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A combinatorial realization of Schur-Weyl
duality via crystal graphs and dual
equivalence graphs
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Abstract. For any polynomial representation of the special lineaugrahe nodes of the corresponding crystal may
be indexed by semi-standard Young tableaux. Under certaiditions, the standard Young tableaux occur, and do so
with weight0. Standard Young tableaux also parametrize the verticesaifetjuivalence graphs. Motivated by the
underlying representation theory, in this paper, we erplais connection by giving a combinatorial manifestatién o
Schur-Weyl duality. In particular, we put a dual equivalergraph structure on tHeweight space of certain crystal
graphs, producing edges combinatorially from the crydigles. The construction can be expressed in terms of the
local characterizations given by Stembridge for crystapgs and the author for dual equivalence graphs.
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1 Introduction

Schur-Wey! duality [Wey39] is a powerful tool in the studyiokducible representations of the classical
groups. The set-up is as follows. L&tbe a complex, reductive Lie group, and 1étbe an irreducible
finite-dimensional complex representation@f Let VV° be the space of vectors of weighti.e. vectors
which are fixed by a maximal torus. Then the Weyl grdiipacts naturally on/°. The case when
G = SL,, and so then the Weyl group is isomorphicSg, was studied by Gutkin [Gut73] who showed
thatif V' is an irreducible component of theh tensor power of the standatedimensional representation
of SL,,, then theS,,-moduleV? is irreducible and all irreducibls,,-modules occur in this way. This was
also observed by Kostant [Kos76]. Though there are desmnipbf the Weyl group action ofrweight
spaces foBL,,, there is no general rule for how to decompose the actionifiréducible representations
of S,. This paper proposes a new approach to this problem by cataializing the representations
using crystal graphs [Kas90, Kas91] for representatiorfd gfand dual equivalence graphs [Ass07] for
representations &,,.
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Kashiwara introduced in [Kas90, Kas91] the notion of criybtses in his study of the representation
theory of quantized universal enveloping algebrag at 0. The theory of canonical bases, developed
independently by Lusztig [Lus90a, Lus90b], studies theesproblem from a different viewpoint, though
for the purposes of this paper, we focus solely on the crygiproach. A crystal graph is a directed,
colored graph with vertex set given by the crystal basis arettbd edges given by deformations of the
Chevalley generatoks and f;. The combinatorial structure of crystal graphs encodesitapt informa-
tion for studying the representations; for instance, kmguthe crystal immediately gives a formula for
the character as well as tensor product and branching roleké corresponding representation. For the
quantum groufd/, (sl,,), the crystal basis can be indexed by semi-standard Youegtak, and there is
an explicit combinatorial construction of the crystal gragm tableaux [KN94, Lit95].

Dual equivalence graphs were first introduced in [AssO7]@sabinatorial tool for studying functions
expressed in terms of quasi-symmetric functions. In paldicin [Ass07] they are used to give a purely
combinatorial proof of symmetry and Schur positivity of caax-Leclerc-Thibon polynomials and Mac-
donald polynomials. The original motivation for these drapbased on ideas of Haiman [Hai05], was to
mimic existing crystal-theoretic proofs used to estalgishitivity results for functions expressed in terms
of monomials. Given this, a natural problem which this pagadresses is to explore the connections
between crystal graphs and dual equivalence graphs. Caiobigly, the vertices of a dual equivalence
graph are standard Young tableaux of a given shape, whichiradex a basis for irreducible represen-
tations ofS,,. When\ is a partition ofn, these also index thé-weight nodes in the crystal graph of
the irreducibleSL,, module with highest weight. From this observation we develop a correspondence
between crystals of irreducible representationSlof of degree: and dual equivalence graphs.

This paper is organized as follows. Section 2 contains ang#ipn of type A crystal graphs. We begin
by defining the combinatorial structure on semi-standamghgotableaux, and then present Stembridge’s
local characterization for crystals [Ste03] which will kesential for establishing our main result. Section
3 gives the analogous exposition for dual equivalence grapdginning with the combinatorial descrip-
tion in terms of standard Young tableaux before presentinaddcal characterization from [Ass07]. The
correspondence is laid out in Section 4, where we give twarsg@ proofs of the main result using the
tableaux descriptions (Theorem 4.2) and the local chaiaatens (Theorem 4.3). Finally, in Section 5,
we lay out how these methods may be extended to any irre@ugplesentation &fL,, with a nontrivial
0-weight space, and we also suggest how this approach magtdadefine dual equivalence graphs for
other types.

2 Crystal graphs

In order to construct the crystal graph of an irreducibleespntation ofL,,, we must define Kashiwara’s
crystal operators in this setting. We depart somewhat fitoeroriginal descriptions developed indepen-
dently by Kashiwara and Nakashima [KN94] and Littelmanndbj in favor of the presentation of the
Littlewood-Richardson rule in [Mac95].

For a wordw of lengthn, i.e. w € N", definem;(w,r) to be the number of’'s occurring in
WrWy41 -+ - Wy, MinUs the number of — 1's occurring inw, w41 - - - w,. Then letm;(w) be the max-
imum m; (w, ) which occurs for any = 1,...,n. Observe that ifn;(w) > 0 andw, is the rightmost
occurrence of this maximum, i.en;(w,p) = m;(w) andm;(w, q) < m;(w) for ¢ > p, thenw, = i.
The result of applying the crystal operatgrto a semi-standard tabledumay be described as follows.
Let wy be the reading word fof'. Then if m;(wr) < 0, é;(T") = 0; otherwisee;(T) is the result of
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changing the which is the rightmost occurrence of; (wr) to ani—1. Asg¢,; is invertible when nonzero,
definef; by requiringée; and f; to be inverses of one another whenever the image i8.not
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Fig. 1: The crystal graplit, ,, with edgesfi /', fo—, fs

For a partition\ with at mostn rows, the crystal grapi’y is the directed, colored graph on semi-
standard tableaux of shapevith entries fromn] defined as follows. Far= 1, ..., n—1, if m;(wr) > 0,
define a directedredge frome; (T") to T'. For example, Figure 1 gives the crystal grab(‘gg).

In [Ste03], Stembridge gives a local characterization p$tai graphs which arise from representations
for simply-laced types. In order to define Stembridge’s mmdpwe must first introduce some notation
associated with a directed, colored graph. Saythatsdegreen if the largest color for an edgeis—1.

We have simplified things from the presentation in [SteOBtsiwe are considering only the type A
case. The notations below may not be well-defined in genleu&hvill be in the contexts in which they
are used, i.e. for graphs satisfying axioms P1 and P2 below.

If z—y (resp.z——z), writey = E,x (resp.z = F;z). Thei-string throughz is the maximal path

In this case we writé(z, i) = —d ande(x,¢) = r. Finally, we have the following differences whenever
E;, F; is defined atr.

AZ(S(.T,j) = 5(El$a.7) —(S(.T,j), VZ(S(.T,j) = 6($1J) _6(Fix7j)7

Ai&'(l',j) = E(Eix7j)_€(xaj)7 vig(maj) = €(x7j)_€(Fi$aj)'
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Definition 2.1 ([Ste03]) A directed, colored grapit’ is regularif the following hold:

(P1) all monochromatic directed paths have finite length;

(P2) for every vertex, there is at most one edg&iy and at most one edgleinz;

2 if j=1
(P3) assumingv;x is definedA;d(z, j) + Ae(z, j) = { -1 ifj=ix1 ;

0 if i—j|>2
(P4) assumingz;z is definedA;d(x, j), Aie(z,j) < 0forj # i;

()
(,7)
(x,7)

./. [} . ./. [} . ./. [ ] .
./ \z/ ./ \x/ ./ \x/
[} ./ .. ./ [ ] ./
li —j| > 2 A;d(z,j) =—1 o  Ai(x,j)=-1

Fig. 2: An illustration of axioms P3 and P4, whefg /, F;\..

Axioms P3 and P4 dictate how the maximal length gtstring differs between and F;z; see Figure
2. When|i — j| > 2, there is no change, but whgn= i + 1, the length must change By Axioms P5
and P6 give information about how edges with different lalveleract; see Figure 3. Whéhn— j| > 2,
the conditions of P5 will always be satisfied, though wlieai + 1, either P5 or P6 could hold.

The following theorem shows that regular graphs corresp@nelcisely to the crystal graphs of repre-
sentations in type A. This result allows us to combinataréihe problem of studying representations of
SL,, by instead studying regular graphs of degree
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Aid(x,5) =0 Aid(z,j) = Ajo(z,i) = -1
Fig. 3: An illustration of axioms P5 and P6, whefg /, F;\..

Theorem 2.2 ([Ste03])Each X} is a regular graph, and every connected component of a reguiph
is isomorphic taX{ for somei, n.

The theorem is proved by showing that Littelmann’s path afwes [Lit94] generate regular graphs,
since the Path Model is known to generate &3¢ As remarked in [Ste03], it would be nice to have a
graph-theoretic proof of Theorem 2.2 which bypasses the Matlel.

3 Dual equivalence graphs

Since the characters of irreducible representationSigf are Schur polynomials which form a basis
for symmetric polynomials, crystal graphs can be used togtbat certain polynomials expressed in
terms of monomials are symmetric and Schur positive. Mteveby this approach, Haiman [Hai05]
suggested defining a graph structure on standard tableagthe dual equivalence relation as a means
of establishing the symmetry and Schur positivity of polymals expressed in terms of quasi-symmetric
functions. The result of this idea is the theory of dual egléuce graphs developed in [AssO7].

Following Haiman'’s idea, we use the dual equivalence mahatd construct a graph whose vertices are
given by standard tableaux and whose connected componeritslaxed by partitions.

Definition 3.1 ([Hai92]) Anelementary dual equivalenoa three consecutive letters, sayl, i,i+1, of
a permutation is given by switching the outer two lettersmdver the middle letter is noét

ciee iRl e G FL = G F L iR e

The standard dual equivalence graph associated ttenoted7,, is the vertex-signed, edge-colored
graph constructed in the following way. The vertices areqily all standard Young tableaux of shape
Two tableauxi” andU are connected by arcolored whenever their reading wordsy andwy;, differ by
an elementary dual equivalence for1,,i+1. To each verte{ we associate the signatur€l’) which
indicates the descent set of the tableau:

{ +1 if i appears to the left af+1 in wy

oM =91 _1 i i+1 appears to the left afin wy

(3.1)
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As the original motivation for these graphs was to prove $gusitivity, the role of the signatures is to
index which quasi-symmetric function should be associtdeghch vertex.

2 2 (3 3 (4
9(471) 1 3|4|5| 1 2|4|5| 1 2|3|5| 1 2|3|4|
—+++ +—++ ++—+ +++-
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G3.2) 1]2[5]—, [1[3]5] 1[3]4] 1[2]4] 1[2]3]
+—++ —+—+ ++- +—4- ++—+
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——++ —F— o 24—t +4+——
113]4]

Fig. 4: The standard dual equivalence graphs ), G(s,2) andGs 1, 1).

In contrast withx{?, the bound on the edge colors (equivalently, on the entfiéisectableaux) foG
is implicit. More precisely, if\ is a partition ofm, theng, has degreen, meaning that the largest edge
colorism—1.

It follows from results in [Hai92] that eadfi, is connected. It is easy to see from the construction that
G, can be obtained frorg, by conjugating each vertex and multiplying each entry ofdigmature by
—1. Several other nice properties of these graphs are givesO[Asincluding the fact that thg@, are
pairwise non-isomorphic and have no nontrivial automapts.

Motivated by the local characterization of crystal gragi{s we next present a local characterization
of the graph%j,. We will abuse notation by simultaneously referring?p as the collection of-colored
edges as well as an involution on vertices which have-adge, i.e. we writeD;(v) = w whenever
{v,w} € D,. This s justified by the first axiom.

Definition 3.2 ([Ass07]) A signed, colored grapti = (V, 0, D) is adual equivalence graphthe fol-
lowing hold:

(axl) Forv € V andi > 1, 0(v)i.1 = —o(v); if and only if there existey € V such that{v, w} € D;.
Moreoverw is unique when it exists.

(ax2) Whenevefv, w} € D;,

ov); = —olw); forj=i-1,i;
o), = o(w), forh<i—2 and h>i+1.
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(ax3) Whenevefv, w} € D;,

if 0(v)io = —0(w)i2, theno(v)ias =—0(v)i;
if c(v)in = —o(w)sa, theno(v)ys = —o(v);.

(ax4) Fori > 3, every non-trivial connected component®fo, D, o U D, 1 U D;) is depicted below and
there is a path containing at most ol edge between any two vertice§ ¥t o, Do U - - - U D;).

i—2 i—1
[ ] [ ] [ ] [ ]

—1 —2 —2
[ ] [ ] [ ] [ ] [ ]

i—1

L] —2

o \ i1

[ ] [ ] [ ] [ ]

(ax5) Wheneveli — j| > 3, {v,u} € D; and{u,w} € D;, there exists € V such that{v,z} € D;

and{z,w} € D,.
/ \
\ /

Whenn = 4, we stipulate the following in place of axiom Fori > 2, every non-trivial connected
component of the sub-gragh', o, D, ; U D;) is one of the following:

i1 i i1

Next we have the analog of Theorem 2.2 for dual equivalenaptgy. The proof of Theorem 3.3 is by
a purely combinatorial, graph-theoretic argument.

Theorem 3.3 (JAss07])Eachg, is a dual equivalence graph, and every connected comporiantaal
equivalence graph is isomorphic €, for a unique partition\.

4 From crystal graphs to dual equivalence graphs

Since standard tableaux are special cases of semi-staiattéedux, and since the constructiorgafwas
motivated byX’?*, we would like to explore the connection between regulaplygseand dual equivalence
graphs. Since semi-standard tableaux index a basis foredurible representation 8f.,, so that the
content of the tableau corresponds to the weight of the hasir, those basis vectors corresponding
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to standard tableaux index theweight space of the representations of dimensioif herefore we may
think of dual equivalence graphs as living in theveight space of crystal graphs.

In general, the Weyl group acts naturally on theveight space of a representation. In the casglof,
the Weyl group is isomorphic t§,,. Since standard tableaux index the basis for an irreduictipiesenta-
tion of S,,, we would like to use dual equivalence graphs to combinalin€ the study of representations
of S,, in much the same way that crystal graphs combinatorialigesthdy of representations 6f.,,.
This is the motivation behind the following correspondeniiethe interest of space, the longer proofs
have been condensed by omitting the more mechanical details

Combinatorially, thé)-weight space of a regular graghconsists of all vertices which lie at the center
of eachi-string; i.e. e(z,i) = —d(x, ) for eachi. Given a directed, colored graphi, define a signed,
colored graptg(X) = (V, o, D) by

V = {zeX|e(x,i)=—0(z,i)=00r1 Vi, }, (4.1)
_ +1 ife(z,i)=1
o(@)i = { -1 ife(z,i)=0 " (4.2)
_ Fi F,E. 1 Eix if e(z,i) =1ande(z,i—1) =0
DZ(I’) { FiéflEiElwl;llL' if ( N ) =0 and€($,i71) =1 (43)

An i-edge frome, or equivalentlyD;(z), is not defined if neither condition of equation (4.3) holds.

N
\/

/ [ =g o
Fig. 5: ConstructingG (X) from X'; here we havé’;_; /, F;\..

Proposition 4.1 If X is a regular graph, theig7(X) is well-defined.

Proof: It suffices to show thaD; is well-defined. Note that if(x,i) = —1, thenE;z is nonzero. If
0(z,i—1) = 0, then by axiom P3 we must ha¥éF; x, i—1) +¢(F;x, i—1) = —1. The constraints of axiom
P4 forces(F;x,i—1) = 0, and so we conclude thatE;x,i—1) = —1. ThereforeE,_; E;x is nonzero.

Continuing thus, with liberal use of axioms P3 and P4, we wwadly conclude that, ; F; F; 1 E;x is
nonzero. The analogous argument holds with the reversengéins foré (z,i—1), §(x, i). O
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Below we give two separate proofs thattfis a regular graph witl-weight space given by, then
G(X) is adual equivalence graph. The first proof utilizes the lystpuctures on tableaux, and the second
uses the local characterizations. Note that the conditiatit give the0-weight space is highly restrictive.

In order forX} to have &)-weight space) must be a partition ofn into at most: parts. We first treat
the case fo/X" whenk = 1, i.e. A is a partition ofn.

Theorem 4.2 For every partition\ of n, we havej (X)) = G..

Proof: In this case we may identify with SYT(\). Let wr be the reading word for a tabledu For
T € SYT()), note that(T,¢) = 0if and only ifi+1 occurs to the left of in wr. Therefore equations 3.1
and 4.2 correspond. In particuldr,will have ani-edge inG, precisely when equation (4.3) is defined.
SupposeD;(T) is defined, and sd@" admits an elementary dual equivalence fer1,i,i+ 1. By
symmetry, we may assumdies to the left ofi &= 1 in wy. If ¢(T,4) = 1, then ignoring all letters other
thani—1,4,4+1 and regarding;, f‘j (j =i—1,14) as operators on reading words, we have

fiafi€iméwr = fiafi€iaé - @ coci—1lee i+l
= fiafieia - i imlee i
— fodfi 0 i eeei—1ee-i—1
= fia ceedidleeci—1---i—1

= P ST S

Therefore equation (4.3) corresponds to the elementafyedwiévalences. The case wheff',i—1) = 1
is similar. O

Going back to the representation theorysdf, ands,,, Theorem 4.2 reflects the fact that foa parti-
tion of n, the action ofS,, on the0-weight space of the irreducible representatio®bf, corresponding
to \ is given by the Specht modufe®.

The following result generalizes Theorem 4.2. Here we preseelf-contained proof based solely on
the local characterizations of crystal graphs and duaiMadprnice graphs without appealing to Theorems
2.2 and 3.3 and without reference to tableaux.

Theorem 4.3 If X is a regular withO-weight space given bl (see equation (4.1)), thef(X) is a dual
equivalence graph.

Proof: Comparing equation (4.2) with the conditions in equatior8)4lictating whenD; is defined
shows thato(z),.1 = —o(x); if and only if D;(x) is defined. Figure 5 makes evident the fact that
o(z); = —o(D;(z)); for j = i—1,4, though this can also be seen directly from the proof Mais
well-defined. Therefore we have established dual equicalerioms 1 and 2.

Axiom 3 can be demonstrated by showing that(if, i —2) # ¢(D;(z),i—2), thenD;(z) = D;4(z).
To do this, we show that the crystal graph operators going ftdo D; (z) exactly mirror the situation in
X(42,2) for the two standard tableaux of shaf2e2); see Figure 1.

By crystal axioms P3, P4 and P5, whene\er b| > 2, we haveE,E, = E,E,, F,E, = EyF, and
F,Fy, = F,F,. Dual equivalence axiom 5 is equivalent to showing thd®ifand D; are both defined at
x for some|i — j| > 3, thenD,;D;(z) = D,;D;(x). Therefore the identities above for crystal operators
establish dual equivalence axiom 5.
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Fig. 6: An illustration of the commutativity which establishes Heguivalence axiom 4; the-weight vertices are
o’s and crystal operators afé 3\, Fi2—, Fi.1,/, F;].

The most difficult step is to establish axiom 4. For this, nibigt it is sufficient to show that if
D, 5, D;4,D; are all defined at and are all distinct (i.ex does not have a double edge), tHen, D; (x) =
D;D; 5(z). By symmetry we may assumézr,i—3) = 1 = e(x,i—1) ande(z,i—2) = 0 = &(z,1).
Then the first part of axiom 4 is equivalent to establishirgftiilowing identity, illustrated in Figure 6.

(FiFia BBy )(FioFisEioEi 3)x = (FioFi3EioF; 3)(FiFiaEiEig)x

The key to establishing this relation is to use the commuitgtrelations for crystal operators used to
prove dual equivalence axiom 5, as well as the additionatical that both®,; ; andF;_; commute with
the sequencé; o F; sE; 5.

For the second part of axiom 4, we first show thakifis connected, then so &(X). In particular,
we show that any two vertices & may be connected by a path consisting of sequences as in@guat
(4.3). Furthermore, for any two vertices we may choose a gathaining at most one sequence using the
maximal edge color. Now axiom 4 follows. O

Corollary 4.4 Let\ = (u1 + k,u2 + k, ..., un + k) for some partitiorp: of n and some non-negative
integerk. ThenG(X}) = G,..

The partition) is the result of adding columns of height: to 1, and clearly has-weight space given
by V. Such a graph corresponds to the irreducible representaiftiol.,, indexed by, sinceSL,, cannot
discriminate between the irreducible representations¥ad by\ andy. Therefore Corollary 4.4 shows
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that the corresponding dual equivalence graph decompalest(trivially) the action of the Weyl group
on the0-weight space of the representation.

Remark 4.5 By introducing weights to the regular graphs, we can recawerdimensionof a regular
graph, which in the context of Theorem 2.2 gives the sizeeoiinlexing partition. Letting: denote the
ratio of the dimension ot to the degree aft', modify the definition of in equation (4.2) to be

0’(1’)1 _ (_1)5(w,i)+k ) (44)

Since multiplying the signatures of a dual equivalence graptry-wise by-1 has the effect of conjugat-
ing the indexing partition, under this definition Corollay4 must read

n | Gu ifkisodd
G = { G, ifkiseven (4.5)
Representation theoretically, this corresponds to teimgpwith the determinant representation @i,
which has the effect of conjugating the shape. So indeedjuhkequivalence graph on thHeweight
space ofYy' decomposes the action &f, on the0-weight space of the corresponding representation of
GL,, with this minor modification of signatures.

5 Extensions

The ultimate goal is to extend the constructionggft’) for any regular grapit’ which has a&-weight
space. The characterizationéfin equation (4.1) would become

V={xecX|e(x,i)=—0(z,i) Vi}. (5.1)

In many cases, the-weight graphs obtained from regular graphs in a similar mearcan be viewed
as D graphs, which are generalizations of dual equivaleraghg; see [Ass07]. Each D graph can be
transformed into a disjoint union of dual equivalence gsslo the hope is that eatiweight graph may
be realized as a D graph which decomposes into dual equesatgaphs in the correct way. If successful,
this would provide a combinatorial way to study the représons of Weyl groups ofi-weight spaces,
at least in type A.

A further direction is to use the correspondence betweea &prystal graphs and dual equivalence
graphs to define dual equivalence graphs in other types. heosimply-laced types at least, this can
be done by the same constructions using Stembridge’s axittsisig the combinatorial description of
crystal bases in terms of generalized Young tableaux [KN895], we may define the standard graphs
which are the analogs @, and then use the local characterization of crystal graplobtain a local
characterization for dual equivalence graphs.
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