
FPSAC 2008, Valparaiso-Viña del Mar, Chile DMTCS proc. AJ, 2008, 357–368

The complexity of computing Kronecker
coefficients

Peter Bürgisser† and Christian Ikenmeyer
Institute of Mathematics, University of Paderborn, 33095 Paderborn, Germany

Abstract. Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible repre-
sentations of the symmetric group Sn. They can also be interpreted as the coefficients of the expansion of the internal
product of two Schur polynomials in the basis of Schur polynomials. We show that the problem KRONCOEFF of
computing Kronecker coefficients is very difficult. More specifically, we prove that KRONCOEFF is #P-hard and
contained in the complexity class GapP. Formally, this means that the existence of a polynomial time algorithm for
KRONCOEFF is equivalent to the existence of a polynomial time algorithm for evaluating permanents.

Résumé. Les coefficients de Kronecker sont les multiplicités dans la décomposition du produit tensoriel de deux
représentations irréductibles du groupe symétrique. On peut aussi les voir comme les coefficients du développement
du produit interne des polynômes de Schur. Nous montrons que le problème KRONCOEFF de calculer les coefficients
de Kronecker est très difficile. Plus précisément, nous prouvons que KRONCOEFF est #P-dur et que KRONCOEFF

est dans la classe de complexité GapP. Cela veut dire qu’il existe un algorithme pour KRONCOEFF s’exécutant
en temps polynomial si et seulement s’il existe un algorithme pour l’évaluation du permanent s’exécutant en temps
polynomial.
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1 Introduction
It is well known that the irreducible representations of the symmetric group Sn on n letters (in character-
istic zero) can be indexed by the partitions λ ` n of n, cf. Sagan (2001). Let Sλ denote the irreducible
module corresponding to λ (Specht module). For given partitions λ, µ, ν ` n the Kronecker coefficient
gλµν is defined as the multiplicity of Sν in the tensor product Sµ ⊗Sν . It is thus a nonnegative integer.
If χλ denotes the irreducible character of Sλ, then the Kronecker coefficients gλµν are determined by the
expansion

χλχµ =
∑
ν`n

gλµνχ
ν . (1)

We note that gλµν is invariant under permuting the indices λ, µ, ν. Related to this are the Littlewood-
Richardson coefficients cλµν , which can be characterized by the expansion of the product of two Schur
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functions sµsν in the basis of Schur functions:

sµsν =
∑

λ`|µ|+|ν|

cλµνsλ. (2)

It is well known that the coefficients cλµν describe the multiplicities in the tensor product decomposition
of irreducible representations of the general linear group GL(n,C).

These coefficients play an important role in various mathematical disciplines (combinatorics, repre-
sentation theory, algebraic geometry; cf. Fulton (1997)) as well as in quantum mechanics. However, our
interest in the tensor product multiplicities stems from lower bound questions in computational complex-
ity. Early work by Strassen (1983) pointed out that a good understanding of the Kronecker coefficients
could lead to complexity lower bounds for bilinear maps, notably matrix multiplication. The idea is to get
information about the irreducible constituents of the vanishing ideal of secant varieties to Segre varieties,
for recent results we refer to Landsberg and Manivel (2004).

Kronecker coefficients also play a crucial role in the geometric complexity theory of Mulmuley and
Sohoni (2001, 2006). This is an approach to arithmetic versions of the famous P vs. NP problem and re-
lated questions in computational complexity via geometric representation theory. What has been achieved
so far is a series of reductions from orbit closure problems to subgroup restriction problems. The latter
involve the problems of deciding in specific situations whether multiplicities gλµν or cλµν are positive.
However, until very recently, no efficient algorithms were known for the general problem of deciding the
positivity of such multiplicities.

The well-known Littlewood-Richardson rule gives a combinatorial description of the numbers cλµν and
also leads to algorithms for computing them. All of these algorithms take exponential time in the size
of the input partitions (consisting of integers encoded in binary notation). However, quite surprisingly,
the positivity of cλµν can be decided by a polynomial time algorithm! This follows from the proof of the
Saturation conjecture (Knutson and Tao, 1999), as pointed out by Mulmuley and Sohoni (2005). On the
other hand, Narayanan (2006) proved that the computation of cλµν is a #P-complete problem. Hence
there does not exist a polynomial time algorithm for computing cλµν under the widely believed hypothesis
P 6= NP.

Much less is known about the Kronecker coefficients gλµν . Lascoux (1980), Remmel (1989, 1992),
Remmel and Whitehead (1994) and Rosas (2001) gave combinatorial interpretations of the Kronecker co-
efficients of partitions indexed by two row shapes or hook shapes. Very recently, Ballantine and Orellana
(2005/07) managed to describe gλµν in the case where µ = (n− p, p) has two row shape and the diagram
of λ is not contained inside the 2(p−1)×2(p−1) square. Except for these special cases, a combinatorial
interpretation of the numbers gλµν is still lacking. Given this sad state of affair, it is not surprising that it
is generally believed that the computation of Kronecker coefficients is a very difficult problem.

Our main result confirms this belief and gives a rigorous and precise meaning to it. We prove that the
problem KRONCOEFF of computing the Kronecker coefficient gλµν for given partitions λ, µ, ν (consist-
ing of integers encoded in binary notation) is hard for the counting complexity class #P. (For general
information about complexity theory we refer to Papadimitriou 1994.) This implies that there does not
exist a polynomial time algorithm for KRONCOEFF under the widely believed hypothesis P 6= NP.

We do not know whether KRONCOEFF is contained in the class #P. In fact, the latter would just express
that gλµν counts a number of appropriate combinatorial objects (and it can be decided in polynomial time
whether a given object is appropriate). However, we can show that gλµν can be written as the difference
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(a)
The Young diagram of the
partition λ = (4, 4, 2, 1, 1),
λ ` 12, `(λ) = 5.

(b)
The Young diagram of
the conjugate partition
λ′ = (5, 3, 2, 2),
λ′ ` 12, `(λ) = 4.

� � �

� � �

� �

(c)
A skew diagram
with shape
(4, 4, 2, 1, 1)/(3, 3, 2).

� � �

� � �

� � �

(d)
The same skew
diagram also has shape
(4, 4, 3, 1, 1)/(3, 3, 3).

Fig. 1: Young diagrams and skew diagrams

of two functions in #P, that is, KRONCOEFF belongs to the complexity class GapP.
Summarizing, we have:

Theorem 1 The problem KRONCOEFF of computing Kronecker coefficients is GapP-complete. Hence
the existence of a polynomial time algorithm for KRONCOEFF is equivalent to the existence of a polyno-
mial time algorithm for evaluating permanents of matrices with entries in {0, 1}.

A few word about the proofs. Using the description of gλµν in Ballantine and Orellana (2005/07) we
reduce the computation of Kostka numbers to the subproblem of KRONCOEFF where one of the partitions
has two row shape. The #P-hardness then follows from Narayanan (2006). For the upper bound, we
show that a well-known method (see Remmel 1989), which combines a formula of Garsia and Remmel
(1985) with the Jacobi-Trudi identity, leads to an algorithm placing KRONCOEFF into the complexity
class GapP.

Of course, the tantalizing question is whether the positivity of Kronecker coefficients can be decided in
polynomial time. In Mulmuley (2007) it is conjectured that is in fact the case.

2 Preliminaries and notation
For more information on tableaux and symmetric functions we refer to Stanley (1999, Chap. 7).

2.1 Skew diagrams and tableaus
A Young diagram is a collection of boxes, arranged in left justified rows, such that from top to bottom, the
number of boxes in a row is monotonically (weakly) decreasing. For λ := (λ1, . . . , λs) ⊆ Ns we define
its length as `(λ) := max{i|λi > 0} and its size as |λ| :=

∑`(λ)
i=1 λi. Moreover we set λr := 0 for all

r > s. If the λi are monotonically weakly decreasing and |λ| = n, then we call λ a partition of n and
write λ ` n. In this case, λ specifies a Young diagram consisting of n boxes, with λi boxes in the ith row
for all i (see Figure 1(a)). To any partition λ there corresponds its conjugate partition λ′ which is obtained
by transposing the Young diagram of λ, that is, reflecting it at the main diagonal (see Figure 1(b)). We
note that every row in λ corresponds to a column in λ′ and vice versa. Moreover, |λ| = |λ′|.

A skew diagram is the set of boxes obtained by removing a smaller Young diagram from a larger one
(see Figure 1(c)). If we remove α ⊆ λ from λ, then we denote the resulting skew diagram by λ/α and
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Fig. 2: The skew diagram of the product (3, 2)/(1) ∗ (3, 2, 2)/(2, 1) .

� � �

� �

� � �

�

Fig. 3: A semistandard skew tableau of shape (5, 3, 3, 1)/(2, 1) and type (1, 4, 3, 1). Its reverse reading word is
(3, 2, 1, 2, 2, 3, 3, 2, 4), which is not a lattice permutation, but an α-lattice permutation for α = (4, 1).

say that it has the shape λ/α. Note that for a given skew diagram λ/α, the partitions α and λ need not be
uniquely defined (see Figure 1(d)). Every Young diagram is a skew diagram, as one can choose α to be
the empty set of boxes. The product λ/α ∗ λ̃/α̃ of two skew diagrams λ/α and λ̃/α̃ is defined to be the
skew diagram obtained by attaching the upper right corner of λ to the lower left corner of λ̃ (see Figure 2).
A similar definition applies for more than one factor.

A filling of a skew diagram λ/α is a numbering of its boxes with (not necessarily distinct) positive
integers. A semistandard skew tableau T of shape λ/α is defined to be a filling of λ/α such that the
entries are weakly increasing from left to right across each row, and strictly increasing from top to bottom,
down each column. If T houses µj copies of j for j ≤ t, then the tableau T is said to have the type
µ := (µ1, . . . , µt) (see Figure 3). Note that |λ| − |α| = |µ|, but in contrast to λ and α, µ need not
be weakly decreasing. A semistandard Young tableau of shape λ is defined to be a semistandard skew
tableau of shape λ/α, where α is the empty partition. The Kostka number Kλµ is defined to be number
of semistandard Young tableaux of shape λ and type µ.

The reverse reading word w← of a skew tableau T is the sequence of entries in T obtained by reading
the entries from right to left and top to bottom, starting with the first row. A lattice permutation is a
sequence (a1, a2, · · · , an) such that in any prefix segment (a1, a2, . . . , ap) the number of i’s is at least as
large as the number of (i+ 1)’s for all i (see Figure 3).

2.2 Schur functions and Kronecker product
Given a semistandard skew tableau T of shape λ/α, we define its weight w(T ) to be the monomial
obtained by replacing each entry i of T by the variable xi and taking the product over all boxes. In other
words, w(T ) = xµ1

1 · · ·x
µt
t , where (µ1, . . . , µt) is the type of T . The skew Schur function sλ/α is defined

to be the polynomial
sλ/α =

∑
T

w(T ),
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where the sum runs over all semistandard skew tableau T of shape λ/α. We will interpret sλ/α as a
polynomial in the variables x1, . . . , xn, where n ≥ |λ| (the actual choice of n is not important). The
usual Schur function sλ is defined as sλ/∅. It is immediate from the definition that sλ/α∗λ̃/α̃ = sλ/αsλ̃/α̃.
An important special case of Schur functions are the complete symmetric functions defined as hk := sλ
corresponding to the partition λ = (k) for k ∈ N (one sets h0 := 1). Moreover, for a partition λ =
(λ1, . . . , λ`) one sets hλ := hλ1 · · ·hλ` . It is well known that both the families (sλ) and (hλ) form a
Z- basis of the ring Λ of symmetric functions in n variables and that the transition matrix is given by the
Kostka numbers.

We recall that the Littlewood-Richardson coefficient cλµν is the coefficient of sλ in the expansion of
sµsν in the basis of Schur functions, cf. Equation (2). The famous Littlewood-Richardson rule states that
cλµν equals the number of semistandard skew tableaus of shape λ/µ and type ν, whose reverse reading
word is a lattice permutation.

Recall the definition of the Kronecker coefficient gλµν as the coefficient of χν in the expansion of the
product of irreducible characters χλχµ of Sn, cf. Equation (1). The Kronecker (or internal) product of sλ
and sµ, for λ, µ ` n, is defined by

sλ ∗ sµ =
∑
ν`n

gλµνsν

(cf. Stanley 1999, Ex. 7.78). This extends to a commutative and associative product on Λ. In order to
see this, one notes that the characteristic map ch defined by ch(χλ) = sλ is a linear isomorphism from
the space of class functions on Sn to the space of homogeneous symmetric functions of degree n in n
variables. We have sλ ∗ hn = sλ for all λ ` n.

In the following we will briefly present the main result from Ballantine and Orellana (2005/07). Let kl

denote the sequence consisting of l occurrences of k. Let α = (α1, α2, . . . α`) be a partition. A sequence
a = (a1, a2, . . . , an) is called an α-lattice permutation if the concatenation (1α1 2α1 · · ·nαna) is a lattice
permutation (see Figure 3). As the concatenation of two lattice permutations is a lattice permutation, the
concatenation a b of an α-lattice permutation a and a lattice permutation b is an α-lattice permutation.

The following definition is from Ballantine and Orellana (2005/07).

Definition 2 (Kronecker-Tableau) Let the λ, α, ν be partitions such that α ⊆ λ ∩ ν and let T be a
semistandard skew tableau T of shape λ/α and type ν − α. We call T a Kronecker Tableau iff its reverse
reading word is an α-lattice permutation and one of the following three conditions is satisfied:

• α1 = α2

• α1 > α2 and the number of 1’s in the second row of T is exactly α1 − α2,

• α1 > α2 and the number of 2’s in the first row of T is exactly α1 − α2.

We denote by kλαν the number of Kronecker-Tableaux of shape λ/α and type ν − α.

Ballantine and Orellana (2005/07) showed the following.

Theorem 3 Suppose µ = (n− p, p), λ ` n, ν ` n such that n ≥ 2p and λ1 ≥ 2p− 1. Then we have

gλ,µ,ν = gλ,(n−p,p),ν =
∑
β`p

β⊆λ∩ν

kλβν .
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2.3 Counting complexity classes

For information about complexity theory we refer to Papadimitriou (1994). In order to characterize
the complexity of counting problems, Valiant (1979) introduced the complexity class #P (pronounced
sharp P), which consists of the functions f : {0, 1}∗ → N such that there exists a polynomial p and a
Turing machine M working in polynomial time such that, for all n ∈ N and all w ∈ {0, 1}n,

f(w) = |{z ∈ {0, 1}p(n) |M accepts (w, z)}|.

For instance, the problem of computing the Kostka numbers Kλµ is in #P (see Narayanan (2006) for
details).

We compare the complexity of functions f, g : {0, 1}∗ → N by means of reductions. We say that f
reduces many-one to g iff there exists a polynomial time computable function ϕ : {0, 1}∗ → {0, 1}∗ and
a polynomial time computable function ψ : N→ N such that f(w) = ψ(g(ϕ(w))) for all w ∈ {0, 1}∗. If
we may take ψ = idN, then we say that f reduces parsimoniously to g.

A function g : {0, 1}∗ → N is called #P-complete iff g ∈ #P and every f ∈ #P reduces many-
one to g. Valiant (1979) proved that the computation of the permanent of a matrix A ∈ {0, 1}m×m is a
#P-complete problem. Besides in combinatorics, important #P-complete problems are known in differ-
ent areas, such as geometry, knot theory (Jones polynomial), statistical physics, and network reliability,
see Welsh (1993) for more information on this.

We note that #P is closed under the formation of products. The class #P is also closed under expo-
nential summation: for the simple proof of the following fact we refer to Fortnow (1997).

Proposition 4 Let f : {0, 1}∗ → N be in #P and p be a polynomial. Then the function {0, 1}∗ → N
mapping w ∈ {0, 1}n to

∑
z∈{0,1}p(n) f(w, z) is also in #P.

The complexity class GapP is defined as the set of functions f : {0, 1}∗ → Z which can be written as
the difference of two functions in #P. Similarly as above we have the notions of many-one reduction and
GapP-completeness for such functions f .

3 Upper bound for KRONCOEFF

We shall encode a partition λ = (λ1, . . . , λ`) as the sequence of the positive integers λi encoded in binary;
thus the bitsize of λ equals

∑
i(1 + blog λic). The problem KRONCOEFF is defined as follows:

KRONCOEFF Given partitions λ, µ, ν ` n, compute the Kronecker coefficient gλµν .

The following result provides the upper bound in Theorem 1.

Proposition 5 The problem KRONCOEFF is contained in the complexity class GapP.

Proof: The proof will use fairly standard ideas, compare Stanley (1999, Chap. 7). We fix n ∈ N and
denote by sλ the Schur polynomial in the variables x1, . . . , xn corresponding to the partition λ ` n. The
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Jacobi-Trudi identity expresses sλ as the following determinant of a structured matrix, whose entries are
the complete symmetric functions hk:

sλ = det(hλi−i+j)1≤i,j≤n =
∑
π∈An

n∏
i=1

hλi−i+π(i) −
∑

π∈Sn\An

n∏
i=1

hλi−i+π(i)

=:
∑
α`n

N+
αλhα −

∑
α`n

N−αλhα.

(3)

Here, N+
αλ counts the even permutations π ∈ Sn such that

∏n
i=1 hλi−i+π(i) = hα. Similarly, N−αλ is

defined by counting the odd permutations. Hence the functions (α, λ) 7→ N+
αλ and (α, λ) 7→ N−αλ are in

the class #P.
A formula of Garsia and Remmel (see also Stanley 1999, Ex. 7.84, p. 478) states that for α, µ ` n with

`(α) = `

hα ∗ sµ =
∑
D

∏̀
i=1

sµi/µi−1 , (4)

where the sum is over all decompositions D = (µ0, . . . , µ`) of the shape µ with type α, that is, ∅ =
µ0 ⊆ µ1 ⊆ · · · ⊆ µ` = µ with |µi/µi−1| = αi for all i. If we denote by π(D)/ρ(D) the skew diagram
µ1 ∗ µ2/µ1 ∗ · · · ∗ µ`/µ`−1, then sπ(D)/ρ(D) =

∏
i sµi/µi−1 .

It is well known that the Littlewood-Richardson coefficients appear in the expansion of Schur polyno-
mials of skew diagrams as follows

sπ(D)/ρ(D) =
∑
ν`n

c
π(D)
ρ(D)ν sν . (5)

We set Mν
αµ :=

∑
D c

π(D)
ρ(D)ν , where the sum is over all decompositions D of the shape µ with type α. The

Littlewood-Richardson rule implies that the map (π, ρ, ν) 7→ cπρν is in the class #P (compare Narayanan
2006). Since #P is closed under exponential summation (Proposition 4), the map (α, µ, ν) 7→ Mν

αµ lies
in #P as well. We conclude from (4) and (5) that

hα ∗ sµ =
∑
ν`n

Mν
αµsν .

By combining this with (3) we obtain

sλ ∗ sµ =
∑
ν`n

(∑
α`n

N+
αλM

ν
αµ −

∑
α`n

N−αλM
ν
αµ

)
sν .

Hence the expression in the parenthesis equals gλµν . Proposition 4 implies that the map (λ, µ, ν) 7→∑
α`nN

+
αλM

ν
αµ is in #P. Similarly, (λ, µ, ν) 7→

∑
α`nN

−
αλM

ν
αµ is in #P. Therefore, we have written

(λ, µ, ν) 7→ gλµν as the difference of two functions in #P, which means that is is contained in GapP. 2
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4 Lower bound for KRONCOEFF

Narayanan (2006) proved that the following problem KOSTKASUB is #P-complete.

KOSTKASUB Given a partition x = (x1, x2) ` m and y = (y1, . . . , y`) with |y| = m, compute the
Kostka number Kxy .

In order to complete the proof of Theorem 1 it thus suffices to exhibit a many-one reduction from
KOSTKASUB to KRONCOEFF. This is established by the following result (which even gives a parsimo-
nious reduction). For an illustration see Figure 4.

Proposition 6 Let x = (x1, x2) ` m and y = (y1, . . . , y`) with |y| = m > 0 be given. For i =
1, . . . , `− 1 we define ρi :=

∑
j>i yj and we set p := 3m+

∑`−1
i=1 ρi and M := 2p− 1−m. Consider

λ :=(M +m,m+ x1,m+ x2,m,m, . . . ,m︸ ︷︷ ︸
`+3 times

, ρ1, ρ2, . . . , ρ`−1),

ν :=(M + 2m, 2m, 2m,m+ y1 + ρ1,m+ y2 + ρ2,m+ y3 + ρ3, . . . ,m+ y`−1 + ρ`−1,m+ y`).

and write n := |λ|. Then we have Kxy = gλ,(n−p,p),ν .

� � � � � � � � ��� �

� � � � � � �

� � �

� � �

� � � � �

� � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � �

� � � � �

� � �

���

	 


�

Fig. 4: A Kronecker tableau generated from the input data x = (7, 3), y = (3, 2, 2, 3) according to Proposition 6.
We have m = 10, M = 79.

In the following we assume the notation and setting of Proposition 6. Its proof will proceed by a
sequence of Lemmas.
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Lemma 7 We have λ1 = 2p− 1 and n ≥ 2p. Moreover, λ ` n and ν ` n.

Proof: The first assertion is obvious. Moreover, one easily checks that λ is a partition (note that M ≥
5m− 1 ≥ m as p ≥ 3m). By a straightforward calculation we get

|ν| = M + (`+ 6) ·m+
`−1∑
i=1

ρi +
∑̀
i=1

yi = M + (`+ 6) ·m+
`−1∑
i=1

ρi + x1 + x2 = |λ|.

Finally, M + 2m ≥ 2m = m+ ρ1 + y1. And as ρi + yi = ρi−1 for all 2 ≤ i ≤ ` and ρi ≥ 0, it follows
that ν is weakly decreasing. Therefore ν ` n. 2

By Lemma 7 all technical requirements for Theorem 3 are met and we conclude that

gλ,(n−p,p),ν =
∑
β`p

β⊆λ∩ν

kλβν . (6)

Define α := (m,m,m, ρ1, ρ2, . . . , ρ`−1). Then α is a partition of p contained in ν ∩ λ. The next lemma
shows that only the term corresponding to β = α contributes to the sum in (6), hence gλ,(n−p,p),ν = kλαν .

Lemma 8 Let β ` p be such that β ⊆ λ ∩ ν and suppose that kλβν > 0. Then β equals the partition
α := (m,m,m, ρ1, ρ2, . . . , ρ`−1).

Proof: Let T be a Kronecker tableau of shape λ/β and type ν − β. As `(ν) = `+ 3, we have `(ν − β) ≤
`(ν) = `+ 3. Therefore T can only be filled with elements from the set {1, 2, . . . , `+ 3}. Hence, because
of T ’s column strictness property, each of its columns can contain at most `+ 3 boxes.

Let ρ′ and β′ denote the partitions conjugate to ρ and β. In the ith column of λ, 1 ≤ i ≤ m, there are
exactly 3 + `+ 3 + ρ′i boxes. Since the ith column of T contains at most `+ 3 boxes, the top 3 + ρ′i boxes
must belong to β, which means β′i ≥ 3 + ρ′i for all 1 ≤ i ≤ m. So in the first m columns, this results in
at least 3m +

∑m
i=1 ρ

′
i = 3m + |ρ| = p boxes belonging to β. But β ` p, therefore β′i = 3 + ρ′i for all

1 ≤ i ≤ m and β′i = 0 for i > m. Transposing β′ back gives β = (m,m,m, ρ1, ρ2, . . . , ρ`−1) = α. 2

Let T denote the set of semistandard tableaus of shape x = (x1, x2) and type (0, 0, 0, y1, y2, . . . , y`).
Clearly, there is a bijection between T and set of semistandard tableaus of shape x = (x1, x2) and type
(y1, y2, . . . , y`) (just map entry j to j − 3. See Figure 5 for an illustration). Hence |T | = Kxy .

� � � � � � � � � � � � � �

� � � � � �

Fig. 5: An illustration of the bijection between T and the set of semistandard tableaus of shape x = (x1, x2) and
type (y1, y2, . . . , y`)

Let K denote the set of Kronecker tableaus of shape λ/α and type ν−α. By definition, its cardinality
equals kλαν . For the proof of Proposition 6 it is now sufficient to set up a bijection K → T . Then we
have shown kλαν = Kxy as claimed.
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Lemma 9 Let T be a semistandard skew tableau of shape λ/α and type ν − α. Then:

1. The filling of T in the first m columns is fixed, namely in each of these the entries from 1 to ` + 3
occur exactly once.

2. The first row of T is filled with 1’s.

3. The restriction of T to its second and third row (denoted T[2,3]) has the type (0, 0, 0, y1, y2, . . . , y`).

Proof: 1. This was already shown at the beginning of the proof of Lemma 8.
2. The shape λ/α of T has M +m columns and the type ν−α has M +m 1’s. No two 1’s can share a

column, so every column has exactly one 1. In a column, the 1’s must be the top elements. So in the first
row, if a box is to be filled, it must be filled with a 1.

3. T has the type ν − α = (M +m,m,m,m+ y1,m+ y2, . . . ,m+ y`−1,m+ y`). Hence there are
only integers according to the type (M, 0, 0, y1, y2, . . . , y`) left to distribute in the columns with a number
greater than m. As the first row contains exactly M +m 1’s, the claim follows. 2

According to Lemma 9, the map K → T , T 7→ T[2,3] is well defined and injective. (For an illustration
see the Figures 4 and 6.)

� � � � � � �

� � �

Fig. 6: The semistandard Young tableau corresponding to the Kronecker tableau in Figure 4.

We now proceed to prove that the map K → T , T 7→ T[2,3] is surjective. Let S ∈ T and consider the
skew tableau T of shape λ/α such that S = T[2,3], the first row of T contains only 1’s, and each of the
first m columns contain the entries 1, 2, . . . , `+ 3 in increasing order.

Lemma 10 We have T ∈ K .

Proof: First of all, it is easy to check that T has the type ν − α. Next, we want to show that T is a
semistandard skew tableau using that S = T[2,3] is a semistandard tableau.

There are only 3 types of columns of T : The column strictness in the first m columns is guaranteed by
the fixed entries. The column strictness in the next x1 columns is assured as the first row contains only 1’s
and the other rows contain entries starting with 4 and T[2,3] is semistandard. Each other column contains
only a single 1. There are three types of rows: The first row contains only 1’s. The second and third row
only contain T[2,3] which is semistandard. The other rows have at most m columns by definition of λ and
have fixed entries. The semistandard property of these rows follows from the fact that α is a partition.
Altogether, we see that T is a semistandard skew tableau.

In order to prove that T is a Kronecker tableau it is sufficient to show that its reverse reading word w←

is an α-lattice permutation (note that α1 = α2). Let T≤3 denote the restriction of T to the first three rows
and let w←≤3 be its reverse reading word. Moreover, we denote by T≥4 the skew tableau obtained from T
by deleting the first three rows and let w←≥4 be its reverse reading word. Then we have w← = w←≤3 · w←≥4

(concatenation).
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We first note that w←≥4 is a lattice permutation. Indeed, this easily follows from the observation that for
each entry i > 1 in T≥4 there is an entry i− 1 in the same column right above (see Figure 4).

Claim. w←≤3 is an α-lattice permutation.

In order to show this, note that the first three rows of T contain M + m boxes. Let k ∈ {1, . . . ,M +
m} be a position in the reverse lattice word w←≤3. Then (#1′s up to k) + α1 = min(M,k) + m,
(#2′s up to k)+α2 = (#3′s up to k)+α3 = m, and (#4′s up to k)+α4 = (#4′s up to k)+m−y1 ≤
m. For every entry i > 3 we have

(#i′s up to k) + αi ≥ αi = ρi−3 = ρi−2 + yi−2 = αi+1 + yi−2 ≥
(
#(i+ 1)′s up to k

)
+ αi+1

Therefore w←≤3 is an α-lattice permutation, which proves the claim.
Since w←≤3 is an α-lattice permutation and w←≥4 is a lattice permutation, we conclude that w← is an

α-lattice permutation. 2

We have finished the proof of Proposition 6.
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