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Bijections for Permutation Tableaux
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Abstract. In this paper we propose a new bijection between permutationtableaux and permutations. This bijection
shows how natural statistics on the tableaux are equidistributed to classical statistics on permutations: descents, RL-
minima and pattern enumerations. We then use the bijection,and a related encoding of tableaux by words, to prove
results about the enumeration of permutations with a fixed number of 31-2 patterns, and to define subclasses of
permutation tableaux that are in bijection with set partitions. An extended version of this work is available in [6].

Résuḿe. Dans cet article nous donnons une bijection entre les tableaux de permutations et les permutations. Cette
bijection montre comment des statistiques naturelles sur les tableaux sont équidistribuées avec des statistiques clas-
siques sur les permutations: descentes, minima de droite àgauche et motifs. Cette bijection nous sert ensuite, à l’aide
d’un certain codage des tableaux par des mots, à donner des résultats sur l’énumération de permutations avec un nom-
bre fixé de motifs 31-2, et à déterminer certaines sous-classes de tableaux en bijection avec les partitions d’ensembles.
Une version étendue de ce travail est disponible [6].
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1 Introduction
Permutation tableaux are fairly new objects that come from the enumeration of the totally positive Grass-
mannian cells [12, 15]. Surprisingly they are also connected to a statistical physics model called the
Partially ASymmetric Exclusion Process [5, 8, 9]. As in [13], a permutation tableauT is a shape (the
Ferrers diagram of a partition into non negative parts) together with a filling of the cells with0’s and1’s
such that the following properties hold:

1. Each column contains at least one1.

2. There is no0 which has a1 above it in the same columnanda1 to its left in the same row.

An example of a permutation tableau is given in Figure 1. Different statistics on permutation tableaux
were defined in [9, 13]. We list a few here. Thelengthof a tableau is the number of rows plus the number
of columns of the tableau. A zero in a permutation tableau isrestrictedif there is a one above it in the
same column. A row isunrestrictedif it does not contain a restricted entry. A one issuperfluousif it
contains a one above itself in the same column.

We label the South-East border of the shape of the tableau from 1 to its length, going from top-right to
bottom-left. On Figure 1, a permutation tableau of shape(3, 3, 3, 3, 1) and length 8 is given. The rows 1,
3 and 7 are unrestricted and the rows 2 and 4 are restricted.
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Fig. 1: Example of a permutation tableau

Our main interest here is that there existn! permutation tableaux of lengthn. To our knowledge
two bijections between permutations and permutation tableaux are known and appeared in [2, 13]. The
bijection given in [13] is quite complicated; but a lot of statistics of the permutation (weak excedances,
crossings [5], alignments [15]. . . ) can be read from the tableau. In particular the set of weak excedances
of the permutation corresponds to the set of rows of the tableau. See [13] for many more details. The
bijection in [2] is the same as the one in [13], except that before applying the map some of the entries
equal to one are changed into zero.

In this paper, we focus on descent statistics and generalized pattern enumeration and give a bijection
between permutation tableaux and permutations.

Let us consider a permutationσ = (σ1, . . . , σn) of [n] = {1, 2, . . . , n}. For i < n, we say thatσi

is a descent ifσi > σi+1, otherwise we call it an ascent. Theshapeof a permutation ofn is a partition
λ = (λ1, . . . , λk) with λk ≥ 0 such that theith step of the boundary ofλ is West (resp. South) ifi is
a descent (resp. ascent) ofσ. For example, ifσ = (7, 1, 2, 6, 4, 3, 5), then the descents are7, 6 and4
and the shape ofσ is (3, 3, 3, 2). As in [1], the generalized pattern(31 − 2) occurs inσ if there exist
i < j such thatσi−1 > σj > σi. The number of occurrences of(31 − 2) is the cardinality of the set
{1 < i < j | σi−1 > σj > σi}. In the previous example,σ has six occurrences of the pattern(31 − 2).
An entryσi is aRL-minimumof a permutationσ if and only if σi < σℓ for anyℓ > i.

Our main result is the following:

Theorem 1 There exists a bijectionξ between permutations of[n] and permutation tableaux of lengthn.
This bijection is such that ifT = ξ(σ) then

1. the shape ofT is the same as the shape ofσ.

2. i is an unrestricted row ofT if and only ifi is a RL-minimum ofσ.

3. T hass superfluous ones if and only if there ares occurrences of the pattern(31 − 2) in σ.

Remark. Theorem 1 without item (2) is implied by the composition of the two bijections presented in
[13]. Our map is different from this composition or any variation of it and gives the full Theorem 1.

In Section 2, we give a very simple enumerative result showing that there aren! permutation tableaux
of lengthn. We present in Section 3 a first bijection between permutation tableau and permutations which
gives Theorem 1 without item (3). To prove Theorem 1, we describe the bijection in Section 4. We give
some applications to pattern enumeration in Section 5, define some families of tableaux counted by Bell
numbers in Section 6 and we conclude in Section 7.
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2 How many tableaux?
Let t(n, k, ℓ) be the number of tableaux of lengthn with k + 1 unrestricted rows andℓ ones in the first
row, and letTn(x, y) =

∑

k,ℓ t(n, k, ℓ)xkyℓ.

Proposition 1 If n > 1,

Tn(x, y) =

n−2
∏

i=0

(x + y + i)

andT1(x, y) = 1. In particularTn(1, 1), the number of tableaux of lengthn, is equal ton!.

The proof can be found in [6]: it uses a decomposition of tableaux according to their first column to
get a recurrence for the numberst(n, k, ℓ). This implies in particularTn(x, y) = Tn(y, x) and we get a
symmetry result which was proved combinatorially in [9].

Corollary 1 The number of permutation tableaux of lengthn with k + 1 unrestricted rows andℓ ones in
the first row is equal to the number of tableaux of lengthn with ℓ + 1 unrestricted rows andk ones in the
first row.

The proposition also implies a result proved in [7] thanks tothe bijection of [13] :

Corollary 2 The number of permutation tableaux of lengthn with k + 1 unrestricted rows (ork ones in
the first row) is equal to the first Stirling numbers(n, k) which enumerates the number of permutations of
[n] with k cycles.

3 Bijection I
In this section we exhibit a first bijection between permutation tableaux of lengthn and permutations of
[n]. This bijection is simple, and verifies the first two items of Theorem 1.

A zero in a permutation tableau is arightmost restricted zeroif it is a restricted zero and there is no re-
stricted zero to its right in the same row. The bijection relies on the following simple claim: a permutation
tableau is uniquely determined by its topmost ones and rightmost restricted zeros. Indeed if one knows
the positions of the topmost ones (resp. rightmost restricted zeros), then all the cells above them (resp. to
their left) are filled with zeros. The rest of the cells are filled with superfluous ones.

The bijection. We start with the tableauT of shapeλ. Then we initialize the permutationσ to the
list of the labels of the unrestricted rows in increasing order. Now for each column, starting from the left
proceeding to the right, we perform the following: letj be the label of the column, and(i, j) its topmost
1. Then we insertj to the left ofi in the permutationσ, and if the column contains rightmost restricted
zeros in rowsi1, . . . , ik, we inserti1, . . . , ik in increasing order to the left ofj in the permutationσ.

Example. We start with the tableau in Figure 1. The unrestricted rows are rows 1,3 and 7. The rightmost
restricted zeros are in cells(2, 8) and(4, 8). We start with the permutation(1, 3, 7), We insert 8 to the
left of 1 and insert 2 and 4 to the left of 8. We get(2, 4, 8, 1, 3, 7). We insert 6 to the left of 3 and get
(2, 4, 8, 1, 6, 3, 7). Finally we insert 5 to the left of1. The permutation is(2, 4, 8, 5, 1, 6, 3, 7).
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The reverse is as easy to define, and is explicited in [6]. We have thus defined in this Section a simple
bijection that possesses the first two properties of Theorem1; to get all three properties, we will define
another bijection in a quite different way.

4 Main Bijection
We will define notions of reduction for tableaux and permutations, and from these we will be able to build
our second bijection

4.1 Reduction of a tableau
We give in this subsection a recursive decomposition of the tableaux that was used in [15] to enumerate
permutation tableaux with two rows. This decomposition will be essential to define our second bijection.

Let T be a tableau of lengthn > 0 and of shape(λ1, λ2, . . . , λm). We suppose that the last row ofT is
labeled byk and that the length of this row ist. Then three cases are possible:

• Type 1 : The last row does not contain any ones.

• Type 2 : The rightmost entry of the last row contains a topmostone.

• Type 3 : The rightmost entry of the last row contains a superfluous one.

From the definition of the permutation tableaux we know that these are the only three possible cases.
Indeed if the rightmost entry of the last row is a zero then allthe entries of the row are zeros.

We can then reduce a tableauT according to its type:

• If the tableauT is of type 1, then we can delete the last row and get a tableau oflengthn − 1 and
shape(λ1, . . . , λm−1).

• If the tableau is of type 2, then we can delete the columnk + 1 and get a tableau of lengthn − 1
and shape(λ1 − 1, . . . , λm − 1).

• If the tableau is of type 3, we can delete the rightmost entry of the last row and get a tableau of
lengthn and shape(λ1, . . . , λm−1, λm − 1).

The resulting tableau is denotedred(T ); note that when applying this reduction, the sum of the length
of the tableau plus its number of superfluous ones decreases by one. Therefore, given a tableau of length
n with j superfluous ones, exactlyn + j reductions will give the empty tableau. If each time we reduce
the tableau, we keep in mind the type1(t) (t is the length of the last row),2 or 3, this gives an encoding
of the tableau, since it allows us to inverse the specific reduction that took place.

Let us give a simple example in Figure 2. The tableau of shape(2, 2, 2) at the extreme right is reduced
successively, and1(0), 2, 2, 1(2), 1(0), 3, 3 is the code obtained in the process.

4.2 Reduction of a permutation
Given a permutationσ = (σ1, . . . , σn) with σj = k, we denote by(31 − 2)(k) the cardinality of the set
{1 < i < j | σi−1 > k > σi}. This corresponds to the number of occurrences of the pattern 31-2 wherek
is the ”2” of the pattern. For example, ifσ = (5, 2, 1, 6, 3, 4) then(31−2)(4) = 2. Letσ be a permutation
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0 00 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1
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Fig. 2: Successive reductions of a tableau (from right to left).

of shapeλ = (λ1, . . . , λm) such thatk is the largest ascent. We suppose thatσ0 = 0 andσn+1 = n + 1.
We say thatσi is a peak (resp. double descent, resp. valley, resp. double ascent) ifσi−1 < σi > σi+1

(resp.σi−1 > σi > σi+1, resp.σi−1 > σi < σi+1, resp.σi−1 < σi < σi+1).

Threetypesof permutations exist :

• Type 1 :k is a double ascent inσ and(31 − 2)(k) = 0.

• Type 2 :k is to the right ofk + 1 in σ and(31 − 2)(k + 1) = 0 and one of the following holds

– k + 1 is a double descent

– k andk + 1 are adjacent

• Type 3 : None of the previous configurations appears. That is

1. k is a valley and is adjacent tok + 1 and to its left; or

2. k + 1 is a peak andk is just to the right ofk + 1 and(31 − 2)(k + 1) > 0; or

3. k is to the left ofk + 1 andk is a double ascent and(31 − 2)(k) > 0; or

4. k + 1 is to the left ofk andk + 1 is a double descent and(31 − 2)(k + 1) > 0; or

5. k is a valley and is to the left ofk + 1 but not adjacent to it ; or

6. k + 1 is a peak and is to the left ofk but not adjacent to it .

This takes care of all the possible cases.

We define a reductionRED of the permutationσ whose largest ascent isk :

• If σ is of type 1 : Deletek and decrease by one all the entries greater thank. The result is a
permutation of[n − 1] and shape(λ1, . . . , λm−1).

• If σ is of type 2 : deletek+1 and decrease by one all the entries greater thank and get a permutation
of [n − 1] and shape(λ1 − 1, . . . , λm − 1).

• If σ is of type 3 : apply bijectionΦ defined below and get a permutation of[n] and shape(λ1, . . . , λm−1, λm−
1) with one less occurrence of(31 − 2).
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The rest of this subsection is devoted to giving a bijectionΦ between permutations of[n] of type 3 of
shapeλ with j occurrences of(31 − 2) and permutations of shape(λ1, . . . , λm−1, λm − 1) with j − 1
occurrences of(31 − 2). The basic idea is to exchangek andk + 1 in σ in order to transformk into a
descent,k + 1 into an ascent. This will work unlessk andk + 1 are adjacent. Moreover we will decrease
by one the number of occurrences of(31 − 2), unlessk is to the left and not adjacent tok + 1 or k is
adjacent tok + 1 and to its right. In those cases, we will have to do a bit more.

We give the details in the following paragraph and illustrate in parallel the bijection on Figure 3. We
write the permutationσ = (σ1, . . . , σn) as the word0σ1 . . . σn(n + 1). We suppose thatp1, p2, . . . are
words with elements smaller thank; G1, G2, . . . are words with elements larger thank; and thatX, Y, Z

are words. The words denotedX, Y, Z may be empty, while thepi andGi are nonempty unless explicitly
stated otherwise:

1. If k is a valley and is adjacent tok +1 and to its left, thenσ can be written asXp1G1k(k + 1)p2Y .
We setΦ(σ) = Xp1(k + 1)G1kp2Y .

2. If k+1 is immediately to the left ofk and is a peak and(31 − 2)(k + 1) > 0, thenσ can be written
asXG1p1(k + 1)kG2Y . We setΦ(σ) = XG1kp1(k + 1)G2Y .

3. If k is to the left ofk + 1 andk is a double ascent and(31 − 2)(k) > 0, thenσ can be written
asXp1G1p2kG2Y (k + 1)p3Z. We setΦ(σ) = Xp1(k + 1)G1p2G2Y kp3Z. (HereG2Y may be
empty.)

4. If k + 1 is to the left ofk andk + 1 is a double descent and(31 − 2)(k + 1) > 0, thenσ =
XG1p1G2(k+1)p2Y kG3Z andΦ(σ) = XG1kp1G2p2Y (k+1)G3Z. (Herep2Y may be empty.)

5. If k is a valley and is not adjacent tok+1 and to its left, thenσ can be written asXp1G1kG2Y (k+
1)Z. We setΦ(σ) = Xp1G1(k + 1)G2Y kZ.

6. If k + 1 is a peak and is not adjacent tok and to its left, thenσ can be written asXp1(k +
1)p2Y kG3Z. We setΦ(σ) = Xp1kp2Y (k + 1)G3Z.

The six cases are pictured on Figure 3. The dots representk andk+1, and possible prefixes and suffixes
are not pictured since they are not modified byΦ.

Proposition 2 Φ is a bijection between permutations of[n] of type 3 of shapeλ with j occurrences of
(31 − 2) and permutations of shape(λ1, . . . , λm−1, λm − 1) with j − 1 occurrences of(31 − 2)

The proof of this can be found in [11]. From this result, we will be able to derive an algorithmic bijection
between permutation tableaux and permutations. This is what we explain in the following section.

4.3 The bijection ξ

From permutations to tableaux. Let σ be a permutation of[n] andk its largest ascent. Ifσ is the empty
permutation thenξ(σ) is the empty tableau.

Otherwise we defineξ(σ) by induction. LetT ′ be the tableauξ(RED(σ)).

• If σ is of type 1 :ξ(σ) is the tableauT ′ with one extra row of lengthn − k filled with zeros.
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Fig. 3: The six cases in the definition ofΦ.
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• If σ is of type 2 :ξ(σ) is the tableauT ′ with one extra column made of as many rows asT ′ with its
lower cell at the end of the last row ofT ′. This lower cell is filled with a one and all the cells above
it with zeros.

• If σ is of type 3 :ξ(σ) is the tableauT ′ with one extra cell added to the last row and filled with a
superfluous one.

This can be best expressed by the encoding described at the end of paragraph 4.1: ifc is the list encoding
the tableauT ′, then whenσ is of type1 (resp. of type 2, resp. of type 3), we define the encoding ofT by
T = c, 1(n − k) (resp.T = c, 2, resp.T = c, 3)

Example. If we start with the permutation25143, then we have the following successive reductions,
where in each case we underline the corresponding entriesk andk+1 (if k < n) involved in the reduction,
and we indicate the type of the permutation:

25143, type3; 25314, type3; 24315, type1; 2431, type1; 321, type2; 21, type2; 1, type1.
Then by reconstructing the tableau, we obtain exactly the encoding shown on the top of Figure 2, and

the tableauξ(σ) is thus the tableau on the right of the Figure.

Proof of Theorem 1 (sketch). One first proves by induction (see [6]) that

1. the shape ofT = ξ(σ) is the same as the shape ofσ.

2. i is an unrestricted row ofT if and only if i is a RL-minimum ofσ.

3. T hass superfluous ones if and only if there ares occurrences of the pattern(31 − 2) in σ.

We then need to prove thatξ is indeed a bijection; for this, we give the reverse mapping,where we will
use the notationspi, Gi, X, Y introduced in the definition of the functionΦ.

From tableaux to permutations. If T is the empty tableau thenξ−1(T ) is the empty permutation.
Otherwise we will defineξ−1(T ) by induction; letσ be the permutationξ−1(red(T )):

• If T is of type 1 and its last row is of lengthn−k : increase all the entries ofσ greater than or equal
to k by one. Insertk to the left of the leftmost entry greater thank, so that we transformp1G1X in
p1kG1X .

• If T is of type 2, then letk be the largest ascent of the permutationσ. Increase by one all the entries
greater thenk.

1. If there is no entry larger thank to its left, then insertk+1 to the left ofk; that is, we transform
p1kX in p1(k + 1)kX .

2. Otherwise leti be the leftmost element greater thank such thati is to the left ofk and the
element afteri is smaller thank + 1. Insertk + 1 to the right ofi in σ: thus we transform
p1G1XkY in p1G1(k + 1)XkY .

• If T is of type 3 thenσ becomesΦ−1(σ).

In each case the permutationξ−1(T ) is defined to be the permutationτ obtained; it is respectively of
type1, 2 and3, andRED(τ) is exactly the permutationσ; see [11] for details. This proves Theorem 1.
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5 Permutation patterns
5.1 Bijection between permutation tableaux and PT-words
We will show that the reduction defined in Section 4 directly defines a bijectionΥ between permutation
tableaux and certain words on the alphabet{D, U, V }. We define the heighth of the lettersh(D) = −1,
h(U) = h(V ) = 1. The height of a word is the sum of the heights of its letters. To defineΥ, it is easier to
define first a functionΥ0 as follows: ifT is the empty tableau thenΥ0(T ) is the empty word. Otherwise,
let t be the length of the last row ofT :

• If T is of type 1, thenΥ0(T ) = Υ0(red(T ))DiU , wherei is such thath(Υ0(T )) = i + 1.

• If T is of type 2, thenΥ0(T ) = Υ0(red(T ))U .

• If T is of type 3, thenΥ0(T ) = Υ0(red(T ))V ,

wherered(T ) is the reduction defined in Section 4.1.
We appendt +1 lettersD at the end ofΥ0(T ) if the last row ofT has lengtht, and this gives us finally

the wordΥ(T ).

Example 3.Consider the tableauT0 on the extreme right of Figure 2, the wordΥ0(T0) is U ·U ·U ·DU ·
DDDU ·V ·V , and one appendsDDD at the end to obtain the final wordΥ(T ) = UUUDUDDDUV V DDD.
To take a bigger example, consider the tableauT1 of Figure 1. We haveΥ(T1) = Υ0(T1)DD because the
last row ofT1 has length1. Then one checks that

Υ0(T1) = UUUDDUV DDDUV UV DDDUV V DDDDUV.

We explicit the family of words given by this construction: aPT-word is a wordw on the alphabet
{D, U, V } such that:

- h(w) = 0 andh(X) ≥ 0 for each prefix ofw;
- a letterD can not be followed by a letterV ;
- for each factorDd+1UM with M a word on the alphabet{U, V } andd chosen maximal,M contains

at mostd lettersV ;
- only lettersU are allowed to precede the first letterD.

Proposition 3 Υ is a bijection between permutation tableaux of lengthn, k superfluous ones andj unre-
stricted rows and PT-words of length2n + 2k, with k lettersV andj prefixes of height0.

5.2 Shape of a tableau T given Υ(T )

We can easily describe the shape of a tableauT given its associated PT-wordΥ(T ): if Υ(T ) is empty
thenT is the empty tableau. Otherwise, decomposeΥ(T ) in the form

Υ(T ) = Uk0Dl1Mk1
· · ·DltMkt

Dlt+1 ,

where allki andli are positive, andMki
is a word on the alphabet{U, V } for eachi. Definevi as the

number of lettersV in the wordMki
; by definition of a PT-word we havevi 6 li − 1. Then the South

East border of the tableauT is given by

SW l1−1−v1SW l2−1−v2S · · ·W lt−1−vtSW lt+1−1.
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This is easily proved by induction.
For the wordΥ(T ) of Example 3, we havel1 = 2, v1 = 1; l2 = 3, v2 = 2; l3 = 3, v3 = 2; l4 = 4, v4 =

1 and finallyl5 = 2. This gives a South East border encoded bySSSSWWSW , in concordance with
the tableau of Figure 1.

5.3 One occurrence of (31 − 2)

It is well known that the number of permutations of[n] with no occurrence of the pattern(31 − 2) is
equal to thenth Catalan number [4] . The bijection between permutation tableaux and PT-words given
in Section 5.1 gives another proof of this fact. Indeed if thepermutation tableau has no superfluous ones,
the corresponding word is a Dyck word. Thanks to this approach, we can also give the first combinatorial
proof of the following fact :

Proposition 4 [4] The number of permutations of[n] with one occurrence of the pattern(31−2) is equal
to

(

2n

n − 3

)

.

The bijective proof (see [6]) uses the standard techniques of cycle lemmaand theAndŕe reflexion prin-
ciple to go bijectively from PT-words of length2n + 2 with one letterV , to words on{D, U} of length
2n that end at height -6. It would be interesting to pursue this approach to give combinatorial proofs of
the following facts proved analytically by Claesson and Mansour.

Proposition 5 [4] The number of permutations of[n] with two (respectively three) occurrences of(31−2)
is

n(n − 3)

2(n + 4)

(

2n

n − 3

) (

resp.
1

3

(

n + 2

2

)(

2n

n − 5

))

6 Bell tableaux
In this Section we give two subfamilies of permutation tableaux that are in bijection with set partitions. A
set partition of the set[n] is a set of pairwise disjoint subsets of[n] whose union is[n]. A set partition can
also be seen as a permutation where all the cycles are increasing cycles. Recall that a one is topmost if it
has no ones above itself in its column. A one is leftmost if it has no ones to its left in its row and rightmost
if it has no ones to its right in its row.

Definition 1 An R-Bell tableau(respectively anL-Bell tableau) is a permutation tableau where all the
topmost ones are also rightmost ones (resp. leftmost ones).

Proposition 6 There exists a bijection between L-Bell tableaux of lengthn such that the sum of the num-
ber of columns and the number of zero rows isk and set partitions of[n] with k blocks.

Proof: For every column of the tableau, construct a block of the set partition that is made of the label of
the column and the labels of the rows that have a one in this column which is the leftmost one of its row.
The reverse is as easy to define. 2

For example, given the tableau on Figure 4, we get the set partition
{1, 7, 8}, {3, 4, 6}, {2, 5}.
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Fig. 4: Example of a tableau where the topmost ones are also leftmost

Proposition 7 There exists a bijection between R-Bell tableaux of lengthn andk rows and set partitions
of [n] with k blocks.

Proof: We propose a bijection based on the bijection of [13]. We apply this bijection to construct a
permutationσ. This bijection is such that for each row with labeli, if the row has no ones thenσ(i) = i.
Otherwise start with the leftmost one of rowi and travel South and East changing direction each time
a one is reached until the border is reached. Thenσ(i) = j, wherej is the label of the border. Apply
the same process for the columns, starting at the topmost oneand traveling East and South. It is easy to
see that the tableau is an R-Bell tableau if and only ifσ(i) < i implies thatσ(σ(i)) ≥ σ(i) and there
does not existj < i such thatσ(j) < σ(i) < j < i. Then we can transformσ in the set partition
Π = {Π1, . . . , Πk} such thatk is the number of non excedances plus the number of fixed pointsof σ and
such that in each block{π1, π2, . . . , πℓ} then (ℓ = 1 andσ(πℓ) = πℓ) or πi = σ(πi−1) for all 1 ≤ i < ℓ

andσ(πℓ) < πℓ. 2

One might be surprised that R-Bell and L-Bell tableaux of length n are both in bijection with set
partitions of[n]: though their definition looks symmetric, there is no apparent left-right symmetry in the
definition of a permutation tableau. We can indeed show directly that

Proposition 8 There is a bijection between R-Bell tableaux of shapeλ and L-Bell tableaux of shapeλ.

Proof: This is direct using the bijection between permutation tableaux and PT-words defined in Section
5. Indeed a PT-word corresponds to a L-Bell tableau (resp. R-Bell) if and only if each subword on the
alphabet{U, V } is of the formU tV n wheret = 1 or 2 andn ≥ 0 (resp. UV nU t wheret = 0 or 1
andn ≥ 0). Given a wordA = a1 . . . an, we defineA to be the wordan . . . a1. Then given a PT-word
w = UA1D

b1UA2D
b2 . . . we defineI(W ) = UA1D

b1UA2D
b2 . . .. The functionI is an involution on

the set of PT-words. The previous remarks imply thatW is a PT-word that corresponds to a L-Bell tableau
if and only ofI(w) is a PT-word that corresponds to a R-Bell tableau. The shapesof the tableaux are the
same, as is immediately implied by the result of section 5.2.We could also define this involution directly
on the tableaux, but it is less straightforward. 2

7 Conclusion and open problems
In this paper we give two bijections between permutation tableaux and permutations that send the columns
of the tableaux to the descent of the permutation. We also relate the superfluous ones of the tableaux to the
number of occurrences of the pattern(31−2) of the permutation. We then use this approach to enumerate
permutations with one occurrence of the pattern(31 − 2). We finally introduce Bell tableaux that are in
bijection with set partitions. It is well known that set partitions are in one-to-one correspondence with
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permutations with no occurrences of the pattern 32-1 [3]. Itwould be interesting to find the statistic on
permutation tableaux that has the same distribution as the number of occurrences of 32-1.
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