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On the link pattern distribution of quarter-turn
symmetric FPL configurations
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Abstract. We present new conjectures on the distribution of link pagéor fully-packed loop (FPL) configurations
that are invariant, or almost invariant, under a quarten tatation, extending previous conjectures of Razumov
and Stroganov and of de Gier. We prove a special case, shahanghe link pattern that is conjectured to be the
rarest does have the prescribed probability. As a byprodieiget a formula for the enumeration of a new class of
quasi-symmetry of plane partitions.

Résure. Nous présentons de nouvelles conjectures portant sustiabdition des schémas de couplage des config-
urations de boucles compactes (FPL) invariantes, ou peeisyariantes, par une rotation d’un quart de tour. Ces
nouvelles conjectures étendent des conjectures peatexidues a Razumov et Stroganov et a de Gier. Dans chaque
cas, nous prouvons un cas particulier, en démontrant geehfema de couplage conjecturé pour étre le plus rare a
effectivement la probabilité prédite. Nous obtenonal&gent une formule pour I'énumeération d’une nouvelksse

de quasi-symeétrie de partitions planes.

Keywords: fully packed loop model, rhombus tilings, plane partitiongnintersecting lattice paths

1 Introduction

In this paper, we study configurations in the fully packedol@@odel, or, equivalently, alternating-sign
matrices, that are invariant or almost invariant under ation of 90 degrees. While the enumeration
of this symmetry class of alternating-sign matrices wageaxinred by Robbins [23] and proved by Ku-
perberg [15] and Razumov and Stroganov [21], their refinedrearation according to the link patterns
of the corresponding fully packed loop configurations se&miave avoided notice so far. We con-
jecture very close connections between this refined enuimerand the corresponding enumeration for
half-turn invariant configurations, as studied by de Gigr This is yet another example of a “Razumov-
Stroganov-like” conjecture, suggesting a stronger coatioimal connection between fully-packed loop
configurations and their link patterns than originally amtyred in [20].

The paper is organized as follows. In Section 2, we recallrabrar of definitions and conjectures on
FPLs and their link patterns, and define a new class of “ggaarter-turn-invarriant” FPLs when the size
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is an even integer of the fordn + 2. We formulate a conjecture on the enumeration of these gQ3FP
In Section 3, we give new conjectures on the distributiorirdf patterns of QTFPLs and gQTFPLs; these
can be seen as natural extensions of the previously knowarRazStroganov and de Gier conjectures
on general and half-turn symmetric FPLs, respectively. \Wevg special cases of our conjectures in
Section 4; in the gQTFPL case this is achieved by making alicédqgonnection with the enumeration of
some new class of plane partitions.

2 Fully-packed loops and link patterns

2.1 Fully-packed loop configurations

A fully-packed loop configuratiofFPL for short) of sizeV is a subgraph of th&/ x N square lattic®,
where each internal vertex has degree exactly 2, forming afsdosed loops and paths ending at the
boundary vertices. The boundary conditions aredternatingconditions: boundary vertices also have
degree 2 when boundary edges (edges that connect the findeesiattice to the rest of thg? lattice)
are taken into account, and these boundary edges, when gmingd the grid, are alternatingly “in” and
“out” of the FPL. For definiteness, we use the conventionttiatop edge along the left border is always
“in". Thus, exactly2N boundary edges act as endpoints for paths, and the FPL tofé noncrossing
paths and an indeterminate number of closed loops.

Oo0or ooooo

L oooro
O oo ©OFr oo o

I

"‘OOO,_."‘OO
O o kR O 000 o
cooo°or Lon
O oohFP o0 oo
P = T S,

o

0 0 0 0 1 (even) -1 (even)
-1 (odd) 1 (odd)

(d)

Fig. 1: (a) boundary conditions; (b) example FPL of size 8 and (c)esponding ASM; (d) correspondence rules

FPLs are in bijection with several different families of cfiste objects, the most prominent in the
mathematics literature beirajternating-sign matricesf the same size. An alternating-sign matrix has
entries0, 1 and—1, with the condition that, in each line and column, nonzeries alternate in sign,

() Here N refers to the number of vertices on each side; vertices aem ghatrix-like coordinateéi, j) with 0 < 4,5 < N — 1,
the top left vertex having coordinat¢s, 0)
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starting and ending with & This correspondence is sketched in Figure 1; the “even*aad’ rules refer
to the parity of the sum of line and column indices. Other otgiénclude configurations of ttsgjuare ice
or 6-vertexmodel [19].

The enumeration formula for alternating-sign matricesze# s was proved in [27, 14]:

(3i 4+ 1)!
1
it W

together withA(1) = 1, thisis equivalentto the recurrendén+1) = A(n)-n!(3n+1)!/((2n)!(2n+1)).

The group of isometries of the square acts naturally onredtérg-sign matrices and FPLs (with the
caveat that some isometries, depending on the parify ,afhay exchange the “in” and “out” boundary
edges, so that to have a given isometry act on FPLs one maytbdake the complement of the set
of edges; for rotations, this only happens when one perfamsarter-turn on FPLs of odd size). As
a result, for each subgroup of the full group of isometries oray consider aymmetry classf FPLs,
which is the set of FPLs that are invariant under the wholgsulp. Enumeration formulae have been
conjectured [23] for many classes, and some of them havegregad [15, 22, 21]. In this paper, we are
only concerned with two classes: FPLs that are invarianeuadalf-turn rotation (HTFPLS), and FPLs
that are invariant under a quarter-turn rotation (QTFPLS).

While HTFPLs of all sizes exist, QTFPLs are a slightly diffet matter. QTFPLs of all odd sizes exist,
but because for odd sizes the 90 degree rotation exchargbetimdary conditions, QTFPLSs are actually
self-complementary (as edge sets) rather than invariadgnthe rotation. QTFPLs of even si2éonly
exist if V is a multiple of4, which is easiest seen on the corresponding alternatgrgrsatrices: the sum
of entries in any quarter of the square has to be exactly aequafrthe sum of all entries in the matrix,
which is equal taV.

For N = 4n + 2, while there are no QTFPLs of si2é, we can define the closest thing to it, which we
call “quasi-quarter-turn invariant FPLs” (QQTFPLS), arefide as follows: an FPL of siz& = 4n + 2
is a qQTFPL if its symmetric difference with its image undéadegree rotation is reduced to a single
4-cycle at the center of the grid; furthermore, we requiet thqQTFPL contain the two horizontal edges
of this center cycle.

The alternating-sign matrices corresponding to qQTFPEseaactly those which have quarter-turn
invariance except for the four center entri@s, 2n, d2n+1,2n: @2n.2n+1, G2n+1,2n+1), Which must take
respective value§l, 0,0, 1) or (0, —1, —1,0). This particular class of ASMs does not seem to have been
considered previously in the literature, and their enutmegasequence does not appear in the Online
Encyclopedia of Integer Sequences [24].

Robbins [23] conjectured, and Kuperberg [15] proved, amathgr things, that the numbers of FPLs
of size N, HTFPLs of siz& N, and QTFPLs of size N, are bound by the very intriguing formula

AQr(4N) = Aut(2N)A(N)?; )
based on exhaustive enumeration upwte= 4, we conjecture the following similar formula:
Conjecture 1 The number of qQTFPLs of siZzév + 2 is

Agr(4N +2) = Aur(2N 4+ 1)A(N + 1)A(N). (3)

Actually, a refined identity seems to hold, which nicely exte a further conjecture of Robbins:
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Conjecture 2 Let A(n;y) (respectively,Aut(n;y), Aot(n;y)) denote the enumerating polynomial of
FPLs (respectively, HTFPLs, qQTFPLs) of sizeeach object is given weight’, wherek is the index of
the column (numberd@lto n — 1) containing the single nonzero entry in the first line of tberesponding
alternating-sign matrix; then for any > 1,

Aqr(4n + 2;y) = yAut(2n + Ly)A(n + 1;9) A(n; v). 4)

2.2 Link patterns

Any FPL f of size N has alink pattern which is a partition of the set of integetsto 2N into pairs,
defined as follows: first label the endpoints of the open ldbfis2 N in clockwise or counterclockwise
order (for definiteness, we use counterclockwise ordentjrsgawith the top left endpoint); then the link
pattern will include paif, j} if and only if the FPL contains a loop whose two endpoints ateled:
andj. Because the loops are noncrossing, the link pattern satidfenoncrossingcondition: if a link
pattern contains two pairgi, j} and{k, ¢}, then one cannot have< k < j < ¢. The possible link
patterns for FPLs of siz& are counted by the Catalan numbélg = N+u1 (211\}[) and an easy encoding
of link patterns by Dyck words (or well-formed parenthesead®) is as follows: if{i, j} is one of the
pairs of the pattern with < j, thei-th letter of the Dyck word is am (which stands for an opening
parenthese) while thgth letter is ab (closing parenthese).

If an FPL is invariant under a half-turn rotation, then cleds link patterns has a symmetry property:
if {i,j} € m,then{i+ N,j + N} € = (taking integers modul@N). If N is odd, the partition is into an
odd number of pairs, and exactly one pair will be of the fdrii + N}; if N is even, no pair of the form
{i,7 4+ N} will be present. This symmetry lets one encode a half-tamaiiant link pattern with a word
w of length N instead oR2/V, as follows: forl <i < N, if 4 is matched withj with ¢ < j < j + N, then
thei-th letter is aru; if ¢ is matched with + N (odd V), then thei-th letter is ac; otherwise; is matched
with j wherej < iorj > i+ N, and the-th letter is ab.

It is easy to check that, for eve¥, the wordw hasN/2 occurrences of andb, and is thus &ilateral
Dyck word while for oddV, it has exactly one occurrence®énd (N — 1)/2 occurrences of each af
andb, and is of the formv = ucv. In this casepu has to be a Dyck word. Overall, the total number of
possible link patterns is counted by the unified for QJJ?’(!N/Q]!.

The 2N generatorg, ..., eon Of the cyclic Temperley-Lieb algebract on link patterns of sizév
FPLs in the following way: if link patters contains pairgi, j} and{i + 1, k}, thene,= = =/, wherer’
is obtained fromr by replacing the pair§i, j} and{: + 1,k} by {7, + 1} and{j, k}; if {i,i+ 1} € 7,
thenn’ = 7. One easily checks that tlhe operators satisfy the Templerley-Lieb commutation retai

2 . .
€; = €j, €i€;+1€; = €;11€4€;+1, €i€; = €;€; When|z —j| > 1

(generator indices, just like integers in the link patteare used modul@N). Similarly, the N “sym-
metrized” operators; = e;e; 4y (for N > 2) act on the link patterns of HTFPLs of si2é, and theseV
symmetrized operators also satisfy the commutation cglatior theN-generator cyclic Temperley-Lieb
algebra.

In both the nonsymmetric and half-turn-symmetric casee,@an define a Markov chain on link pat-
terns where, at each time step, one of the appropriate geneimchosen uniformly at random and applied
to the current state. In each case, the Markov chain is edsélgked to be irreducible and aperiodic, hence
it has a unique stationary distribution. Recent interegtRhs and their link patterns is largely due to the
following conjectures; see [9, 18, 28] for recent advanaad,the bibliography in [25] :
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Conjecture 3 (Razumov, Stroganov [20]) The stationary distribution for link patterns of si2éis

A(N;m)
p(m) = AN

Conjecture 4 (de Gier [7, 17]) The stationary distribution for half-turn-invariant linkatterns of sizév
is

_ Anr(Nsm)

HHT (ﬂ.) - AHT (N) .

By their definitions, the stationary distributiopsand iy are invariant under the “rotation” mapping
(in the noncrossing partition view) — ¢ + 1 mod 2N. Wieland [26] bijectively proved that the dis-
tribution of link patterns of FPLs also has this propertys bijection maps HTFPLs to HTFPLs and
(even-sized) QTFPLs to QTFPLs, so the same is true of theldisons of their link patterns. It is easy
to check that the same bijection maps qQTFPLs to qQTFPL# (thié special provision that it might
change the edges around the center square from “two hogizedges” to “two vertical edges”, so the
edges around this center square might have to be inverted).

3 Link patterns of QTFPLs

Let N = 4n. Any QTFPL f of size NV is also a HTFPL, so its link pattern can be described by adrit
Dyck wordw of length N. But, becaus¢ is invariant under a quarter-turn rotatiamy must be invariant
under conjugation with its left factar’ of length N/2. This means we must have = w’.w’, and thus
w’ is also a bilateral Dyck word.

Thus, the link patterns of QTFPLs of size can be described by the same words that we use to describe
link patterns of HTFPLs of siz2n. We useAqt(N;w) (WwhereN is divisible by 4, andv is a bilateral
Dyck word of lengthV/2) to denote the set of all QTFPLs of si2éwith link patternw (or link pattern
w.w when viewed as HTFPLs), antht(V; w) to denote its cardinality.

We conjecture the following:

Conjecture 5 For anyn > 0 and bilateral Dyck wordw of length2n,
Aqr(dn;w) = Apt(2n;w).A(n)?. (5)

In other words, the link patterns of even-sized QTFPLs astilutedexactlyas those of HTFPLs with
half their size.

Conjecture 5 has been checked by exhaustive enumeratiariup © (there are 114640611228 QTF-
PLs of size 20; the next term in the sequence is 109950140PR®5which makes exhaustive generation
unreasonable).

When f € Agr(4n + 2) is a qQTFPL, it is also a HTFPL and its link pattern as such scdbed
by a bilateral Dyck word of length N + 2. But, again, the link pattern is of a special form: because of
the rotational symmetry, the paths entering the centerrsgpfethe grid by its four corners are rotational
images of each other, and cannot form closed loops. Thusg theths exit the grid at 4 endpoints, which
form a single orbit under the quarter-turn rotation. Funthere, the HTFPL link pattern is necessarily of
the formuavubv or ubvuav, wherevu is a Dyck word of lengti2n (this implies that the factorization is
unique). If we retain only the firstn + 1 letters of this word, and replace the distinguisheat b letter
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with ac, what we obtain is exactly the link pattern of a HTFPL of si2ed+ 1; this is what we hereafter
call the link pattern off. Note that if, in the definition of qQTFPLSs, we required tHad tenter square
have vertical edges instead of horizontal edges, this wanilgichange link patterns as HTFPLs (patterns
of the formuavubv would becomerbvuav would becomewavuby, and vice versa) but not as qQTFPLs.
As an example, the gQTFPL shown in Figure 2(a) has link patteica as a qQTFPLbabaababba as
a HTFPL, andiabaababbababaababbb as a full FPL link pattern.
With this convention, we have a conjecture for the link paseof gQTFPLs of sizdn + 2, relating
them to those of HTFPLs of siz& + 1:

Conjecture 6 For anyn > 0 and any half-turn-invariant link pattera of length2n + 1,
Aot(dn + 2;w) = Aur(2n + 1, w)A(n + 1) A(n). (6)

Of course, summation over all link patterns gives Conjexturand this can be interpreted as saying
that link patterns of gqQTFPLs of sizie + 2 are distributed exactly as those of HTFPLs of size+ 1.

Conjectures 1, 2 and 6 have been checked by exhaustive eatiznewp ton = 4; the total number
of gQTFPLs of size 18 i89204 - 429 - 42 = 706377672. The next term in the conjectured sequence,
7422987 - 7436 - 429 = 23679655141428, is out of reach of exhaustive enumeration programs.

A note on terminology: in the rest of this paper, whenever vemtion the link pattern of a QTFPL or
gQTFPL, it should be understood to mean the word with lengihthe size of the FPL; if we need to
reference the link pattern as an FPL (which is a Dyck word \gtigth double the size of the FPL), we
will write full link pattern

4 A special case: the rarest link pattern

In this section, we prove special cases of Conjectures 5 amuef the considered link pattern is a very
specific one. When the wanted link pattern is of the féfta™ (for QTFPLS) orb™ca™ (for gQTFPLS),
the HTFPLs whose enumeration appear in the conjecturesfalwiak patterna?7b2" or g2 +1p2n+1,
respectively. In each case, there is only one HTFPL with sufthi link pattern; in fact, there is only one
FPL with such a link pattern (this has been noticed by manlyast one easy way to properly prove it is
with the fixed edge technique of de Gier which we use below)lsTto prove the corresponding special
cases of Conjectures 5 and 6, we only need to prove that thespanding QTFPLs and qQTFPLs are
counted byA(n)? and A(n)A(n + 1), respectively. Both proofs are through a bijection with acific
class of plane partitions.

For our purposes, plane partition of sizé: is a tiling of the regular hexagaH;, of sidek with rhombi
of unit side. When the hexagon is tiled with equilateralrtgkes of unit side, the dual graph is a region
Ry, of the honeycomb lattice, and rhombus tilings are in natoijattion with perfect matchings aty..

A plane partition is said to beyclically symmetridf the tiling is invariant under a rotation of 120
degrees, andelf-complementarny it is invariant under a central symmetry (the terminolagypomewhat
confusing when plane partitions are viewed as tilings, big standard). Thusgyclically symmetric,
self-complementarglane partitions (CSSCPPs for short) are those that areiamtainder a rotation of
60 degrees. Itis easy to see that CSSCPPs only exist for ees; and it is known that the number of
CSSCPP of sizén is equal toA(n)?.

We define aquasi-cyclically symmetric, self-complementary plangifian (QCSSCPP) of siz2n + 1
as a rhombus tiling, invariant under rotation of 60 degreéshe regular hexagon of siz& + 1 with
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Fig. 2: (a) Example qQTFPL of size 10 and (b) Example gCSSCPP ofrsize

the central unit side hexagon removed. Such tilings (wittole lof a possibly different size) appear as
punctured plane partitions [8], where the connection with cyclically symmetricsrtds of a hexagon
with atriangular hole [6] is noticed.

We will prove the following:

Theorem 7 For anyn > 1, there is a bijection betweedqt(4n; b™a™) and the set of CSSCPPs of size
2n, and a bijection betweerd gt (4n + 2; b ca™) and the set of QqCSSCPPs of skze+ 1.

Fig. 3: Fixed edges for (aflot(12, bbbaaa) (b) Agt(14, bbbcaaa)

The known enumeration of CSSCPPs then concludes the pr¢®f fifr patternh™a™; to prove (6) for
patternb™ca™, we will need our last theorem:

Theorem 8 The number of qCSSCPPs of skze+ 1 is A(n)A(n + 1).
Proof of Theorem 7: We rely on the technique of “fixed edges” due to de Gier [7],sedlby Caselli and

Krattenthaler in [2] (see also [10, 3]). The technique ubedact that, for a given link pattern, there may
be a large set of edges which appear in all FPLs with thisqaati link pattern. In some cases, this makes
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it possible to find a bijection between the target set of FRidsthe perfect matchings of some particular
planar graph, typically a region of the hexagonal lattice.

QTFPLs with link patterrb”a™ have the full link patterru™(a”b")3b", which consists of 4 sets of
n nested arches each. This means that, on each of the grid ailesoutgoing links are forbidden
from connecting to each other; thus, by Lemma 3.1 of [3], tiWing edges are fixed in every FPL
f € A(4n;a™(a™b™)3b"™):

e each horizontal edge whoseft endpoint has odd sum of coordinates, inside the trianglese’ho
vertices have coordinatés, 0), (4n — 2,0) and(2n — 1, 2n — 1) (triangle ABC on Figure 3(a));

o their orbits under the action of the 90 degree rotation cedtat(2n — 1/2,2n — 1/2).

Similarly, qQTFPLs with link patterd™ca™ have as their full link pattern®”+1pnq"+1pnt+1gnp2n+1
(four sets of nested arches, with alternatingly- 1, n, n + 1 andn arches each). Again, the same fixed
edges appear, as shown in Figure 3(b).
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Fig. 4: Graphs of non-fixed edges for (&o1(12, bbbaaa) (b) Agt(14, bbbcaaa)

In a QTFPL of sizeln, the four “center” edges joining verticésand its rotational images must either
all be included, or all excluded; with these vertices alydaaving one incident fixed edge each, they must
be excluded. This in turn forces the presence of four moral fedges, as shown in Figure 3(a). (The
symmetry conditions also force additional edges in the exnbut it is slightly more convenient to not
mention them now.)

To prove that we indeed have a bijection, we need to checlath@TFPLs (respectively, qQTFPLS)
sharing the above-mentioned edges have link pattaii) (respectivelyb™ca™). We do this in detail for
the QTFPL case; the proof for qQTFPL is similar.

Consider then paths starting from endpoints along segmétit. The horizontal fixed edges inside
triangle ABC prevent them from connecting with each other, so that eadierh will exit triangle
ABC either to the top (through segmeAt, including C' but excludingA) or to the bottom (through
segment B, including B but excludingC'. Any path exiting through segmeniC will be connected to
one from the top border, while any path exiting through segrd&3 will be connected to one from the
bottom border. Thus, the link pattern will be of the fobfiu>"—*, wherek is the number of paths exiting
along segmentlC. But quarter-turn symmetry implies that the number of patkisng triangleABC
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through segmentC is equal to the number of paths entering trianglBC' from the bottom triangle;
thus,k = 2n — k, and the link pattern is indeééa™.

(@) G (b) G~

Fig. 5: Quotients under rotation of the nonfixed edge graphs in Eigur

Note that in both the QTFPL and gQTFPL cases, each vertexigritl is incident to either 1 or 2 fixed
edges. Thus, if we delete from the grid the fixed edges andftiibitiden” edges (those non-fixed edges
that are incident to at least one vertex with two incidentdirelges), we get a graph whose rotationally
invariant perfect matchings are in bijection with the caesed symmetric FPLs. These two graphs,
shown on Figure 4, naturally have a rotational symmetry déot, so we need only consider the perfect
matchings of their orbit graphs under this rotational syrmmevhich are shown on Figure 5 (the dashed
lines in Figure 4 show where to “cut” to obtain the quotienE)r QTFPLS, this quotient graph is exactly
the orbit graph, under rotational symmetry of ordeof the honeycomb grapR.,,; for qQTFPLs, it is
the orbit graph, under rotational symmetry of ordeof the “holed” honeycomb grapRy,, , ;. Putting
all pieces together, we have the required bijections beiw&d s and plane partitions. O

Proof of Theorem 8: We now turn to the enumeration of qCSSCPPs of 8ize- 1, for which we know
that they are in bijection with the perfect matchings of thetiented honeycomb lattice regi6#,, 11 .

Notice thatGs, 11, as shown in Figure 5, has a reflective symmetry, ®ittvertices on the symmetry
axis. Thus, we can use Ciucu’s Matching Factorization Téwo] (or, rather, the slight generalization
proved in Section 7 of [4], and used, in a very similar contexdurs, in [5]), and we get that the number
of perfect matchings otrz,, 11 is 2" M*(GY,, ), whereGy,, .| is Ga,41 With all edges incident to
the symmetry axis, and lying below it, removed, and edgeslyin the symmetry axis weightdd 2;
and M*(G) denotes the weighted enumeration of perfect matchings, dhat is, the sum over perfect
matchings of the product of weights of selected edges.

G, 1, When redrawn as a region of the honeycomb lattice, is theadwegionR5,, , ; of the triangular
lattice (shown on Figure 6(b), with the weight2 rhombi greyed), on which we need to count rhombi
tilings. » + 1 rhombi on the right border aky,, |, are fixed (will appear in all tilings). Using a classical
correspondence between rhombi tilings and weighted conafiigus of nonintersecting lattice paths, we
are left with counting the number of nonintersecting (sqyéattice path configurations, where the paths,
using East and South unit steps, collectively join vertidg®) < i < n—1, to verticesB;,0 < j <n-—1,
with respective coordinatgs, 2i + 2) and(2y, j); the horizontal edges with right endpoins carry a
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Fig. 6: (@) Honeycomb regiofi%, (b) Triangular latticeR’ and (c) corresponding square lattice points

weight1/2, so that the weighted enumeration of paths joining vertiteand B; is
w(di, B;) = %(l ;rjjjz‘l) (21;—];—11) = 360 +4) (2 —(Zi)+!(éi+—1;!+ 2)l"
The Lindstrom-Gessel-Viennot theorem [16, 12] now expeesd/*(G4,, ;) as the determinant
M*(Ghpqq) = det (w(Ai, Bj))oe; jpr s 7
factoring out% in line ¢ of the matrix, we get the number of perfect matchingé&'ef 1 as

M(Gapt1) = <H 3+ 4) det <(2j —(z)'(;z —j>'+ 2)!)0<ij<n—1 . ©

=0

The determinant in (8) happens to be the special zase, y = 0 of [13, Theorem 40] (the enumera-
tion of CSSCPPs of sizen by the same method, as in [5, 6], corresponds te 1,y = 0). Factoring in
the product, this yields

n—1

M(Gons1) = [ : i + 1))(3i + 1)!(3i + 4)!
i=0

2i)1(2i 4 1)!(2i + 2)1(2i + 3)!”

9)

Using this expression, one easily checks th&tGs,,11)/M (Gan—1) = A(n + 1)/A(n — 1), thus
proving the theorem by induction (the case= 1 corresponds to checking that there are only 2 qCSSPPs
of size3).

O

5 Further comments

The starting point and first motivation for this paper, astitie suggests, was Conjecture 5, which nicely
complements the previous conjectures of Razumov-Strogambde Gier. This suggests that a combina-
torial proof of one of the conjectures might be adapted tlwypeoofs of all of them, possibly by explicitly
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devising operators on FPLs that project to ¢heperators on link patterns, while having suitable bijeetiv
properties.

The definitions of qQTFPLs and qCSSCPPs evolved out of ampttto devise a general framework
for the random generation of symmetric FPLs and plane ars{11]; their enumerative properties came
as a total surprise.

A proof of Conjecture 1, using techniques inspired from [25], will be given in an upcoming pa-

per [1].
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