see [9].

Lemma 3.4 RR(G) acts transitively on Rec(G).

Theorem 3.5 Let G be a strongly connected finite directed graph without loops, let RR(G) be its rotor-
router group, and SP (G) its sandpile group. Then RR(G) ' SP (G).

This isomorphism is mentioned in the physics literature [21, 22], although the proof is not recorded
there. For a proof, see [13].

A function H on the vertices of a directed graph G is harmonic if

H(x) =
1

outdeg(x)

∑
y←x

H(y)

for all vertices x.

Lemma 3.6 Let H be a harmonic function on the vertices of G. Suppose chips on G can be routed,
starting with u(x) chips at each vertex x and ending with v(x) chips at each vertex x, in such a way that
the initial and final rotor configurations are the same. Then∑

x∈V (G)

H(x)u(x) =
∑

x∈V (G)

H(x)v(x).

Let Tn be the regular tree of degree d and height n, with an edge added from the root r to the sink o.
Denote by (Xt)t≥0 the simple random walk on Tn, and let τ be the first hitting time of the set consisting
of the leaves and the sink. Fix a leaf z of Tn, and let

H(x) = Px(Xτ = z) (5)
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be the probability that random walk started at x and stopped at time τ stops at z. A standard result about
gambler’s ruin gives

H(r) =
a− 1
an − 1

, (6)

where a = d− 1.
Applying Lemma 3.6 with H given by (5), and using the isomorphism of the rotor-router and sandpile

groups, we can prove the following lemma.

Lemma 3.7 Let a = d−1. If the initial rotor configuration on Tn is acyclic, then starting with an−1
a−1 chips

at the root, and stopping each chip when it reaches a leaf or the sink, exactly one chip stops at each leaf,
and the remaining an−1−1

a−1 chips stop at the sink. Moreover the starting and ending rotor configurations
are identical.

Proof of Theorem 3.1: Define a modified aggregation process A′n as follows. Stop the n-th chip when it
either exits the occupied cluster A′n−1 or returns to o, and let

A′n = A′n−1 ∪ {x′n}

where x′n is the point where the n-th chip stops. By relabeling the chips, this yields a time change of the
original process, i.e. A′n = Af(n) for some sequence f(1), f(2), . . .. Thus it suffices to show A′cρ = Bρ
for some sequence c1, c2, . . .. We will show by induction on ρ that this is the case for

cρ = 1 + (a+ 1)
ρ∑
t=1

at − 1
a− 1

,

and that after cρ chips have stopped the rotors are in their initial state. For the base case ρ = 1, we have
c1 = a + 2 = d + 1. The first chip stops at o, and the next d stop at each of the neighbors of o, so
A′d+1 = B1. Since the rotor at o has performed one full turn, it is back in its initial state.

Assume now that A′cρ−1
= Bρ−1 and that the rotors are in their initial acyclic state. Starting with

cρ − cρ−1 chips at o, let each chip in turn perform rotor-router walk until either returning to o or exit-
ing the ball Bρ−1. Then each chip is confined to a single principal branch of the tree, and each branch
receives aρ−1

a−1 chips. By Lemma 3.7, exactly one chip will stop at each leaf z ∈ Bρ − Bρ−1, and the
remainder will stop at o. Thus A′cρ = Bρ. Moreover, by Lemma 3.7, once all chips have stopped, the
rotors are once again in their initial state, completing the inductive step.

Much previous work on the rotor-router model has taken the form of comparing the behavior of rotor-
router walk with the expected behavior of random walk. For example, Cooper and Spencer [6] show that
for any configuration of chips on even lattice sites in Zd, letting each chip perform rotor-router walk for
n steps results in a configuration that differs by only constant error from the expected configuration had
the chips performed independent random walks. We continue in this vein by investigating the recurrence
and transience of rotor-router walk on trees. If a walk started at the origin never returns to the origin, we
say it “escapes to infinity.” Such a walk visits each vertex only finitely many times, so the positions of the
rotors after such a walk are well-defined.

Start with n chips at the origin in the regular ternary tree, and let them perform rotor-router walks one
by one, stopping the walks if they return to the origin. For each chip, record whether it returns to the
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origin or escapes to infinity. We say that a binary word a1 . . . an is an escape sequence if there exists an
initial rotor configuration so that the k-th chip escapes to infinity if and only if ak = 1. The following
result characterizes all possible escape sequences on the ternary tree.

Theorem 3.8 [13] Let a = a1 . . . an be a binary word. For j ∈ {1, 2, 3} write a(j) = ajaj+3aj+6 . . ..
Then a is an escape sequence for some rotor configuration on the infinite ternary tree if and only if for
each j and all k ≥ 2, every subword of a(j) of length 2k − 1 contains at most 2k−1 ones.

In particular, the all zeros sequence is an escape sequence. In [13] we strengthen this slightly, showing
that there exists an initial rotor configuration on the infinite ternary tree which makes rotor-router walk
recurrent.

While Theorem 3.8 completely characterizes the possible escape sequences for rotor-router walk on
the infinite ternary tree, we know nothing about the possible escape sequences for rotor-router walk on
another natural class of transient graphs, namely Zd for d ≥ 3. We conclude with the following open
question: does there exist a rotor configuration on Zd for d ≥ 3 which makes rotor-router walk recurrent?
We remark that Jim Propp has found such a configuration on Z2.
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