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Abstract. We complete the Wilf classification of signed patterns of length 5 for both signed permutations and signed
involutions. New general equivalences of patterns are given which prove Jaggard’s conjectures concerning involutions
in the symmetric group avoiding certain patterns of length 5 and 6. In this way, we also complete the Wilf classification
of S5, S6, and S7 for both permutations and involutions.

Résumé. Nous complétons la classification de Wilf des motifs signés de longueur 5 à la fois pour les permutations
signées et les involutions signées. Nous donnons de nouvelles équivalences générales de motifs qui prouvent les
conjectures de Jaggard concernant les involutions dans le groupe symétrique évitant certains motifs de longueur 5 et
6. De cette manière nous complétons également la classification de Wilf de S5, S6 et S7 à la fois pour les permutations
et les involutions.
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1 Introduction
Let Sn and Bn denote the symmetric group and hyperoctahedral group on the set {1, 2, . . . , n}, respec-
tively. We will represent the elements of Sn as permutation matrices, and the elements of Bn as signed
permutation matrices, where a signed permutation matrix is a 0, 1,−1-matrix with exactly one nonzero
entry in every row and every column. We may also write the elements of Bn as words π = π1π2 . . . πn
in which each of the letters 1, 2, . . . , n appears, possibly barred to signify negative letters; a matrix p cor-
responds to the word π such that pij = 1 if πi = j, pij = −1 if πi = −j, and pij = 0 otherwise. In our
paper, we will make no explicit distinction between these two representations of a signed permutation.
Let In and SIn be the set of involutions in Sn and Bn, respectively. Note that involutions correspond
precisely to symmetric matrices.
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A signed permutation π ∈ Bn is said to contain the pattern τ ∈ Bk if there exists a sequence 1 ≤ i1 <
i2 < . . . < ik ≤ n such that |πia | < |πib | if and only if |τa| < |τb| and πia > 0 if and only if τa > 0 for
all 1 ≤ a, b ≤ k. Otherwise, π is called a τ -avoiding permutation. Note that π contains τ if and only if
the matrix representing π contains the matrix representing τ as a submatrix. By M(τ) we denote the set
of all elements of M which avoid the pattern τ .

Two signed patterns σ and τ are called Wilf equivalent, in symbols σ ∼ τ , if they are avoided by the
same number of signed n-permutations, i.e., if |Bn(σ)| = |Bn(τ)| for each n ≥ 1. Similarly, σ and τ are
called I-Wilf equivalent, denoted by σ I∼ τ , if |SIn(σ)| = |SIn(τ)| for each n. Note that two unsigned
permutations σ, τ ∈ Sk are Wilf-equivalent if and only if they satisfy the identity |Sn(σ)| = |Sn(τ)|
for each n, and they are I-Wilf equivalent if and only if they satisfy |In(σ)| = |In(τ)| for each n. The
classification given by the Wilf equivalence is slightly coarser than that which is based on the symmetries
of permutations, that is, the mappings generated by the reversal, transpose, and barring operation. The
same is true for the I-Wilf equivalence, where the available symmetries are generated by the two diagonal
reflections and the barring operation.

The question of whether two patterns are Wilf equivalent or not is difficult to answer in many cases. By
the few generic equivalences known so far, it has been possible to completely determine the Wilf classes
of Sn up to level n = 7. The decomposition of Sn into I-Wilf classes has been completely determined for
n = 4 and almost solved for n = 5 as well. Jaggard (6) conjectured the last case of a possible equivalence
for patterns of length 5: 12345 (or equivalently, 54321) and 45312 are equally restrictive for In up to
n = 11.

Continuing the I-Wilf classification of signed patterns that began in (5), we will first prove a general
equivalence result which confirms Jaggard’s conjecture mentioned above, as well as another conjecture
he made about the equivalence of certain patterns of length 6. The correspondence behind this result is
based on a bijection between pattern avoiding transversals of Young diagrams given by Backelin, West
and Xin (1). In this way, we complete the classification of S5 with respect to I∼, which is fundamental for
the analogous classification of B5. The result even covers all missing I-Wilf equivalences in S6 and S7.

Furthermore, we will show that barring some blocks of a signed block diagonal pattern preserves the
Wilf class of the pattern, and it also (under some additional assumptions) preserves the I-Wilf class.
These results not only allow us to determine the Wilf as well as the I-Wilf classes in B5 but they also
have consequences for longer signed patterns. The proofs of the theorems and tables of Wilf equivalence
classes may be found in the papers (4; 3).

2 Jaggard’s conjectures
In 2003, Jaggard (6) proved the equivalences 12τ I∼ 21τ and 123τ I∼ 321τ , and completed the clas-
sification of S4 according to pattern avoidance by involutions in this way. Furthermore, he conjectured
that

(1) 12 . . . kτ I∼ k(k − 1) . . . 1τ for any k ≥ 1,

(2) 12345 I∼ 45312 (or equivalently, 54321 I∼ 45312),

(3) 123456 I∼ 456123 I∼ 564312 (or equivalently, 654321 I∼ 456123).
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In (1), Backelin, West and Xin defined a transformation to prove 12 . . . kτ ∼ k(k − 1) . . . 1τ . (As
already mentioned in (5), their proof also works for a signed pattern τ .) This map acts not only on
permutation matrices, but more generally, on transversals of Young diagrams. Bousquet-Mélou and Ste-
ingrı́msson (2) showed that this map commutes with the diagonal reflection of the diagram, which proves
the first of the three conjectures above. From this result, it follows that(

αk 0 0
0 χ 0
0 0 αl

)
I∼
(
βk 0 0
0 χ 0
0 0 βl

)
for every signed permutation matrix χ and any k, l ≥ 0, where αn and βn denote the n × n diagonal
and antidiagonal permutation matrices corresponding to 12 . . . n and n(n − 1) . . . 1, respectively. In this
section, we will show that(

0 0 0 αk
0 0 χ 0

0 χt 0 0
αk 0 0 0

)
I∼

(
0 0 0 βk

0 0 χ 0

0 χt 0 0
βk 0 0 0

)
and

 0 0 0 0 αk
0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0
αk 0 0 0 0

 I∼

 0 0 0 0 βk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0
βk 0 0 0 0

 ,

where χt denotes the transpose of χ. Note that, different to the general case, the reverse operation is not
a symmetry for involutions, so these equivalences are really new.

Our proof also uses the BWX bijection. Therefore, let us first recall the extended notion of pattern
avoidance they have used. A Young diagram (or Young shape) is a top-justified and left-justified array
of cells, i.e., an array whose rows have non-increasing lengths from top to bottom, and its columns have
non-increasing lengths from left to right. A cell of a Young shape is called a corner if the array obtained
by removing the cell is still a Young shape. Occasionally, it will be convenient to use top-right justified
diagrams instead of the top-left justified diagrams defined above. We will refer to the top-right justified
shapes as NE-shapes to avoid confusion with the ordinary Young shapes.

A (signed) transversal of a Young diagram λ is an assignment of 0’s and 1’s (of 0’s, 1’s and -1’s) to the
cells of λ, such that each row and column contains exactly one nonzero entry. A sparse filling of λ is an
arrangement of 0’s, 1’s and -1’s which has at most one nonzero entry in every row and column.

For a k × k permutation matrix τ , we say that a filling L of a shape λ contains τ if there exists a k × k
subshape within λwhose induced filling is equal to τ . The set of all transversals (or signed transversals) of
a shape λ which do not contain τ is denoted by Sλ(τ) (or Bλ(τ), respectively). Two signed permutation
matrices σ and τ are called shape Wilf equivalent if |Bλ(σ)| = |Bλ(τ)| for all Young shapes λ. Shape
Wilf equivalence clearly implies Wilf equivalence. We will also say that σ and τ are NE-shape Wilf
equivalent if |Bλ(σ)| = |Bλ(τ)| for each NE-shape λ. Observe that if σ and τ are permutation matrices,
then they are shape Wilf equivalent if and only if |Sλ(σ)| = |Sλ(τ)| for each Young diagram λ.

By (1, Proposition 2.2), αk and βk are shape Wilf equivalent for all k. The following proposition,
which is also largely based on (1, Proposition 2.3), will allow us to extend this equivalence to more
general patterns.

Proposition 2.1 Let λ be a Young shape, and let χ, χ1, χ2 be signed permutations, such that χ1 and χ2

are shape Wilf equivalent. We set

θ =
( χ1 0

0 χ

)
and ω =

( χ2 0
0 χ

)
.
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There is a bijection between θ-avoiding and ω-avoiding sparse fillings of λ. This bijection preserves the
number of nonzero entries in each row and column; in particular, θ and ω are shape Wilf equivalent.
Furthermore, if χ is nonempty, the bijection preserves the filling in the corners of λ.

Note that Proposition 2.1 yields some information even when χ is the empty matrix. In such situation,
the proposition shows that a bijection between pattern avoiding signed transversals can be extended to
a bijection between pattern-avoiding sparse fillings, by simply ignoring the rows and columns with no
nonzero entries.

We will now show how the results on shape Wilf equivalence may be applied to obtain new classes of
I-Wilf equivalent patterns. Let us first give the necessary definitions. For an n×n matrix π let π+ denote
the subfilling of π formed by the cells of π which are strictly above the main diagonal, and let π+

0 denote
the subfilling formed by the cells on the main diagonal and above it. For example, for π = 24̄31 we have

π+ =
1

−1 and π+
0 =

1

−1

1

.

The coordinates of the entries in π are used for the cells of π+ as well. Thus, for instance, the cell (1, 2)
is the top-left corner of π+. Analogously, we define π− to be the filled shape corresponding to the entries
strictly below the main diagonal of π. Clearly, a symmetric matrix π is completely determined by π+

0 .
Observe that a symmetric 0, 1,−1-matrix π is a signed involution if and only if, for every i = 1, . . . , n,
the filling π+

0 has exactly one nonzero entry in the union of all cells of the i-th row and i-th column.
Note that i is a fixed point of a signed involution π, that is |πi| = i, if and only if the i-th row and the

i-th column of π+ have all entries equal to zero. In general, a signed involution π need not be completely
determined by the filling π+; however, if we have two signed involutions π, ρ with π+ = ρ+, then π and
ρ only differ by the signs of their fixed points. If π is a signed involution, then, for each i = 1, . . . , n,
the filling π+ has at most one nonzero entry in the union of the i-th row and i-th column; conversely, any
filling π+ of appropriate shape with these properties can be extended into a signed involution π, which is
determined uniquely up to the sign of its fixed points.

For a signed permutation σ, let σ′ denote the involution
(

0 σ
σt 0

)
, where σt is the transpose of σ. We are

now ready to state our first result on I-Wilf equivalence.

Theorem 2.2 If σ and τ are two NE-shape Wilf equivalent signed permutation matrices, then σ′ I∼ τ ′.
Moreover, the bijection between SIn(σ′) and SIn(τ ′) preserves fixed points.

Proof: Let π ∈ SIn be an involution. We claim that π avoids σ′ if and only if π+ avoids σ. To see this,
notice that any occurrence of σ′ in π can be restricted either to an occurrence of σ in π+ or an occurrence
of σt in π−; however, since π+ is the transpose of π−, we know that π− contains σt if and only if π+

contains σ. The converse is even easier to see.
Let us choose π ∈ SIn(σ′). Since π+ is a sparse σ-avoiding filling, we may apply the bijection from

Proposition 2.1 (adapted for NE-shapes) to π+, to obtain a τ -avoiding sparse filling of the same shape,
which has a nonzero entry in a row i (or column i) whenever π+ has a nonzero entry in the same row
(or column, respectively). Hence this filling also corresponds to an involution, more exactly, to ρ+ for an
involution ρ ∈ SIn, and furthermore, the fixed points of ρ are in the same position as the fixed points of π,
because the position of the fixed points is determined by the zero rows and columns, which are preserved
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by the bijection from Proposition 2.1. By defining the signs of the fixed points of ρ to be the same as
the signs of the fixed points of π, the involution ρ is determined uniquely. Clearly, since ρ+ avoids τ ,
we know that ρ avoids τ ′. Each step of this construction can be inverted which proves the bijectivity.
Furthermore, the bijection preserves fixed points by construction. 2

By a similar reasoning, we obtain an analogous result for patterns of odd size. For a signed permutation
σ, let σ′′ denote the involution matrix (

0 0 σ
0 1 0
σt 0 0

)
,

and let σ∗ denote the signed permutation ( 0 σ
1 0 ).

Theorem 2.3 If σ and τ are NE-shape Wilf equivalent, then σ′′ I∼ τ ′′. Moreover, the bijection between
SIn(σ′′) and SIn(τ ′′) preserves fixed points.

Let us apply these two theorems to some special cases of shape Wilf equivalent patterns. For an integer
k ≥ 0 and a signed permutation χ, let us define

θ =
(

0 αk
χ 0

)
and ω =

(
0 βk

χ 0

)
.

As we know, the two patterns θ and ω are NE-shape Wilf equivalent. From our results, we then obtain the
following classes of I-Wilf equivalent patterns.

Corollary 2.4 We have(
0 0 0 αk
0 0 χ 0

0 χt 0 0
αk 0 0 0

)
I∼

(
0 0 0 βk

0 0 χ 0

0χt 0 0
βk 0 0 0

)
and

 0 0 0 0 αk
0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0
αk 0 0 0 0

 I∼

 0 0 0 0 βk

0 0 0 χ 0
0 0 1 0 0
0 χt 0 0 0
βk 0 0 0 0

 .

The special cases χ = ∅ and χ = (1) show both of Jaggard’s conjectures to be correct.

Corollary 2.5 We have 54321 I∼ 45312 and 654321 I∼ 456123 I∼ 564312.

3 Barring of blocks
In (5) it was shown that the barring of τ in 12 . . . kτ and k(k− 1) . . . 1τ preserves both the Wilf class and
the I-Wilf class. Furthermore it was proved that(

αk 0 0
0 χ 0
0 0 αk

)
I∼
(
αk 0 0
0 −χ 0
0 0 αk

)
for every signed permutation matrix χ and k ≥ 0. Basically, the assertion follows from 123 I∼ 12̄3. By
a similar reasoning, we can show the I-Wilf equivalence of the reversed patterns because 321 I∼ 32̄1 as
well. Now we turn our attention to the general block pattern(

χ1 0 0
0 χ2 0
0 0 χ3

)
where the χi are signed permutation matrices. First we prove the following crucial statement.



186 Mark Dukes, Vı́t Jelı́nek, Toufik Mansour and Astrid Reifegerste

Theorem 3.1 Let χ1 and χ2 be signed permutation matrices and set

θ =
( χ1 0

0 χ2

)
and ω =

( χ1 0
0 −χ2

)
.

For any Young shape λ, there is a bijection between θ-avoiding and ω-avoiding sparse fillings of λ. The
bijection preserves the position of all nonzero entries, i.e., it transforms the filling only by changing the
signs of some of the entries. In particular, the patterns θ and ω are shape Wilf equivalent. Moreover, if λ is
self-conjugate and at least one of the matrices χ1 and χ2 is symmetric, then the bijection maps symmetric
fillings to symmetric fillings.

An immediate consequence of the previous theorem is the following:

Corollary 3.2 For any signed permutation matrices χ1, χ2, χ3, we have(
χ1 0 0
0 χ2 0
0 0 χ3

)
∼
(
χ1 0 0
0 −χ2 0
0 0 χ3

)
.

Because of the symmetry property of the bijection we can prove an analogous result for pattern avoiding
involutions.

Corollary 3.3 Let χ1, χ2, χ3 be signed permutation matrices, at least two of which are symmetric. Then
we have (

χ1 0 0
0 χ2 0
0 0 χ3

)
I∼
(
χ1 0 0
0 −χ2 0
0 0 χ3

)
.

Proof: By Theorem 3.1, the signed pattern diag(χ1, χ2, χ3) is I-Wilf equivalent with the signed pattern
diag(χ1, χ2,−χ3) (note that at least one of the two matrices diag(χ1, χ2) and χ3 is symmetric). By the
same argument, the pattern diag(χ1, χ2, χ3) is I-Wilf equivalent with diag(χ1,−χ2,−χ3). Combining
these facts with the observation that changing the signs of all the three blocks clearly preserves the I-Wilf
class, we may even conclude that any matrix obtained by changing the signs of any of the three blocks is
I-Wilf equivalent with the original matrix. 2

Combining Theorem 3.1 with Theorems 2.2 and 2.3, we obtain more classes of I-Wilf equivalent pat-
terns. The following corollary gives an example.

Corollary 3.4 Let χ1 and χ2 be signed permutation matrices. Then we have 0 0 0 0 χ1
0 0 0 χ2 0
0 0 ε 0 0
0 χt

2 0 0 0

χt
1 0 0 0 0

 I∼

 0 0 0 0 χ1
0 0 0 −χ2 0
0 0 ε 0 0
0 −χt

2 0 0 0

χt
1 0 0 0 0

 .

where ε is empty or ε = (1).

4 Classification
The proof of Jaggard’s conjecture provides the complete classification of the I-Wilf equivalences among
the patterns from S5. It turns out that there are 36 different classes (in comparison with 45 symmetry
classes). In (5) it was shown that B5 has at most 405 I-Wilf equivalence classes. Applying the new
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equivalences in this paper, we obtain 402 classes which are definitively different. (By the symmetries of
an involutive permutation, the patterns are divided into 566 classes.) A list of these can be found in (8).
There are 36 such I-Wilf equivalence when we restrict out attention to S5.

The classification of the patterns of B5 by Wilf equivalence becomes complete by Corollary 3.2. The
relations given in (5) did not cover seven pairs of patterns whose Wilf equivalence was indicated by
numerical results. All these cases are proved now by the corollary. Consequently, B5 falls into 130 Wilf
classes (in comparison with 284 symmetry classes). See (5, Table 7) for the complete list.

The bijections of Theorem 2.2 and Theorem 2.3 also provide the complete classification of S6 and S7

with respect to the I-Wilf equivalence. There are 203 such classes of S6 obtained by all equivalences,
already known or proven here. As the enumeration of involutions in I12 avoiding the patterns shows, they
are different. In a similar way, we obtain 1291 Wilf classes for S7. (See (8) for a table of these.)

It is very possible that the results given here and in (5) suffice to solve the I-Wilf classification of signed
patterns up to length 7. However, the numerical proof that two classes are really different for a rapidly
increasing number of classes is the challenge we (and computers) have to master.

Remark 4.1 After finishing this paper, Aaron Jaggard mentioned that he and Joseph Marincel have shown
that the patterns (k− 1)k(k− 2) . . . 312 and k(k− 1) . . . 21 are I-Wilf equivalent for any k ≥ 5 by using
generating tree techniques (7).
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