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Affine descents and the Steinberg torus

Kevin Dilks, T. Kyle Petersen and John R. Stembridge†

Department of Mathematics, University of Michigan, Ann Arbor MI 48109–1043

Abstract. Let W nL be an irreducible affine Weyl group with Coxeter complex Σ, where W denotes the associated
finite Weyl group and L the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking
the quotient of Σ by the lattice L. We show that the ordinary and flag h-polynomials of the Steinberg torus (with the
empty face deleted) are generating functions over W for a descent-like statistic first studied by Cellini. We also show
that the ordinary h-polynomial has a nonnegative γ-vector, and hence, symmetric and unimodal coefficients. In the
classical cases, we also provide expansions, identities, and generating functions for the h-polynomials of Steinberg
tori.

Résumé. Nous considérons un groupe de Weyl affine irréductible W n L avec complexe de Coxeter Σ, où W
désigne le groupe de Weyl fini associé et L le sous-groupe des translations. Le tore de Steinberg est le complexe
cellulaire Booléen obtenu comme le quotient de Σ par L. Nous montrons que les h-polynômes, ordinaires et de
drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur W pour une statistique de
type descente, étudiée en premier lieu par Cellini. Nous montrons également qu’un h-polynôme ordinaire possède
un γ-vecteur positif, et par conséquent, a des coéfficients symétriques et unimodaux. Dans les cas classiques, nous
donnons également des développements, des identités et des fonctions génératrices pour les h-polynômes des tores
de Steinberg.
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1 Introduction
Let Sn denote the symmetric group of permutations of [n] := {1, . . . , n}. For each w ∈ Sn, a descent is
an index i (1 6 i < n) such that wi > wi+1. We let

d(w) := |{i ∈ [n− 1] : wi > wi+1}|

denote the number of descents in w. The corresponding generating function

An−1(t) :=
∑
w∈Sn

td(w) (1.1)

is known as an Eulerian polynomial, although this definition differs from the classical one by a power
of t. Some interesting features of the Eulerian polynomials include the facts that they have symmetric and
unimodal coefficients and are known to have all real roots.
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More generally, if W is any finite Coxeter group with simple reflections s1, . . . , sn (such as the sym-
metric group Sn+1 with simple transpositions si = (i, i + 1)), then a descent in some w ∈ W may be
defined as an index i such that `(wsi) < `(w), where `(w) denotes the minimum length of an expression
for w as a product of simple reflections. Thus there is an analogous W -Eulerian polynomial

W (t) :=
∑
w∈W

td(w),

where d(w) is defined to be the number of descents in w. Note that as a Coxeter group, Sn is often
denoted An−1, so this notation is consistent with (1.1).

Like the classical Eulerian polynomials, theW -Eulerian polynomials are known to have symmetric and
unimodal coefficients. An elegant explanation of this fact may be based on a topological interpretation
of W (t) as the h-polynomial of the Coxeter complex of W . Since every (finite) Coxeter complex is real-
izable as the boundary complex of a simplicial polytope, the symmetry and unimodality of the coefficients
of W (t) may thus be seen as a consequence of the g-theorem (e.g., see Section III.1 of (21)).

Recently, several authors (see for example (1; 13; 20; 26)) have identified interesting classes of simpli-
cial complexes whose h-polynomials have expansions of the form

h(t) =
∑

06i6n/2

γit
i(1 + t)n−2i,

where the coefficients γi are nonnegative. It is easy to see that each summand in this expansion has
symmetric and unimodal coefficients centered at n/2, and thus any h-polynomial with a nonnegative
“γ-vector” in this sense necessarily has symmetric and unimodal coefficients. In these terms, the h-
polynomials of all finite Coxeter complexes (i.e., the W -Eulerian polynomials) are known to have non-
negative γ-vectors (26).

Another feature of γ-nonnegativity is that it is a necessary condition for a polynomial to have all real
roots, given that the polynomial has nonnegative symmetric coefficients. In this direction, Brenti (2) has
conjectured that the W -Eulerian polynomials have all real roots, a result that remains unproved only for
the groups W = Dn.

In this paper, we study a family of Eulerian-like polynomials associated to irreducible affine Weyl
groups. These “affine” Eulerian polynomials may be defined as generating functions for “affine descents”
over the corresponding finite Weyl group. An affine descent is similar to an ordinary descent in a Weyl
group, except that the reflection corresponding to the highest root may also contribute a descent, depending
on its effect on length.

The affine Eulerian polynomials have a number of interesting properties similar to those of the ordinary
W -Eulerian polynomials. In particular, we show that they have nonnegative γ-vectors (Theorem 4.2),
and conjecture that all of their roots are real. Perhaps the most interesting similarity is that each affine
Eulerian polynomial is the h-polynomial of a naturally associated relative cell complex (Theorem 3.1).

To describe this complex, one should start with an irreducible affine Coxeter arrangement. Such an
arrangement induces a simplicial decomposition of the ambient space; by taking the quotient of this
space by the translation subgroup of the associated affine Weyl group, one obtains a torus decomposed
into simplicial cells. We refer to this cell complex as the Steinberg torus in recognition of the work of
Steinberg, who gave a beautiful proof of Bott’s formula for the Poincaré series of an affine Weyl group by
analyzing the action of the finite Weyl group on the homology of this complex in two different ways (see
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Section 3 of (23)). In fact, Steinberg also allows the possibility of twisting the entire construction by an
automorphism, but we will not consider this variation here.

It is important to note that the Steinberg torus is not a simplicial complex (distinct cells may share
the same set of vertices), but it is at least a Boolean cell complex in the sense that all lower intervals in
the partial ordering of cells are Boolean algebras.(i) For further information about Boolean complexes,
see (22) and the references cited there.

For our purposes, it is essential to omit the empty cell of dimension−1 from the Steinberg torus; we re-
fer to the resulting relative complex as the reduced Steinberg torus. It is this complex whose h-polynomial
is the corresponding affine Eulerian polynomial; i.e., the generating function for affine descents.

It is noteworthy that affine descents in finite Weyl groups were first introduced by Cellini (3) in a con-
struction of a variant of Solomon’s descent algebra, and developed further for the groups of type A and C
in several follow-up papers on “cyclic descents” by Cellini (4; 5), Fulman (11; 12), and Petersen (18). In
very recent work, Lam and Postnikov (16) study a weighted count of affine descents (the “circular descent
number”) that coincides with an ordinary count (only) in type A.

The paper is structured as follows. Section 2 introduces the necessary definitions, including details of
the construction of the Steinberg torus. In Section 3 we show that the affine Eulerian polynomials are
the h-polynomials of reduced Steinberg tori (Theorem 3.1). We also show that reduced Steinberg tori are
partitionable (Remark 3.6); this is a weak analogue of shellability that implies h-nonnegativity. It is also
noteworthy that this nonnegativity is implied by very recent work of Novik and Swartz (17) from which
it follows that a reduced Boolean cell complex homeomorphic to a torus will indeed have a nonnegative
h-vector (27).

In Section 4, we present our second main result; namely, that the affine Eulerian polynomials have
nonnegative γ-vectors (Theorem 4.2). As a corollary, it follows that the h-vectors of reduced Steinberg
tori are symmetric and unimodal. In this section, we also present evidence supporting our conjecture that
all roots of affine Eulerian polynomials are real. The proof of Theorem 4.2 is case-by-case, and relies on
combinatorial expansions for the γ-vectors of affine Eulerian polynomials for the classical Weyl groups
that we provide in Section 5.

In Section 6, we present three unexpected identities relating ordinary and affine Eulerian polynomi-
als (two new, one old), and use these to derive exponential generating functions for the affine Eulerian
polynomials for each classical series of Weyl groups.

This paper is an abridged version of (8), which contains proofs of all the results presented here (and
more).

2 Preliminaries
2.1 Finite and affine Weyl groups
We assume the reader is familiar with the basic theory of reflection groups. We follow the notational
conventions of (15).

Let Φ be a crystallographic root system embedded in a real Euclidean space V with inner product 〈· , ·〉.
For any root β ∈ Φ, let Hβ := {λ ∈ V : 〈λ, β〉 = 0} be the hyperplane orthogonal to β and let sβ
denote the orthogonal reflection through Hβ . Fix a set of simple roots ∆ = {α1, . . . , αn} ⊂ Φ, and let

(i) We thank V. Welker for bringing this to our attention.
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S = {s1, . . . , sn} denote the corresponding set of simple reflections. The latter generates a finite Coxeter
group W (a Weyl group).

Unless stated otherwise, we always assume that Φ and W are irreducible.
For convenience, we assume that ∆ spans V .
Having fixed a choice of simple roots, every root β either belongs to the nonnegative span of the

simple roots and is designated positive, or else belongs to the nonpositive span of the simple roots and is
designated negative. We write β > 0 or β < 0 accordingly.

The affine Weyl group W̃ is generated by reflections sβ,k through the affine hyperplanes

Hβ,k := {λ ∈ V : 〈λ, β〉 = k} (β ∈ Φ, k ∈ Z).

Alternatively, one may construct W̃ as the semidirect product W n ZΦ∨, where ZΦ∨ denotes the lattice
generated by all co-roots β∨ = 2β/〈β, β〉 (β ∈ Φ), acting on V via translations.

Given that Φ is irreducible, it has a unique highest root α̃, and it is well-known that W̃ is generated by
S̃ := S ∪ {seα,1} and that (W̃ , S̃) is an irreducible Coxeter system.

Note that W̃ depends on the underlying root system Φ (not merely W ), so we are committing an
abuse of notation. For example, Bn and Cn are isomorphic as Coxeter systems, but the affine groups B̃n
and C̃n are not isomorphic as Coxeter systems for n > 3.

2.2 Coxeter complexes
The hyperplanes Hβ (β ∈ Φ) induce a partition of V into a complete W -symmetric fan of simplicial
cones. By intersecting this fan with the unit sphere in V , one obtains a topological realization of the
Coxeter complex Σ(W ). The action of W on chambers (maximal cones) in the fan is simply transitive,
and the choice of simple roots ∆ is equivalent to designating a dominant chamber; namely,

C∅ := {λ ∈ V : 〈λ, α〉 > 0 for all α ∈ ∆}.

The closure of the dominant chamber is a fundamental domain for the action of W on V , and thus every
cone in the fan has the form wCJ (w ∈W , J ⊆ [n]), where

CJ := {λ ∈ V : 〈λ, αj〉 = 0 for j ∈ J, 〈λ, αj〉 > 0 for j ∈ [n] \ J}.

Notice that the rays (1-dimensional cones) have the form wCJ where J = [n] \ {j} for some j. If we
assign color j to all such rays, we obtain a balanced coloring of Σ(W ); i.e., every maximal face (chamber)
has exactly one vertex (extreme ray) of each color.

Similarly, the affine hyperplanes Hβ,k (β ∈ Φ, k ∈ Z) may be used to partition V into a W̃ -symmetric
simplicial complex that is isomorphic to the Coxeter complex Σ(W̃ ). By abuse of notation, we will
identify Σ(W̃ ) with this particular geometric realization. The action of W̃ on alcoves (maximal simplices)
is simply transitive, and the fundamental alcove

A∅ := C∅ ∩ {λ ∈ V : 〈λ, α̃〉 < 1}

is tied to the choice of S̃ in the sense that the W̃ -stabilizer of every point in the closure of A∅ (a
fundamental domain) is generated by a proper subset of S̃. We index the faces of A∅ by subsets of
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[0, n] := {0, 1, . . . , n} so that the J-th face is

AJ :=

{
CJ ∩ {λ ∈ V : 〈λ, α̃〉 < 1} if 0 /∈ J,

CJ\{0} ∩ {λ ∈ V : 〈λ, α̃〉 = 1} if 0 ∈ J .

Note that AJ is the empty face when J = [0, n].
Since the closure of A∅ is a fundamental domain for the action of W̃ , each cell in this complex has

the form µ + wAJ (µ ∈ ZΦ∨, w ∈ W , J ⊆ [0, n]). In particular, the vertices of Σ(W̃ ) are of the form
µ + wA{j}c , where Jc := [0, n] \ J . If we assign color j to each of the vertices µ + wA{j}c , then the
vertices of the cell µ+ wAJ are assigned color-set Jc (without repetitions), so this coloring is balanced.

Remark 2.1 If Φ and W are reducible, then the affine hyperplanes Hβ,k may still be used to partition V
into a cell complex, but the result is not a geometric realization of the Coxeter complex of W̃ . Indeed, the
cells of this complex are products of simplices, whereas the Coxeter complex of every Coxeter system is
simplicial.

2.3 Flag f -vectors and h-vectors
Let Σ be a finite set of simplices (or abstractly, a hypergraph) that is properly colored; i.e., the vertices of
Σ have been assigned colors from some index set, say [0, n], so that no simplex has two vertices with the
same color. What we have in mind here are balanced simplicial (or more generally, Boolean) complexes.

A basic combinatorial invariant of Σ that carries significant algebraic and topological information (e.g.,
see the discussion in Section III.4 of (21)) is the flag h-vector. The components of the flag h-vector are
the quantities

hJ(Σ) :=
∑
I⊆J

(−1)|J\I|fI(Σ) (J ⊆ [0, n]), (2.1)

where fI(Σ) denotes the number of simplices in Σ whose vertices have color-set I .
The quantities fJ(Σ) for J ⊆ [0, n] are collectively referred to as the flag f -vector of Σ.
The corresponding generating functions

f(Σ; t0, . . . , tn) :=
∑

J⊆[0,n]

fJ(Σ)
∏
j∈J

tj ,

h(Σ; t0, . . . , tn) :=
∑

J⊆[0,n]

hJ(Σ)
∏
j∈J

tj

are known as the flag f -polynomial and flag h-polynomial of Σ. The more familiar ordinary f -polynomial
and h-polynomial may be obtained via the specializations

f(Σ; t) := f(Σ; t, . . . , t) =
∑

J⊆[0,n]

fJ(Σ)t|J|,

h(Σ; t) := h(Σ; t, . . . , t) =
∑

J⊆[0,n]

hJ(Σ)t|J|.

The coefficients of these polynomials yield the (ordinary) f -vector and h-vector of Σ.
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Fig. 1: The Steinberg tori for eA2 and eC2.

Note that (2.1) implies

h(Σ; t0, . . . , tn) = (1− t0) · · · (1− tn)f
(

Σ;
t0

1− t0
, . . . ,

tn
1− tn

)
, (2.2)

and hence h(Σ; t) = (1− t)n+1f(Σ; t/(1− t)).

2.4 The Steinberg torus

As the translation subgroup of W̃ , the co-root lattice ZΦ∨ acts as a group of color-preserving automor-
phisms of the affine Coxeter complex Σ(W̃ ). Letting T denote the n-torus V/ZΦ∨, it follows that the
image of Σ(W̃ ) under the natural map V → T is a balanced Boolean complex, denoted ΣT (W̃ ). That is,

ΣT (W̃ ) = Σ(W̃ )/ZΦ∨.

As explained in the introduction, we refer to ΣT (W̃ ) as the Steinberg torus. We also define the reduced
Steinberg torus, denoted Σ′T (W̃ ), to be the relative complex obtained by deleting the empty simplex of
dimension −1 from ΣT (W̃ ).

Note that these are finite complexes; there is one maximal cell wA∅ + ZΦ∨ for each w ∈W .
There is an alternative way to construct the Steinberg torus that starts with the observation that the 0-

colored vertices in Σ(W̃ ) are the members of ZΦ∨. Since every alcove A has a unique 0-colored vertex,
one may translate A via ZΦ∨ to a unique alcove that has the origin as a vertex; i.e., to one of the alcoves
in the W -orbit of A∅. The closure of this set of alcoves is the W -invariant convex polytope

PΦ = {λ ∈ V : −1 6 〈λ, β〉 6 1 for all β ∈ Φ},

and the Steinberg torus is obtained by identifying the maximal opposite faces of PΦ.

Example 2.2 The Steinberg torus for Ã2 is a hexagon with opposite sides identified, decomposed into six
triangles, nine edges, and three vertices. See Figure 1. It has flag f -polynomial

f(ΣT (Ã2); t0, t1, t2) = 1 + t0 + t1 + t2 + 3t0t1 + 3t0t2 + 3t1t2 + 6t0t1t2.

Using (2.2) to compute the flag h-polynomial, we find

h(ΣT (Ã2); t0, t1, t2) = 1 + 2t0t1 + 2t0t2 + 2t1t2 − t0t1t2.
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On the other hand, the reduced Steinberg torus lacks the empty face, so its flag f -polynomial omits the
constant term and we find

h(Σ′T (Ã2); t0, t1, t2) = t0 + t1 + t2 + t0t1 + t0t2 + t1t2.

Specializing, we see that the reduced Steinberg torus has ordinary f -polynomial 3t + 9t2 + 6t3, and
ordinary h-polynomial 3t+ 3t2.

Example 2.3 The Steinberg torus for C̃2 (or the isomorphic B̃2) is a square with opposite sides identified,
decomposed into eight triangles, twelve edges, and four vertices as in Figure 1. The reduced Steinberg
torus has flag f -polynomial

f(Σ′T (C̃2); t0, t1, t2) = t0 + t1 + 2t2 + 4t0t1 + 4t0t2 + 4t1t2 + 8t0t1t2,

and (again via (2.2)) flag h-polynomial

h(Σ′T (C̃2); t0, t1, t2) = t0 + t1 + 2t2 + 2t0t1 + t0t2 + t1t2.

As in the previous example, it is easy to check that the ordinary and flag h-polynomials of the unreduced
Steinberg torus have (some) negative coefficients.

2.5 Affine descents
We define a root β to be negative with respect to w ∈ W if wβ < 0. The positive roots that are negative
with respect to w are known as inversions. If `(w) denotes the minimum length of an expression for w
as a product of simple reflections, then β is negative with respect to w if `(wsβ) < `(w) (for β > 0) or
`(wsβ) > `(w) (for β < 0).

A simple root that is negative with respect to w is said to be a (right) descent, and the descent set of w,
denoted D(w), records the corresponding set of indices. Thus,

D(w) = {j ∈ [n] : wαj < 0} = {j ∈ [n] : `(wsj) < `(w)}.

We let d(w) := |D(w)| denote the number of descents in w.
As noted in the introduction, the W -Eulerian polynomial is the h-polynomial of the Coxeter complex

Σ(W ). That is,
W (t) =

∑
w∈W

td(w) = h(Σ(W ); t).

More generally, the generating function for descent sets; namely,

W (t1, . . . , tn) :=
∑
w∈W

∏
j∈D(w)

tj

is the flag h-polynomial of Σ(W ) (e.g., see the discussion at the end of Section III.4 in (21)).
Extending these concepts, set α0 := −α̃ (the lowest root), and let s0 = seα denote the corresponding

reflection in W . We define the affine descent set of w, denoted D̃(w), to be the set of indices of roots in
∆0 := ∆ ∪ {α0} that are negative with respect to w. Thus,

D̃(w) = {j ∈ [0, n] : wαj < 0} =

{
D(w) ∪ {0} if `(ws0) > `(w),

D(w) if `(ws0) < `(w).
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We let d̃(w) := |D̃(w)| denote the number of affine descents in w.
Note that only the identity element of W has an empty descent set (but has an affine descent at 0), and

only the longest element w0 has a full descent set (i.e., D(w0) = [n]) but does not have an affine descent
at 0. Thus 1 6 d̃(w) 6 n for all w ∈W .

3 Affine Eulerian polynomials
We let W̃ (t0, . . . , tn) and W̃ (t) denote the respective generating functions for affine descent sets and
numbers of affine descent sets; i.e.,

W̃ (t0, . . . , tn) :=
∑
w∈W

∏
j∈ eD(w)

tj , (3.1)

W̃ (t) := W̃ (t, . . . , t) =
∑
w∈W

t
ed(w). (3.2)

We refer to these as multivariate and univariate affine Eulerian polynomials.

Theorem 3.1 If W̃ is an irreducible affine Weyl group, then the flag h-polynomial of the corresponding
reduced Steinberg torus is the multivariate W̃ -Eulerian polynomial; i.e.,

h(Σ′T (W̃ ); t0, . . . , tn) = W̃ (t0, . . . , tn). (3.3)

In particular, for all J ⊆ [0, n], we have

fJ(Σ′T (W̃ )) = |{w ∈W : D̃(w) ⊆ J}|, (3.4)

hJ(Σ′T (W̃ )) = |{w ∈W : D̃(w) = J}|. (3.5)

Furthermore,

W̃ (t0, . . . , tn) =
∑

J([0,n]

|W |
|WJ |

∏
j∈J

(1− tj)
∏
j /∈J

tj , (3.6)

where WJ denotes the (not necessarily parabolic) subgroup of W generated by {sj : j ∈ J}.

Of course it follows immediately that the ordinary h-polynomial of the reduced Steinberg torus is the
corresponding univariate affine Eulerian polynomial; i.e.,

h(Σ′T (W̃ ); t) = W̃ (t) =
∑
w∈W

t
ed(w).

By considering the effect on descent sets of left multiplication by the longest element w0, we get
symmetry as an easy corollary.

Corollary 3.2 The flag h-vector of the reduced Steinberg torus Σ′T (W̃ ) satisfies the generalized Dehn-
Sommerville equations in the sense that, for all J ⊆ [0, n], we have

hJ(Σ′T (W̃ )) = hJc(Σ′T (W̃ )).

In particular, the W̃ -Eulerian polynomial is symmetric: W̃ (t) = tn+1W̃ (1/t).
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W W̃ (t)

B3 10t+ 28t2 + 10t3

B4 24t+ 168t2 + 168t3 + 24t4

B5 54t+ 904t2 + 1924t3 + 904t4 + 54t5

B6 116t+ 4452t2 + 18472t3 + 18472t4 + 4452t5 + 116t6

B7 242t+ 20612t2 + 157294t3 + 288824t4 + 157294t5 + 20612t6 + 242t7

D4 16t+ 80t2 + 80t3 + 16t4

D5 44t+ 464t2 + 904t3 + 464t4 + 44t5

D6 104t+ 2568t2 + 8848t3 + 8848t4 + 2568t5 + 104t6

D7 228t+ 13192t2 + 79580t3 + 136560t4 + 79580t5 + 13192t6 + 228t7

E6 351t+ 5427t2 + 20142t3 + 20142t4 + 5427t5 + 351t6

E7 4064t+ 115728t2 + 710112t3 + 1243232t4 + 710112t5 + 115728t6 + 4064t7

E8
157200t+ 9253680t2 + 87417360t3 + 251536560t4

+ 251536560t5 + 87417360t6 + 9253680t7 + 157200t8

F4 72t+ 504t2 + 504t3 + 72t4

G2 6t+ 6t2

Tab. 1: Some affine Eulerian polynomials.

Remark 3.3 The unreduced Steinberg torus ΣT (W̃ ) has nearly the same flag f -vector as its reduced
counterpart, the only difference being f∅(ΣT (W̃ )) = 1 in place of f∅(Σ′T (W̃ ))= 0. However, as we
noted in Example 2.2, the h-polynomial need not have symmetric or nonnegative coefficients in the unre-
duced case, and is therefore of less interest.

The following lemma is the key to our proof of Theorem 3.1, which can be found in (8).

Lemma 3.4 If {βi : i ∈ I} is a set of simple roots for a reflection subgroup W ′ of W , then every coset
in W/W ′ has a unique member w such that wβi > 0 for all i ∈ I .

Remark 3.5 In the above lemma, it is interesting to note that by choosing the simple roots of W ′ so that
they are positive relative to Φ, one may deduce that every coset of every reflection subgroup of W has a
unique element of minimum length. This is a familiar fact for parabolic subgroups, but the less familiar
general case also follows from work of Dyer (see Corollary 3.4 of (9)).

It is easy to compute the affine Eulerian polynomials for the groups of low rank via (3.6). Some
examples, including all of the exceptional groups, are listed in Table 1.
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Remark 3.6 Given J ( [0, n], it follows from Lemma 3.4 that each coset in W/WJ has a unique rep-
resentative w such that D̃(w) ∩ J = ∅. Thus each cell of the reduced Steinberg torus has the form
F (w, J) = wAJ +ZΦ∨ for some unique pair (w, J) with D̃(w)∩J = ∅. Moreover, the cells of the form
F (w, ∗) are precisely the cells in the closure of F (w,∅) that have on their boundary the unique cell with
color-set D̃(w); namely, F (w, D̃(w)c). Thus the reduced Steinberg torus is “partitionable” in the sense
defined in Section III.2 of (21).

4 Real roots, γ-vectors, and unimodality
The following is a companion to Brenti’s conjecture (2) that the roots of all (ordinary) Eulerian polyno-
mials W (t) are real.

Conjecture 4.1 The roots of all affine Eulerian polynomials W̃ (t) are real.

To complete a proof of this conjecture, we claim that it suffices to consider only the groups B̃n and D̃n.
Indeed, it follows from observations of Fulman (11; 12) and Petersen (18) that Ãn(t) and C̃n(t) are both
multiples ofAn−1(t) (see also Section 5 below). Thus the conjecture for Ãn and C̃n follows from the fact
that all roots of the classical Eulerian polynomials are known to be real (14). Furthermore, using the data
in Table 1, it is easy to check that the conjecture holds for the exceptional groups.

To collect supporting evidence for the remaining groups B̃n and D̃n, we have determined explicit
exponential generating functions for the corresponding affine Eulerian polynomials (see Proposition 6.2
below), and used these to verify the conjecture for n 6 100. In a similar way, we have also confirmed that
all roots of Dn(t) are real (the only remaining open case of Brenti’s conjecture) for n 6 100.

A further supporting result involves γ-vectors in the sense of Brändén (1) and Gal (13). To explain, con-
sider a polynomial satisfying h(t) = tmh(1/t). It is clear that such a polynomial has a unique expansion
of the form

h(t) =
∑

06i6m/2

γit
i(1 + t)m−2i.

We call (γ0, γ1, . . .) the γ-vector of h(t).
It is elementary to show that if h(t) has symmetric, nonnegative coefficients and all real roots, then it

has a nonnegative γ-vector (see Lemma 4.1 of (1) or Section 1.4 of (26)).
Recall that W̃ (t) is symmetric (Corollary 3.2), so it has a γ-vector. Given that we know Conjecture 4.1

holds for Ãn, C̃n, and the exceptional affine Weyl groups, it follows that W̃ (t) is γ-nonnegative in each
of these cases. For B̃n and D̃n we provide explicit combinatorial descriptions of the γ-vector in the
following section. Thus we have the following.

Theorem 4.2 The affine Eulerian polynomials W̃ (t) have nonnegative γ-vectors.

It would be interesting to have a conceptual (case-free) proof of this result.
Any polynomial with a nonnegative γ-vector has unimodal coefficients. Hence,

Corollary 4.3 The affine Eulerian polynomials have unimodal coefficients.

We remark that the γ-vectors of the Eulerian polynomials W (t) are also known to be nonnegative, but
the only existing proofs to date are case-by-case (6; 26).
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5 Combinatorial expansions and γ-nonnegativity
In this section, we provide combinatorial expansions for the ordinary and affine Eulerian polynomials for
the four infinite families of irreducible Weyl groups. Each identity is obtained by specializing certain
formulas for the multivariate affine Eulerian polynomials (not included here; see Section 5 of (8)). As
corollaries, we will deduce nonnegativity of the γ-vectors for these polynomials. Proofs and other type-
specific details have been omitted, but can be found in (8).

It will be convenient for what follows to use two conventions for counting peaks in a permutation
u ∈ Sn; namely,

lpk(u) := |{i ∈ [1, n− 1] : ui−1 < ui > ui+1}|,
epk(u) := |{i ∈ [1, n] : ui−1 < ui > ui+1}|,

with the convention u0 = un+1 = 0. We refer to these quantities as the number of left and extended peaks
in u, respectively.

Proposition 5.1 We have,

Ãn(t) = (n+ 1)tAn−1(t) =
n+ 1
2n+1

∑
u∈Sn

(4t)epk(u)(1 + t)n+1−2 epk(u), (5.1)

C̃n(t) = 2ntAn−1(t) =
1
2

∑
u∈Sn

(4t)epk(u)(1 + t)n+1−2 epk(u), (5.2)

Cn(t) = Bn(t) =
∑
u∈Sn

(4t)lpk(u)(1 + t)n−2 lpk(u), (5.3)

B̃n(t) =
∑
u∈Sn

φ(u)(4t)epk(u)(1 + t)n+1−2 epk(u), (5.4)

Dn(t) =
∑
u∈Sn

φ(u∗)(4t)lpk(u)(1 + t)n−2 lpk(u), (5.5)

D̃n(t) =
∑
u∈Sn

φ(u)φ(u∗)(4t)epk(u)(1 + t)n+1−2 epk(u), (5.6)

where

φ(u) :=


1 if un−2 > un−1 > un,

0 if un−2 > un > un−1,

1/2 otherwise.

and u∗ := un · · ·u2u1.

Some of these identities are already known. That the affine Eulerian polynomials of types A and C are
multiples of classical Eulerian polynomials (left hand sides of (5.1) and (5.2)) was noted previously by
Fulman (11; 12) and Petersen (18). The right hand side of (5.1) is equivalent to an identity due to Foata
and Schützenberger (Théorème 5.6 of (10); see also Remark 4.8 of (25)), equation (5.3) is due to Petersen
(Proposition 4.15 in (19)), and equation (5.5) is due to Stembridge (Corollary A.5 in (26); compare also
Theorem 6.9 in (6)).
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6 Identities and generating functions
Here we provide several unexpected identities (two new, one old) relating the ordinary and affine Eulerian
polynomials. The proofs, which are omitted, are bijective and rely on the combinatorial expansions from
the previous section.

Proposition 6.1 We have

2C̃n(t) = B̃n(t) + 2ntCn−1(t), (6.1)

B̃n(t) = D̃n(t) + 2ntDn−1(t), (6.2)

Bn(t) = Cn(t) = Dn(t) + n2n−1tAn−2(t). (6.3)

Equation (6.3) is due to Stembridge (set l = 0 in (24, Lemma 9.1)).
From Proposition 6.1 it is easy (given the known generating functions for ordinary Eulerian polyno-

mials; see (7, p. 244), Theorem 3.4 and Corollary 4.9 in (2)) to construct generating functions for each
infinite family of affine Eulerian polynomials.

Proposition 6.2 We have

Ã(t, z) = z +
∑
n>2

Ãn−1(t)
zn

n!
=

z(1− t)
1− tez(1−t)

, (6.4)

C̃(t, z) = 1 +
∑
n>1

C̃n(t)
zn

n!
=

1− t
1− te2z(1−t) , (6.5)

B̃(t, z) = 2 + 2tz +
∑
n>2

B̃n(t)
zn

n!
=

2(1− t)(1− tzez(1−t))
1− te2z(1−t) , (6.6)

D̃(t, z) = 2 + 4t
z2

2
+
∑
n>3

D̃n(t)
zn

n!
=

2(1− t)(1 + tz2 − 2tzez(1−t))
1− te2z(1−t) . (6.7)
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