FPSAC 2008, Valparaiso-Ra del Mar, Chile DMTCS proc.AJ, 2008, 13-24

Bijections for Permutation Tableaux

Sylvie Corteel and Philippe Nadedu

1 RI,Université Paris-Sud, 91405 Orsay, France
2Fakultat fur Mathematik, Universitat Wien, Nordbengstse 15, 1090 Vienna, Austria

Abstract. In this paper we propose a new bijection between permutégioleaux and permutations. This bijection
shows how natural statistics on the tableaux are equidiigad to classical statistics on permutations: descelhts, R
minima and pattern enumerations. We then use the bijedimha related encoding of tableaux by words, to prove
results about the enumeration of permutations with a fixedbar of 31-2 patterns, and to define subclasses of
permutation tableaux that are in bijection with set pamtisi. An extended version of this work is available in [6].

Résure. Dans cet article nous donnons une bijection entre les taklda permutations et les permutations. Cette
bijection montre comment des statistiques naturellesesutdbleaux sont équidistribuées avec des statistidass c
siques sur les permutations: descentes, minima de drgdecéhe et motifs. Cette bijection nous sert ensuite, dd'ai
d’'un certain codage des tableaux par des mots, a donnegsldtats sur I'enumération de permutations avec un nom-
bre fixé de motifs 31-2, et a determiner certaines soassels de tableaux en bijection avec les partitions d’erlssmb
Une version étendue de ce travail est disponible [6].
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1 Introduction

Permutation tableaux are fairly new objects that come fitoerehumeration of the totally positive Grass-
mannian cells [12, 15]. Surprisingly they are also conrgettea statistical physics model called the
Partially ASymmetric Exclusion Process [5, 8, 9]. As in [18]permutation tablead” is a shape (the
Ferrers diagram of a partition into non negative parts) togrewith a filling of the cells with)’'s and1's
such that the following properties hold:

1. Each column contains at least ane
2. There is nd® which has al above it in the same colunandal to its left in the same row.

An example of a permutation tableau is given in Figure 1. ddéht statistics on permutation tableaux
were defined in [9, 13]. We list a few here. Tleagthof a tableau is the number of rows plus the number
of columns of the tableau. A zero in a permutation tableaestrictedif there is a one above it in the
same column. A row isinrestrictedif it does not contain a restricted entry. A onesigperfluousf it
contains a one above itself in the same column.

We label the South-East border of the shape of the tableaufrto its length, going from top-right to
bottom-left. On Figure 1, a permutation tableau of sh@p8, 3, 3, 1) and length 8 is given. The rows 1,
3 and 7 are unrestricted and the rows 2 and 4 are restricted.
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Fig. 1. Example of a permutation tableau

Our main interest here is that there exigtpermutation tableaux of length. To our knowledge
two bijections between permutations and permutation taldare known and appeared in [2, 13]. The
bijection given in [13] is quite complicated; but a lot of ¢#ics of the permutation (weak excedances,
crossings [5], alignments [15]...) can be read from thedabl In particular the set of weak excedances
of the permutation corresponds to the set of rows of the éabl&ee [13] for many more details. The
bijection in [2] is the same as the one in [13], except thablehpplying the map some of the entries
equal to one are changed into zero.

In this paper, we focus on descent statistics and genedgbiatern enumeration and give a bijection
between permutation tableaux and permutations.

Let us consider a permutatien= (o1,...,0,) of [n] = {1,2,...,n}. Fori < n, we say thav;
is a descent it;; > 0,11, otherwise we call it an ascent. Thhapeof a permutation of: is a partition
A = (A1,..., ) with A\ > 0 such that the'" step of the boundary of is West (resp. South) if is
a descent (resp. ascent)@f For example, ifr = (7,1,2,6,4,3,5), then the descents afe6 and4
and the shape af is (3,3, 3,2). As in [1], the generalized pattefi31 — 2) occurs inc if there exist
i < jsuchthatr;_y > o; > ;. The number of occurrences @1 — 2) is the cardinality of the set
{1 <i<j|oi—1>0; > 0;}. Inthe previous example;, has six occurrences of the pattgi — 2).

An entryo; is aRL-minimunof a permutatiow if and only if o; < o for any? > .

Our main result is the following:

Theorem 1 There exists a bijectiofi between permutations gf] and permutation tableaux of length
This bijection is such that if' = £(o) then

1. the shape ot is the same as the shapemnf
2. i is an unrestricted row df" if and only ifi is a RL-minimum oé-.

3. T hass superfluous ones if and only if there ar@ccurrences of the patteri31 — 2) in o.

Remark. Theorem 1 without item (2) is implied by the composition aé tivo bijections presented in
[13]. Our map is different from this composition or any véina of it and gives the full Theorem 1.

In Section 2, we give a very simple enumerative result shgwhiat there are! permutation tableaux
of lengthn. We present in Section 3 a first bijection between permutasibleau and permutations which
gives Theorem 1 without item (3). To prove Theorem 1, we deedhe bijection in Section 4. We give
some applications to pattern enumeration in Section 5, esfime families of tableaux counted by Bell
numbers in Section 6 and we conclude in Section 7.
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2 How many tableaux?

Let ¢(n, k, £) be the number of tableaux of lengthwith & + 1 unrestricted rows anélones in the first
row, and letl’, (z, y) = Y-, , t(n, k, O)z*y",

Proposition 1 If n > 1,

n—2

Tn(z,y) = H(x—i—y—i—i)
i=0

andT;(z,y) = 1. In particular 7,,(1, 1), the number of tableaux of length is equal ton!.

The proof can be found in [6]: it uses a decomposition of talkeaccording to their first column to
get a recurrence for the numbe(s, k, ¢). This implies in particulaf’, (z,y) = T, (y, ) and we get a
symmetry result which was proved combinatorially in [9].

Corollary 1 The number of permutation tableaux of lengthvith & + 1 unrestricted rows and ones in
the first row is equal to the number of tableaux of lengthith £ + 1 unrestricted rows ané ones in the
first row.

The proposition also implies a result proved in [7] thankdbijection of [13] :

Corollary 2 The number of permutation tableaux of lengtiwith & + 1 unrestricted rows (ok ones in
the first row) is equal to the first Stirling numbe(n, k) which enumerates the number of permutations of
[n] with k cycles.

3 Bijection |

In this section we exhibit a first bijection between permiotatableaux of lengtih and permutations of
[n]. This bijection is simple, and verifies the first two items ¢iebrem 1.

A zero in a permutation tableau igightmost restricted zerd it is a restricted zero and there is no re-
stricted zero to its right in the same row. The bijectionaglbon the following simple claim: a permutation
tableau is uniquely determined by its topmost ones andiright restricted zeros. Indeed if one knows
the positions of the topmost ones (resp. rightmost resttizeros), then all the cells above them (resp. to
their left) are filled with zeros. The rest of the cells arefillwith superfluous ones.

The bijection. We start with the tableail’ of shape). Then we initialize the permutation to the
list of the labels of the unrestricted rows in increasingeordNow for each column, starting from the left
proceeding to the right, we perform the following: lebe the label of the column, arid j) its topmost
1. Then we inserj to the left ofi in the permutatiorr, and if the column contains rightmost restricted
zerosinrowsy, ..., i, We insertiy, . . . , ix in increasing order to the left gfin the permutatiorw.

Example. We start with the tableau in Figure 1. The unrestricted rosegaws 1,3 and 7. The rightmost
restricted zeros are in cel(g, 8) and (4, 8). We start with the permutatiofi, 3, 7), We insert 8 to the
left of 1 and insert 2 and 4 to the left of 8. We gét4,8,1,3,7). We insert 6 to the left of 3 and get
(2,4,8,1,6,3,7). Finally we insert 5 to the left of. The permutation i$2,4,8,5,1,6,3,7).
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The reverse is as easy to define, and is explicited in [6]. We Haus defined in this Section a simple
bijection that possesses the first two properties of Thedreta get all three properties, we will define
another bijection in a quite different way.

4 Main Bijection

We will define notions of reduction for tableaux and permiotat, and from these we will be able to build
our second bijection

4.1 Reduction of a tableau

We give in this subsection a recursive decomposition of aletiux that was used in [15] to enumerate
permutation tableaux with two rows. This decomposition bé essential to define our second bijection.

Let T be a tableau of length > 0 and of shapé\;, Az, ..., A, ). We suppose that the last rowBfis
labeled byk and that the length of this row is Then three cases are possible:

e Type 1: The last row does not contain any ones.
e Type 2 : The rightmost entry of the last row contains a toproost
e Type 3 : The rightmost entry of the last row contains a supeufiLone.

From the definition of the permutation tableaux we know tihaise are the only three possible cases.
Indeed if the rightmost entry of the last row is a zero thentadlentries of the row are zeros.
We can then reduce a table&Alaccording to its type:

o If the tableaul’ is of type 1, then we can delete the last row and get a tablekangthn — 1 and
shapeAs, ..., Adm—1)-

o If the tableau is of type 2, then we can delete the coldmin1 and get a tableau of length— 1
and shapér; — 1,..., A\, — 1).

o If the tableau is of type 3, we can delete the rightmost entrthe last row and get a tableau of
lengthn and shapéX, ..., A\p—1, Am — 1).

The resulting tableau is denoteeli(T); note that when applying this reduction, the sum of the llengt
of the tableau plus its number of superfluous ones decregsmseh Therefore, given a tableau of length
n with j superfluous ones, exactly+ j reductions will give the empty tableau. If each time we rexuc
the tableau, we keep in mind the typ&) (¢ is the length of the last row}, or 3, this gives an encoding
of the tableau, since it allows us to inverse the specificetdn that took place.

Let us give a simple example in Figure 2. The tableau of sliagk 2) at the extreme right is reduced
successively, antl(0), 2,2, 1(2), 1(0), 3, 3 is the code obtained in the process.

4.2 Reduction of a permutation

Given a permutatiosr = (o1, ...,0,) With o; = k, we denote by31 — 2)(k) the cardinality of the set
{1<i<jlo;—1 > k> o;}. Thiscorresponds to the number of occurrences of the pa&fe where:
is the "2” of the pattern. For example df= (5,2,1,6,3,4) then(31—2)(4) = 2. Leto be a permutation
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Fig. 2: Successive reductions of a tableau (from right tt).lef

of shape = (\q,..., A) such that: is the largest ascent. We suppose that 0 ando,, 11 = n + 1.
We say that; is a peak (resp. double descent, resp. valley, resp. dogbeng ifo;_1 < 0; > 041
(resp.o;_1 > 0; > 0441, r€SP.oi—1 > 0y < Ti41, M€SP.Oi—1 < 0; < Ti41).

Threetypesof permutations exist :
e Type 1 :kis adouble ascent i and(31 — 2)(k) = 0.
e Type 2 :kistothe rightofk + 1 in o and(31 — 2)(k + 1) = 0 and one of the following holds

— k 4+ 1is adouble descent

— kandk + 1 are adjacent
e Type 3 : None of the previous configurations appears. That is

. kisavalley and is adjacent fo+ 1 and to its left; or

. k+ 1is a peak and is just to the right of + 1 and(31 — 2)(k + 1) > 0; or

. kis to the left ofk + 1 andk is a double ascent arld1 — 2)(k) > 0; or

. k + listo the left ofk andk + 1 is a double descent arfdl — 2)(k + 1) > 0; or
. kis avalley and is to the left df + 1 but not adjacentto it ; or

o 0o~ WDN P

. k+ 1is apeak and is to the left @but not adjacenttoit.

This takes care of all the possible cases.

We define a reductioRE D of the permutatior whose largest ascentis:

o If o is of type 1 : Deletek and decrease by one all the entries greater thahe result is a
permutation ofn — 1] and shapéhy, ..., \,—1).

e If ois oftype 2 : delet&+ 1 and decrease by one all the entries greater dheamd get a permutation
of [n — 1] and shapéX; — 1,..., A\, — 1).

e If ois oftype 3: apply bijectio® defined below and get a permutatiorj@fand shapéhs, ..., A1, Am—
1) with one less occurrence @31 — 2).
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The rest of this subsection is devoted to giving a bijectiobetween permutations ¢i] of type 3 of
shape\ with j occurrences of31 — 2) and permutations of shage, ..., \ju—1, Ay — 1) with j — 1
occurrences of31 — 2). The basic idea is to exchangeandk + 1 in o in order to transfornk into a
descentk + 1 into an ascent. This will work unlegsandk + 1 are adjacent. Moreover we will decrease
by one the number of occurrences(8l — 2), unlessk is to the left and not adjacent fo+ 1 or k is
adjacent td: + 1 and to its right. In those cases, we will have to do a bit more.

We give the details in the following paragraph and illugriat parallel the bijection on Figure 3. We
write the permutatiom = (o1,...,0,) as the wordo; ...o,(n + 1). We suppose that, po, ... are
words with elements smaller than G, G, . . . are words with elements larger thanand thatX, Y, Z
are words. The words denotéd Y, Z may be empty, while thg; andG; are nonempty unless explicitly
stated otherwise:

1. If kis avalley and is adjacent fo+ 1 and to its left, the can be written aX p; G1k(k + 1)p2Y'.
We set® (o) = Xpi(k + 1)G1kp2Y .

2. If k+1isimmediately to the left of and is a peak an@1 — 2)(k + 1) > 0, theno can be written
asXGlpl(k + 1)kG2Y. We Set@(d) = Xle/’pl(k + 1)G2Y.

3. If k is to the left ofk + 1 andk is a double ascent an@1 — 2)(k) > 0, theno can be written
asXp1Gip2kG2Y (k + 1)psZ. We set® (o) = Xpi(k + 1)G1p2G2Ykps Z. (HereG2Y may be
empty.)

4. If k + 1 is to the left ofk andk + 1 is a double descent ar@1 — 2)(k + 1) > 0, theno =
XGip1Ga(k+1)pYkGsZ and®(0) = X G1kp1Gap2Y (k+1)GsZ. (Herep,Y may be empty.)

5. If kis avalley and is not adjacentkot 1 and to its left, ther can be written aX p1 G1kG2Y (k+
1)Z. We setb(o) = Xp1G1(k+ 1)G2YkZ.

6. If K + 1 is a peak and is not adjacent koand to its left, thero can be written as{p;(k +
1)p2YkG3Z We Set(I)(O'> = XplkaY(k + 1)G3Z
The six cases are pictured on Figure 3. The dots représamdk -+ 1, and possible prefixes and suffixes
are not pictured since they are not modifiedday

Proposition 2 @ is a bijection between permutations [of of type 3 of shape with j occurrences of
(31 — 2) and permutations of shag@, ..., A,,—1, A, — 1) with j — 1 occurrences of31 — 2)

The proof of this can be foundin [11]. From this result, wel Wé able to derive an algorithmic bijection
between permutation tableaux and permutations. This i$ waa&xplain in the following section.

4.3 The bijection &
From permutations to tableaux. Let o be a permutation df:] andk its largest ascent. i is the empty

permutation thei(o) is the empty tableau.
Otherwise we defing(c) by induction. LetI” be the tableag(RED(0)).

o If ois of type 1:£(o) is the tablead” with one extra row of length — £ filled with zeros.
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o If ois of type 2 :£(0) is the tablead” with one extra column made of as many rowgasvith its
lower cell at the end of the last row @f. This lower cell is filled with a one and all the cells above
it with zeros.

o If o is of type 3 :£(o) is the tablead” with one extra cell added to the last row and filled with a
superfluous one.

This can be best expressed by the encoding described atttoé paragraph 4.1: i is the list encoding
the tableal”, then wherv is of typel (resp. of type 2, resp. of type 3), we define the encoding b¥
T=c1(n—k)(resp.T =c¢,2,resp.T = ¢, 3)

Example. If we start with the permutatiof5143, then we have the following successive reductions,
where in each case we underline the corresponding eitendk +1 (if & < n) involved in the reduction,
and we indicate the type of the permutation:

25143, type3; 25314, type3; 24315, typel; 2431, typel; 321, type2; 21, type2; 1, typel.

Then by reconstructing the tableau, we obtain exactly tleeding shown on the top of Figure 2, and
the tableayf (o) is thus the tableau on the right of the Figure.

Proof of Theorem 1 (sketch) One first proves by induction (see [6]) that
1. the shape df' = £(o) is the same as the shapecof
2. i is an unrestricted row df' if and only if i is a RL-minimum ofo.
3. T hass superfluous ones if and only if there areccurrences of the patte(fl — 2) in o.

We then need to prove th&is indeed a bijection; for this, we give the reverse mappivitgre we will
use the notationg;, G;, X, Y introduced in the definition of the functich.

From tableaux to permutations. If T is the empty tableau thegr!(T') is the empty permutation.
Otherwise we will defing 1 (T') by induction; lets be the permutatio&i—! (red(T)):

o If T'is of type 1 and its last row is of length— & : increase all the entries efgreater than or equal
to k£ by one. Inserk to the left of the leftmost entry greater thanso that we transform; G1 X in
P1 kGlX

o If T'is of type 2, then lek be the largest ascent of the permutatiorincrease by one all the entries
greater therk.

1. Ifthereis no entry larger thdnto its left, then inserk + 1 to the left ofk; that is, we transform
plk/’X in pl(k? + 1)/{3X

2. Otherwise let be the leftmost element greater tharsuch that is to the left ofk and the
element aftet is smaller thark + 1. Insertk + 1 to the right ofi in o: thus we transform
plGleY in plGl(kZ + 1)X/{ZY

o If T'is of type 3 therr becomes (o).

In each case the permutati¢n’(7) is defined to be the permutatienobtained; it is respectively of
typel, 2 and3, andRED(r) is exactly the permutatiom; see [11] for details. This proves Theorem 1.
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5 Permutation patterns
5.1 Bijection between permutation tableaux and PT-words

We will show that the reduction defined in Section 4 direc#yides a bijectiorl’ between permutation
tableaux and certain words on the alphafget U, V'}. We define the heiglit of the lettersh(D) = —1,
h(U) = h(V) = 1. The height of a word is the sum of the heights of its lettecsd@fineT, it is easier to
define first a function( as follows: if T is the empty tableau théfi,(T") is the empty word. Otherwise,
let¢ be the length of the last row af :

o If Tis of type 1, therio(T") = Yo(red(T)) DU, wherei is such that(Yo(T)) =i + 1.
Yo(red(T))U.

Yo(red(T))V,

o If T'is of type 2, therl'((T')

o If T'is of type 3, theril'o(T)

wherered(T) is the reduction defined in Section 4.1.
We append + 1 lettersD at the end of((7T') if the last row ofT" has length, and this gives us finally
the word Y (7).

Example 3. Consider the tabledl on the extreme right of Figure 2, the wolt(T) isU - U - U - DU -
DDDU-V-V,and one append3DD at the end to obtain the finalwotf{7") = UUUDUDDDUVV DDD.
To take a bigger example, consider the tabl€aof Figure 1. We hav& (T) = Yo(71)DD because the
last row of T3 has lengthl. Then one checks that

Yo(T1) =UUUDDUVDDDUVUVDDDUVVDDDDUV.

We explicit the family of words given by this construction:Pad-wordis a wordw on the alphabet
{D, U, V} such that:

- h(w) = 0 andh(X) > 0 for each prefix ofw;

- a letterD can not be followed by a lettér;

- for each factoD?+1U M with M a word on the alphabét/, V'} andd chosen maximal)/ contains
at mostd lettersV;

- only lettersU are allowed to precede the first lettr

Proposition 3 T is a bijection between permutation tableaux of lengttk superfluous ones andunre-
stricted rows and PT-words of leng®n + 2k, with k lettersV andj prefixes of height.

5.2 Shape of a tableau 7" given Y(7')

We can easily describe the shape of a tablEagiven its associated PT-wof(T): if Y(T) is empty
thenT is the empty tableau. Otherwise, decomp®$&’) in the form

T(T> = UkoDllj\fk,1 e DlthtDlt’+1,

where allk; andl; are positive, and/y, is a word on the alphabéi/, V'} for eachi. Definev; as the
number of letterd” in the word My, ; by definition of a PT-word we have, < I; — 1. Then the South
East border of the tabledliis given by

SWllflfvl SngflvaS . WltflfﬂtSWltJrl*l_
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This is easily proved by induction.

For the wordY (T") of Example 3, we havh = 2,v; = 1;lo = 3,09 = 2;l3 = 3,03 = 2; 14y = 4,v4 =
1 and finallyls = 2. This gives a South East border encoded$5 SW W ST, in concordance with
the tableau of Figure 1.

5.3 One occurrence of (31 — 2)

It is well known that the number of permutations [ef with no occurrence of the patte(81 — 2) is
equal to then” Catalan number [4] . The bijection between permutationeiainsk and PT-words given
in Section 5.1 gives another proof of this fact. Indeed ifeemutation tableau has no superfluous ones,
the corresponding word is a Dyck word. Thanks to this apgrpae can also give the first combinatorial
proof of the following fact :

Proposition 4 [4] The number of permutations gt] with one occurrence of the patte(dl —2) is equal

to
2n
n—3/"

The bijective proof (see [6]) uses the standard technigtiegae lemmand theAndré reflexion prin-
cipleto go bijectively from PT-words of lengthn + 2 with one letterl/, to words on{ D, U} of length
2n that end at height -6. It would be interesting to pursue thjgreach to give combinatorial proofs of
the following facts proved analytically by Claesson and staur.

Proposition 5 [4] The number of permutations of] with two (respectively three) occurrenceg®f —2)
is

nn—3)( 2n res 1/n+2 2n

2n+4)\n—3 P32 n—>5
6 Bell tableaux

In this Section we give two subfamilies of permutation talobethat are in bijection with set partitions. A
set partition of the sdt] is a set of pairwise disjoint subsets[ef whose union ign]. A set partition can
also be seen as a permutation where all the cycles are imgeagles. Recall that a one is topmost if it
has no ones above itself in its column. A one is leftmost i ho ones to its left in its row and rightmost
if it has no ones to its right in its row.

Definition 1 An R-Bell tableau(respectively ar-Bell tableay is a permutation tableau where all the
topmost ones are also rightmost ones (resp. leftmost ones).

Proposition 6 There exists a bijection between L-Bell tableaux of lemgstuch that the sum of the num-
ber of columns and the number of zero rows &snd set partitions ofn] with & blocks.

Proof: For every column of the tableau, construct a block of the a#itfn that is made of the label of
the column and the labels of the rows that have a one in thigrmolhich is the leftmost one of its row.
The reverse is as easy to define. |

For example, given the tableau on Figure 4, we get the setipart
{1,7,8},{3,4,6},{2,5}.
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Fig. 4: Example of a tableau where the topmost ones are dtaoost

Proposition 7 There exists a bijection between R-Bell tableaux of lengihd k£ rows and set partitions
of [n] with k blocks.

Proof: We propose a bijection based on the bijection of [13]. We wpipis bijection to construct a
permutatiors. This bijection is such that for each row with labeif the row has no ones ther(i) = i.
Otherwise start with the leftmost one of rowand travel South and East changing direction each time
a one is reached until the border is reached. Thgh = j, wherej is the label of the border. Apply
the same process for the columns, starting at the topmostruhéraveling East and South. It is easy to
see that the tableau is an R-Bell tableau if and only(if) < ¢ implies thato(o(i)) > o(i) and there
does not exisj < i such thatr(j) < o(i) < j < 4. Then we can transform in the set partition

IT = {II4, ..., I} } such that is the number of non excedances plus the number of fixed pafiatand
such that in each blockry, 7o, ..., m} then ¢ = 1 ando(my) = mp) or m; = o(m;—1) forall 1 < i < ¢
ando () < m. O

One might be surprised that R-Bell and L-Bell tableaux ofgkdn. are both in bijection with set
partitions of[n]: though their definition looks symmetric, there is no appateft-right symmetry in the
definition of a permutation tableau. We can indeed show thyrétat

Proposition 8 There is a bijection between R-Bell tableaux of shaped L-Bell tableaux of shape

Proof: This is direct using the bijection between permutationd¢abk and PT-words defined in Section
5. Indeed a PT-word corresponds to a L-Bell tableau (respeR-if and only if each subword on the
alphabet{U, V'} is of the formU*V"™ wheret = 1 or 2 andn > 0 (resp. UV"U* wheret = 0 or 1
andn > 0). Given a wordA = aj; .. .a,, we defineA to be the wordu,, ...a;. Then given a PT-word
w=UAD"UAyDb ... we definel (W) = UA; D"*U A, D" . ... The functionl is an involution on
the set of PT-words. The previous remarks imply thais a PT-word that corresponds to a L-Bell tableau
if and only of I(w) is a PT-word that corresponds to a R-Bell tableau. The shafite tableaux are the
same, as is immediately implied by the result of section B/2.could also define this involution directly
on the tableaux, but it is less straightforward. O

7 Conclusion and open problems

In this paper we give two bijections between permutatiofetalix and permutations that send the columns
of the tableaux to the descent of the permutation. We alsteréhe superfluous ones of the tableaux to the
number of occurrences of the patt¢di — 2) of the permutation. We then use this approach to enumerate
permutations with one occurrence of the pattg¥h— 2). We finally introduce Bell tableaux that are in
bijection with set partitions. It is well known that set pons are in one-to-one correspondence with
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permutations with no occurrences of the pattern 32-1 [3jvduld be interesting to find the statistic on
permutation tableaux that has the same distribution asuhwer of occurrences of 32-1.
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