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Flag enumerations of matroid base polytopes

Sangwook Kim†
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Abstract. In this paper, we study flag structures of matroid base polytopes. We describe faces of matroid base
polytopes in terms of matroid data, and give conditions for hyperplane splits of matroid base polytopes. Also, we
show how the cd-index of a polytope can be expressed when a polytope is cut by a hyperplane, and apply these to
the cd-index of a matroid base polytope of a rank 2 matroid.

Résumé. Dans cet article, nous étudions les structures de drapeau de polytopes de base de matroı̈de. Nous décrivons
des faces de polytopes de base de matroı̈de en terme des données de matroı̈de, et donner des conditions pour les
divisions de hyperplane de polytopes de base de matroı̈de. Aussi, nous montrons comment le cd-index d’un polytope
peut être exprimé’ quand un polytope est coupé par un hyperplane, et s’appliquer ceux-ci au cd-index d’un polytope
de base de matroid d’un rang 2 matroı̈de.
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1 Introduction
For a matroid M on [n], a matroid base polytope Q(M) is the polytope in Rn whose vertices are the
incidence vectors of the bases of M . The polytope Q(M) is a face of a matroid polytope first studied by
Edmonds [Edm03], whose vertices are the incidence vectors of all independent sets in M .

It is known that a face σ of a matroid base polytope is the matroid base polytope Q(Mσ) for some ma-
troid Mσ on [n] (see [FS05] and Section 2 below). We show that Mσ can be described using equivalence
classes of factor-connected flags of subsets of [n]. As a result, one can describe faces of Q(M) in terms
of matroid data:

Theorem 1.1 (Theorem 2.7) Let M be a matroid on a ground set [n]. For a face σ of the matroid base
polytope Q(M), one can associate a poset Pσ defined as follows:

(i) the elements of Pσ are the connected components of Mσ , and
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(ii) for distinct connected components C1 and C2 of Mσ , C1 < C2 if and only if

C2 ⊂ S ⊂ [n] and σ ⊂ HS implies C1 ⊂ S,

where HS is the hyperplane in Rn defined by
∑
e∈S xe = r(S).

The cd-index Ψ(Q) of a polytope Q, a polynomial in the noncommutative variables c and d, is a very
compact encoding of the flag numbers of a polytope Q [BK91]. Ehrenborg and Readdy [ER98] express
the cd-indices of a prism, a pyramid, and a bipyramid of a polytope Q in terms of cd-indices of Q and its
faces. Also, the cd-index of zonotopes, a special class of polytopes, is well-understood [BER97, BER98].
Generalizing the formula of the cd-index of a prism and a pyramid of a polytope, we show how the cd-
index of a polytope can be expressed when a polytope is cut by a hyperplane in Section 3.

In Section 4, we find the conditions when a matroid base polytope is split into two matroid base poly-
topes by a hyperplane:

Theorem 1.2 (Theorem 4.1) Let M be a rank r matroid on [n] and H be a hyperplane in Rn given by∑
e∈S xe = k. Then H decomposes Q(M) into two matroid base polytopes if and only if

(i) r(S) ≥ k and r(Sc) ≥ r − k,

(ii) if I1 and I2 are k-element independent subsets of S such that (M/I1)|Sc and (M/I2)|Sc have rank
r − k, then (M/I1)|Sc = (M/I2)|Sc .

We apply this theorem to the cd-index of matroid base polytopes for rank 2 matroids in Section 5.

2 Matroid base polytopes
This section contains the description of faces of matroid base polytopes. In particular, we associate a poset
for each face of a matroid base polytope.

We start with a precise characterization of matroid base polytopes. Let B be a collection of r-element
subsets of [n]. For each subset B = {b1, . . . , br}, define

eB := eb1 + · · ·+ ebr
∈ Rn,

where ei is the ith standard basis vector of Rn. The collection B is represented by the convex hull of these
points

Q(B) := conv{eB : B ∈ B}.

This is a convex polytope of dimension ≤ n− 1 and is a subset of the (n− 1)-simplex

∆n = {(x1, . . . , xn) ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0, x1 + · · ·+ xn = r}.

Gelfand, Goresky, MacPherson, and Serganova [GGMS87, Thm. 4.1] show the following characterization
of matroid base polytopes.

Theorem 2.1 B is the collection of bases of a matroid if and only if every edge of the polytope Q(B) is
parallel to a difference eα − eβ of two distinct standard basis vectors.
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For a rank r matroidM on a ground set [n] with a set of bases B(M), the polytopeQ(M) := Q(B(M))
is called the matroid base polytope of M .

By the definition, the vertices of Q(M) represent the bases of M . For two bases B and B′ in B(M),
eB and eB′ are connected by an edge if and only if eB − eB′ = eα − eβ . Since the latter condition is
equivalent to B−B′ = {α} and B′−B = {β}, the edges of Q(M) represent the basis exchange axiom.

The basis exchange axiom gives the following equivalence relation on the ground set [n] of the matroid
M : α and β are equivalent if there exist basesB andB′ in B(M) with α ∈ B andB′ = (B−{α})∪{β}.
The equivalence classes are called the connected components of M . The matroid M is called connected
if it has only one connected component. Feichtner and Sturmfels [FS05, Prop. 2.4] express the dimension
of the matroid base polytope Q(M) in terms of the number of connected components of M .

Proposition 2.2 Let M be a matroid on [n]. The dimension of the matroid base polytope Q(M) equals
n− c(M), where c(M) is the number of connected components of M .

Theorem 2.1 implies that every face of a matroid base polytope is also a matroid base polytope. For
ω ∈ Rn, let Mω denote the matroid whose bases B(Mω) is the collection of bases of M having minimum
ω-weight. Then Q(Mω) is the face of Q(M) at which the linear form

∑n
i=1 ωixi attains its minimum.

Let F(ω) denote the unique flag of subsets

{∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]}

for which ω is constant on each set Si − Si−1 and ω|Si−Si−1 < ω|Si+1−Si
. The weight class of a flag F

is the set of vectors ω such that F(ω) = F . Ardila and Klivans [AK06] show that Mω depends only on
F(ω), and hence one can call it MF . They also give the following description of MF .

Proposition 2.3 ([AK06, Prop. 2]) Let M be a matroid on [n] and F be a flag of subsets

{∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]}.

Then

MF =
k+1⊕
i=1

(M |Si)/Si−1.

A flagF = {∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]} is called factor-connected (with respect toM )
if the matroids (M |Si)/Si−1 are connected for all i = 1, . . . , k + 1. Proposition 2.2 and Proposition 2.3
together with the fact Q(M1⊕M2) = Q(M1)×Q(M2) show that the dimension of Q(MF ) is n− k− 1
if F is factor-connected.

For a connected matroid M on [n], facets of Q(M) correspond to factor-connected flags of the form
∅ ⊂ S ⊂ [n]. Feichtner and Sturmfels [FS05] show that there are two types of facets of Q(M) for a
connected matroid M on [n]:

(i) a facet corresponding to a factor-connected flag ∅ ⊂ F ⊂ [n] for some flat F of M (in this case,
the facet is called a flacet),

(ii) a facet corresponding to a factor-connected flag ∅ ⊂ S ⊂ [n] for some (n− 1)-subset S of [n].
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Proposition 2.4 Let M be a matroid on [n] and

F = {∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]}

be a factor-connected flag. Then the matroid (M |Sj+1)/Sj−1 has at most two connected components for
1 ≤ j ≤ k.

(i) If it has one connected component, the flag

G = {∅ =: S0 ⊂ · · · ⊂ Sj−1 ⊂ Sj+1 ⊂ · · · ⊂ Sk+1 := [n]}

is factor-connected and Q(MG) covers Q(MF ) in the face lattice of Q(M).

(ii) If it has two connected components, then they are Sj+1 − Sj and Sj − Sj−1. Moreover, the flag

F ′ = {∅ =: S0 ⊂ · · · ⊂ Sj−1 ⊂ S′j ⊂ Sj+1 ⊂ · · · ⊂ Sk+1 := [n]},

where S′j = Sj−1 ∪ (Sj+1 − Sj), is factor-connected and Q(MF ′) = Q(MF ).

Proof: Since (M |Sj+1)/Sj = [(M |Sj+1)/Sj−1]/(Sj − Sj−1) and (M |Sj
)/Sj−1 = [(M |Sj+1)/Sj−1]|Sj

for j = 1, . . . , k, the first assertion follows from [Oxl92, Proposition 4.2.10], and the other assertions are
obtained from [Oxl92, Proposition 4.2.13] and Proposition 2.3. 2

Two factor-connected flags F and F ′ are said to be equivalent if there is a sequence of factor-connected
flags F = F0,F1, . . . ,Fk = F ′ such that Fi is obtained from Fi−1 by applying Proposition 2.4(ii) for
i = 1, . . . , k. We write F ∼ F ′ when factor-connected flags F and F ′ are equivalent.

The following proposition shows that the equivalence classes of factor-connected flags characterize
faces of a matroid base polytope.

Proposition 2.5 Let M be a matroid on [n]. If F and F ′ are two factor-connected flags given by

F ={∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]},
F ′ ={∅ =: T0 ⊂ T1 ⊂ · · · ⊂ Tt ⊂ Tt+1 := [n]},

then MF = MF ′ if and only if F and F ′ are equivalent.

Proof: If F ∼ F ′, then MF = MF ′ from Proposition 2.4.
For the other direction, suppose that MF = MF ′ . Then F and F ′ have the same length since

dimQ(MF ) = n− k − 1 and dimQ(MF ′) = n− t− 1.
We will use induction on k. Without loss of generality, we may assume that S1 6= T1. Then one can

show that

T1 = Sm − Sm−1 for some m > 1. (1)

Base case: k = 1. Equation (1) gives T1 = S2 − S1 and T1 ∪ S1 = [n]. Then M has two connected
components, and hence F and F ′ are equivalent by Proposition 2.4(ii).
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Inductive step. Now suppose that k > 1. The flag

F̃ := {∅ =: S0 ⊂ S1 ⊂ S1 ∪ T1 ⊂ S2 ∪ T1 ⊂ · · · ⊂ Sm−1 ∪ T1︸ ︷︷ ︸
=Sm

⊂ Sm+1 · · · ⊂ Sk+1 := [n]}

is factor-connected and equivalent to F . Moreover, M eF = MF .
Also, one can show S1 = Tl − Tl−1 for some l > 1 and the flag

F̃ := {∅ =: T0 ⊂ T1 ⊂ S1 ∪ T1 ⊂ S1 ∪ T2 ⊂ · · · ⊂ S1 ∪ Tl−1︸ ︷︷ ︸
=Tl

⊂ Tl+1 · · · ⊂ Tk+1 := [n]}

is a factor-connected flag equivalent to F ′ and M eF ′ = MF ′ .
By the induction assumption, we have F̃ ∼ F̃ ′ and hence F and F ′ are equivalent. 2

If M is a matroid on [n] and S is a subset of [n], then the hyperplane HS defined by
∑
e∈S xe = r(S)

is a supporting hyperplane of Q(M) and Q(M) ∩HS is the matroid base polytope for (M |S)⊕ (M/S).
The next lemma tells us when a face of Q(M) is contained in HS .

Lemma 2.6 Let M be a matroid on [n] and S be a subset of [n]. A face σ of Q(M) is contained in HS if
and only if there is a factor-connected flag

F = {∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]}

such that S = Sm for some m and σ = Q(MF ).

For a face σ of Q(M), let Lσ be the poset of all subsets of [n] which are contained in some factor-
connected flag F with σ = Q(MF ) ordered by inclusion. Then one can show that Lσ is a lattice.
Since Lσ is a sublattice of the Boolean lattice Bn, it is distributive. The fundamental theorem for finite
distributive lattices [Sta97] shows that there is a finite poset Pσ for which Lσ is the lattice of order ideals
of Pσ . Recall that Mσ is the matroid on [n] such that Q(Mσ) = σ.

Theorem 2.7 Let M be a matroid on [n] and σ be a face of Q(M). Then Lσ is the lattice of order ideals
of Pσ , where Pσ is a poset defined as follows:

(i) the elements of Pσ are the connected components of Mσ , and

(ii) for distinct connected components C1 and C2 of Mσ , C1 < C2 if and only if

C2 ⊂ S ⊂ [n] and σ ⊂ HS implies C1 ⊂ S.

Note that Pσ is a well-defined poset. Reflexivity and transitivity are clear. Suppose C1 and C2 are
distinct connected components of Mσ with C1 < C2. Consider a minimal subset S such that C2 ⊂ S and
σ ⊂ HS . Then σ ⊂ HS−C2 by Lemma 2.6. Since C1 ⊂ S − C2 and C2 * S − C2, we have C2 ≮ C1.

Example 2.8 Let M2,1,1 be the rank 2 matroid on [4] = {1, 2, 3, 4} whose unique non-base is 12 (short
for {1, 2}) and let σ be an edge of Q(M2,1,1) connecting e14 and e24. Then the connected components of
Mσ are 12, 3 and 4. Since {1, 2, 3, 4} is the only subset S containing {3} such that σ ⊂ HS , 12 < 3 and
4 < 3 in Pσ . One can see that there are no other relations in Pσ . Figure 1 is the proper part of the face
poset of Q(M2,1,1) whose faces are labeled by corresponding posets and Pσ is shown in the shaded box.



288 Sangwook Kim

34
2

13

4 3

14

2
2

1 12 4

3
1

23

4
12 3

4
1

24

3
2

1 34

2 4

1 3

2 3

1 4

1 2

3 4

1 3

2 4

1 4

2 3

2

134

123

4 3

124 34

12 234

1

Fig. 1: The proper part of the face poset of Q(M2,1,1)

Proof of Theorem 2.7: Let S be a set in Lσ . By Lemma 2.6, there is a factor-connected flag

F = {∅ =: S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 := [n]}

such that Mσ = MF and S = Sm for some m. Note that the connected components of Mσ are Si−Si−1

for 1 ≤ i ≤ k + 1 and S = ∪mj=1(Sj − Sj−1). Suppose Si − Si−1 < Sj − Sj−1 in Pσ for some j ≤ m.
Since Sj − Sj−1 ⊂ S and σ ⊂ HS , the definition of Pσ implies Si − Si−1 ⊂ S, and hence S is an order
ideal of Pσ .

Conversely, suppose T is an order ideal of Pσ . Let T ′ be the intersection of all subsets T̃ satisfying
T ⊂ T̃ ∈ Lσ . Then, T ′ lies in Lσ and T ⊂ T ′. Suppose T 6= T ′. By Lemma 2.6, there is a factor-
connected flag

F ′ = {∅ =: T0 ⊂ T1 ⊂ · · · ⊂ Tk ⊂ Tk+1 := [n]}

such that σ = Q(MF ) and T ′ = Tm for some m. Since T 6= T ′ and T is an order ideal of Pσ , we
may choose F ′ so that (Tm − Tm−1) ∩ T = ∅. Then T ⊂ Tm−1 ∈ Lσ which contradicts the fact that
T ′ = ∩{T̃ : T ⊂ T̃ ∈ Lσ} since Tm−1 $ T ′. 2

The posets Pσ coincide with the posets obtained from preposets corresponding to normal cones of the
matroid base polytope Q(M) (see [PRW]). Also, the poset Pσ is the same as the poset PB of Billera, Jia
and Reiner [BJR] if σ is a vertex eB .
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3 The cd-index
In this section, we define the cd-index for Eulerian posets and give the relationship among cd-indices of
polytopes when a polytope is cut by a hyperplane.

Let P be a graded poset of rank n+ 1 with the rank function ρ. For a subset S of [n], define fP (S) to
be the number of chains of P whose ranks are exactly given by the set S. The function fP : 2[n] → N is
called the flag f-vector of P . The flag h-vector is defined by the identity

hP (S) =
∑
T⊂S

(−1)|S−T | · fP (T ).

Since this identity is equivalent to the relation

fP (S) =
∑
T⊂S

hP (T ),

the flag f -vector and the flag h-vector contain the same information.
For a subset S of [n], define the noncommutative ab-monomial uS = u1u2 · · ·un, where

ui =
{

a if i /∈ S,
b if i ∈ S.

The ab-index of the poset P is defined to be the sum

Ψ(P ) =
∑
S⊂[n]

hP (S) · uS .

An alternative way of defining the ab-index is as follows. For a chain

c := {0̂ < x1 < · · · < xk < 1̂},

we give a weight wP (c) = w(c) = z1 · · · zn, where

zi =
{

b if i ∈ {ρ(x1), . . . , ρ(xk)},
a− b otherwise.

Define the ab-index of the poset P to be the sum

Ψ(P ) =
∑
c

w(c),

where the sum is over all chains c = {0̂ < x1 < · · · < xk < 1̂} in P . Recall that a poset P is Eulerian if
its Möbius function µ is given by µ(x, y) = (−1)ρ(y)−ρ(x) (see [Sta97] for more details). One important
class of Eulerian posets is face lattices of convex polytopes (see [Lin71, Rot71]). It is known that the
ab-index of an Eulerian poset P can be written uniquely as a noncommutative polynomial of c = a + b
and d = ab + ba (see [BK91]). When the ab-index can be written as a polynomial in c and d, we call
Ψ(P ) the cd-index of P . We will use the notation Ψ(Q) for the cd-index of the face poset of a convex
polytope Q.
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Let v be a vertex of a polytope Q and let l(x) = c be a supporting hyperplane of Q defining v. The
vertex figure Q/v of v is defined by

Q/v = Q ∩ {l(x) = c+ δ}

where δ is an arbitrary small positive number. For a face σ of Q, the face figure Q/σ of σ is defined by

Q/σ = (. . . ((Q/σ0)/σ1) . . . )/σk

where σ0 ⊂ σ1 ⊂ · · · ⊂ σk = σ is a maximal chain with dimσi = i. For faces σ and τ of Q with σ ⊂ τ ,
the face lattice of the face figure τ/σ is the interval [σ, τ ].

Ehrenborg and Readdy [ER98, Prop. 4.2] give formulas for the cd-indices of a pyramid, a prism and a
bipyramid of a polytope.

Proposition 3.1 Let Q be a polytope. Then

Ψ(Pyr(Q)) =
1
2

[
Ψ(Q) · c + c ·Ψ(Q) +

∑
σ

Ψ(σ) · d ·Ψ(Q/σ)

]
,

Ψ(Prism(Q)) = Ψ(Q) · c +
∑
σ

Ψ(σ) · d ·Ψ(Q/σ),

Ψ(Bipyr(Q)) = c ·Ψ(Q) +
∑
σ

Ψ(σ) · d ·Ψ(Q/σ),

where the sum is over all proper faces σ of Q.

Note that the cd-index of Bipyr(Q) is obtained from the cd-index of Prism(Q) because Bipyr(Q) is
the dual of the prism over the dual ofQ and the cd-index of the dual polytope is obtained by writing every
ab-monomial in reverse order (see [ER98] for details).

Let Q be a polytope in Rn. Let H be a hyperplane in Rn defined by l(x) = c and H+ (resp. H−) be
the closed halfspace l(x) ≥ c (resp. l(x) ≤ c). For simplicity, let Q+ := Q ∩H+, Q− = Q ∩H−, and
Q̂ := Q ∩ H . By carefully looking at chains in the face poset of Q, one can get the following theorem
which provides the relationship among cd-indices of polytopes Q, Q+, Q− and faces of Q̂.

Theorem 3.2 LetQ be a polytope inRn andH be a hyperplane in Rn. Then the following identity holds:

Ψ(Q) = Ψ(Q+) + Ψ(Q−)−Ψ(Q̂) · c−
∑
σ

Ψ(σ̂) · d ·Ψ(Q̂/σ̂),

where the sum is over all proper faces σ of Q intersecting both open halfspaces H+ −H and H− −H
nontrivially.

Remark 3.3 The formula for the prism of a polytope in Proposition 3.1 is a special case of Theorem 3.2,
since in this case

Q = Prism(Q′) ' Q′ × [0, 0.5] = Q−

' Q′ × [0.5, 1] = Q+

and Q′ ' Q′ × {0.5} = Q̂.
Also, the formula for the pyramid of a polytope is obtained from Theorem 3.2 by considering Q =

Bipyr(Q′) split by the hyperplane containing Q′: in this case, Q+ = Q− = Pyr(Q′) and there are no
faces of Bipyr(Q′) intersecting both open halfspaces nontrivially.
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Question 3.4 When Q(M1) ∪ Q(M2) is a hyperplane split of Q(M) with a corresponding hyperplane
H , can we restate Theorem 3.2 in terms of matroids?

If M has rank 2, then one can restate Theorem 3.2 in terms of matroids (see Proposition 5.2 below), but
Question 3.4 is open for higher ranks.

4 Hyperplane splits of a Matroid base polytope
In this section, we define hyperplane splits of a matroid base polytope and give conditions when they
occur.

For a matroid M on [n], a hyperplane split of Q(M) is a decomposition Q(M) = Q(M1) ∪ Q(M2)
where

(i) M1 and M2 are matroids on [n], and

(ii) the intersection Q(M1) ∩Q(M2) is a proper face of both Q(M1) and Q(M2).

Let
∑n
i=1 aixi = b be an equation defining the corresponding hyperplane H . Since Q(M1) ∩Q(M2)

is a matroid base polytope on H and its edges are parallel to ei − ej for some i 6= j, the only constraints
on the normal vector (a1, a2, . . . , an) of H are of the form ai = aj . Using the fact that Q(M) is a subset
of the (n−1)-simplex ∆n defined by

∑n
i=1 xi = r(M) and scaling the right hand side b, one can assume

that H is defined by
∑
e∈S xe = k for some subset S of [n].

Theorem 4.1 Let M be a rank r matroid on [n] and H be a hyperplane defined by
∑
e∈S xe = k. Then

H gives a hyperplane split of Q(M) if and only if the following conditions are satisfied:

(i) r(S) > k and r(Sc) > r − k,

(ii) if I1 and I2 are k-element independent subsets of S such that (M/I1)|Sc and (M/I2)|Sc have rank
r − k, then (M/I1)|Sc = (M/I2)|Sc .

Remark 4.2 Note that if I is a k-element independent subset of S and J is an (r−k)-element independent
subset of Sc, then I is a base for (M/J)|S if and only if J is a base for (M/I)|Sc . Therefore one can see
that the condition (ii) can be replaced with the following condition for Sc:

(ii ′) if J1 and J2 are (r − k)-element independent subsets of Sc such that (M/J1)|S and (M/J2)|S
have rank k, then (M/J1)|S = (M/J2)|S .

Proof of Theorem 4.1: Define Bk = {B ∈ B(M) : |B ∩ S| = k}. We will show that the condition
(ii) holds if and only if Bk is a collection of bases of some matroid. Then the assertion follows from
Theorem 2.1.

Suppose that the condition (ii) is true. Choose any bases B1 and B2 in Bk and x ∈ B1 − B2 (without
loss of generality, we may assume x ∈ B1 ∩ S). Let Ii = Bi ∩ S and Ji = Bi − S for i = 1, 2.
Then the condition (ii) implies that there is a base B = I2 ∪ J1 in Bk. Since B1, B ∈ B, there is
y ∈ B − B1 ⊂ I2 ⊂ B2 such that B3 = B − {x} ∪ {y} ∈ B. Since y ∈ I2 ⊂ S, B3 ∈ Bk. Thus Bk
forms a collection of bases of a matroid.

Conversely suppose that Bk is a collection of bases of some matroid. Let I1 and I2 be k-element inde-
pendent subsets of S such that (M/I1)|Sc and (M/I2)|Sc have rank r − k. Choose J1 ∈ B((M/I1)|Sc)
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and J2 ∈ B((M/I2)|Sc). Then B1 = I1 ∪ J1 and B2 = I2 ∪ J2 are bases for B. We claim that I2 ∪ J1

is also a base of M : this implies B((M/I1)|Sc) ⊂ B((M/I2)|Sc) and (ii) follows by symmetry. We use
induction on the size of I1 − I2.

Base Case: If |I1 − I2| = 0, we have I2 ∪ J1 = B1 ∈ B.
Inductive Step: Suppose |I1 − I2| = l for some l ≤ k. Choose an element x ∈ I1 − I2 ⊂ B1 − B2.

Since Bk forms a matroid, there exist y ∈ I2 − I1 such that B3 = B1 − {x} ∪ {y} ∈ Bk ⊂ B. Since
B3 = (I1 − {x} ∪ {y}) ∪ J1, we have |(B3 ∩ S) − I2| = l − 1 and the induction hypothesis implies
I2 ∪ J1 ∈ B. 2

5 Rank 2 matroids
In this section we apply Theorem 3.2 and Theorem 4.1 to the cd-index of a matroid base polytope when
a matroid has rank 2.

A (loopless) rank 2 matroid M on [n] is determined up to isomorphism by the composition α(M) of
[n] that gives the sizes αi of its parallelism classes. Let α := α1, α2, . . . , αk be a composition of n with
the length l(α) = k and let Mα be the corresponding rank 2 matroid on [n]. For two weak compositions
(i.e., compositions allowing 0 as parts) α and β of the same length, we define β ≤ α if βi ≤ αi for all
i = 1, 2, . . . , l(α). Let β̄ be the composition obtained from β by deleting 0 parts. If α = (2, 4, 1, 6, 7)
and β = (1, 3, 0, 6, 3), then β < α and β̄ = (1, 3, 6, 3).

When M has rank 2, Theorem 4.1 can be rephrased in the following way.

Corollary 5.1 Let M be a rank 2 matroid on [n] and H be a hyperplane defined by
∑
e∈S xe = 1. Then

H gives a hyperplane split of Q(M) if and only if S and Sc are both unions of at least two parallelism
classes.

After the relabeling, one may assume that M has parallelism classes P1, P2, . . . , Pk and S = ∪mi=1Pi
for some m. In this case, one can restate Theorem 3.2 in terms of matroids as follows.

Proposition 5.2 Let M be a rank 2 matroid on [n] with at least four parallelism classes P1, P2, . . . , Pk
and S = ∪mi=1Pi for some m such that 2 ≤ m ≤ k − 2. Then the hyperplane H defined by

∑
e∈S xe = 1

gives a hyperplane split Q(M1) ∪ Q(M2) of Q(M) where M1 is a matroid with parallelism classes
S, Pm+1, . . . , Pk and M2 is a matroid whose parallelism classes are P1, . . . , Pm, S

c. Moreover,

Ψ(Q(M)) =Ψ(Q(M1)) + Ψ(Q(M2))−Ψ(∆|S| ×∆n−|S|) · c

−
∑
T

Ψ(Q(M |T )) · d ·Ψ(∆n−|T |),

where the sum in the second line runs over all proper subsets T of [n] such that M |T has at least four
parallelism classes, at least two of which are subsets of S and Sc respectively.

Proof: Note that there is no flacet of Q(M) which intersects both open halfspace given by H nontrivially
since every flacet of Q(M) corresponds to a base set of the form

{B ∈ B(M) : |B ∩ Pi| = 1}

for some i. If σ is a face of Q(M) which has nonempty intersection with both open halfspaces given by
H , then σ is the intersection of some facets of Q(M) which are not flacets. Since each facet of Q(M)
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which is not a flacet corresponds to the deletion of an element of [n], σ corresponds to a matroid M |T for
some subset T of [n]. Also, σ has nonempty intersection with both open halfspaces given byH if and only
if M |T has at least four parallelism classes, at least two of which are subsets of S and Sc respectively.
Now, the result follows from Theorem 3.2. 2

The following proposition, which is obtained from Corollary 5.1 and Proposition 5.2, expresses the
cd-index of a matroid base polytope of a rank 2 matroid M with composition α(M) = α in terms of
cd-indices of matroid base polytopes of matroids corresponding to compositions of length ≤ 3. For
simplicity, we use the following notations:

λ(α, i) =

i−1∑
j=1

αj , αi,

l(α)∑
j=i+1

αj

 for 2 ≤ i ≤ l(α)− 1,

µ(α, i) =

 i∑
j=1

αj ,

l(α)∑
j=i+1

αj

 for 1 ≤ i ≤ l(α)− 1.

For example, if α = (2, 4, 1, 6, 7), then λ(α, 4) = (7, 6, 7) and µ(α, 4) = (13, 7).

Proposition 5.3 Let α be a composition of n with at least three parts and Mα be the corresponding rank
2 matroid on [n]. Then the cd-index of Q(Mα) can be expressed as follows:

Ψ(Q(Mα)) =
l(α)−1∑
i=2

Ψ(Q(Mλ(α,i)))−

l(α)−2∑
i=2

Ψ(∆µ(α,i)1 ×∆µ(α,i)2)

 · c
−
∑
β<α
l(β̄)≥4

l(α)∏
j=1

(
αj
βj

)l(β̄)−2∑
i=2

Ψ(∆µ(β̄,i)1 ×∆µ(β̄,i)2)

 · d ·Ψ(∆n−|β̄|).

Purtill [Pur93] shows that the cd-index of the (n− 1)-simplex ∆n is the (n+ 1)-st André polynomial.
Using the formula for the cd-index of a product of two polytopes given by Ehrenborg and Readdy [ER98],
one can calculate the second and the third terms in Proposition 5.3. We still don’t have a simple interpre-
tation for the cd-index for Q(Mα) when α has three parts.
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