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On the link pattern distribution of quarter-turn
symmetric FPL configurations

Philippe Duchon†
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Abstract. We present new conjectures on the distribution of link patterns for fully-packed loop (FPL) configurations
that are invariant, or almost invariant, under a quarter turn rotation, extending previous conjectures of Razumov
and Stroganov and of de Gier. We prove a special case, showingthat the link pattern that is conjectured to be the
rarest does have the prescribed probability. As a byproduct, we get a formula for the enumeration of a new class of
quasi-symmetry of plane partitions.

Résuḿe. Nous présentons de nouvelles conjectures portant sur la distribution des schémas de couplage des config-
urations de boucles compactes (FPL) invariantes, ou presque invariantes, par une rotation d’un quart de tour. Ces
nouvelles conjectures étendent des conjectures précédentes dues à Razumov et Stroganov et à de Gier. Dans chaque
cas, nous prouvons un cas particulier, en démontrant que leschéma de couplage conjecturé pour être le plus rare a
effectivement la probabilité prédite. Nous obtenons également une formule pour l’énumération d’une nouvelle classe
de quasi-symétrie de partitions planes.
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1 Introduction
In this paper, we study configurations in the fully packed loop model, or, equivalently, alternating-sign
matrices, that are invariant or almost invariant under a rotation of 90 degrees. While the enumeration
of this symmetry class of alternating-sign matrices was conjectured by Robbins [23] and proved by Ku-
perberg [15] and Razumov and Stroganov [21], their refined enumeration according to the link patterns
of the corresponding fully packed loop configurations seemsto have avoided notice so far. We con-
jecture very close connections between this refined enumeration and the corresponding enumeration for
half-turn invariant configurations, as studied by de Gier [7]. This is yet another example of a “Razumov-
Stroganov-like” conjecture, suggesting a stronger combinatorial connection between fully-packed loop
configurations and their link patterns than originally conjectured in [20].

The paper is organized as follows. In Section 2, we recall a number of definitions and conjectures on
FPLs and their link patterns, and define a new class of “quasi-quarter-turn-invarriant” FPLs when the size
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is an even integer of the form4n + 2. We formulate a conjecture on the enumeration of these qQTFPLs.
In Section 3, we give new conjectures on the distribution of link patterns of QTFPLs and qQTFPLs; these
can be seen as natural extensions of the previously known Razumov-Stroganov and de Gier conjectures
on general and half-turn symmetric FPLs, respectively. We prove special cases of our conjectures in
Section 4; in the qQTFPL case this is achieved by making an explicit connection with the enumeration of
some new class of plane partitions.

2 Fully-packed loops and link patterns
2.1 Fully-packed loop configurations
A fully-packed loop configuration(FPL for short) of sizeN is a subgraph of theN × N square lattice(i) ,
where each internal vertex has degree exactly 2, forming a set of closed loops and paths ending at the
boundary vertices. The boundary conditions are thealternatingconditions: boundary vertices also have
degree 2 when boundary edges (edges that connect the finite square lattice to the rest of theZ2 lattice)
are taken into account, and these boundary edges, when goingaround the grid, are alternatingly “in” and
“out” of the FPL. For definiteness, we use the convention thatthe top edge along the left border is always
“in”. Thus, exactly2N boundary edges act as endpoints for paths, and the FPL consists ofN noncrossing
paths and an indeterminate number of closed loops.
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−1 (odd) 1 (odd)
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Fig. 1: (a) boundary conditions; (b) example FPL of size 8 and (c) corresponding ASM; (d) correspondence rules

FPLs are in bijection with several different families of discrete objects, the most prominent in the
mathematics literature beingalternating-sign matricesof the same size. An alternating-sign matrix has
entries0, 1 and−1, with the condition that, in each line and column, nonzero entries alternate in sign,

(i) HereN refers to the number of vertices on each side; vertices are given matrix-like coordinates(i, j) with 0 ≤ i, j ≤ N − 1,
the top left vertex having coordinates(0, 0)
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starting and ending with a1. This correspondence is sketched in Figure 1; the “even” and“odd” rules refer
to the parity of the sum of line and column indices. Other objects include configurations of thesquare ice
or 6-vertexmodel [19].

The enumeration formula for alternating-sign matrices of sizen was proved in [27, 14]:

A(n) =

n−1
∏

i=0

(3i + 1)!

(n + i)!
; (1)

together withA(1) = 1, this is equivalent to the recurrenceA(n+1) = A(n)·n!(3n+1)!/((2n)!(2n+1)).
The group of isometries of the square acts naturally on alternating-sign matrices and FPLs (with the

caveat that some isometries, depending on the parity ofN , may exchange the “in” and “out” boundary
edges, so that to have a given isometry act on FPLs one may haveto take the complement of the set
of edges; for rotations, this only happens when one performsa quarter-turn on FPLs of odd size). As
a result, for each subgroup of the full group of isometries one may consider asymmetry classof FPLs,
which is the set of FPLs that are invariant under the whole subgroup. Enumeration formulae have been
conjectured [23] for many classes, and some of them have beenproved [15, 22, 21]. In this paper, we are
only concerned with two classes: FPLs that are invariant under a half-turn rotation (HTFPLs), and FPLs
that are invariant under a quarter-turn rotation (QTFPLs).

While HTFPLs of all sizes exist, QTFPLs are a slightly different matter. QTFPLs of all odd sizes exist,
but because for odd sizes the 90 degree rotation exchanges the boundary conditions, QTFPLs are actually
self-complementary (as edge sets) rather than invariant under the rotation. QTFPLs of even sizeN only
exist if N is a multiple of4, which is easiest seen on the corresponding alternating-sign matrices: the sum
of entries in any quarter of the square has to be exactly a quarter of the sum of all entries in the matrix,
which is equal toN .

ForN = 4n + 2, while there are no QTFPLs of sizeN , we can define the closest thing to it, which we
call “quasi-quarter-turn invariant FPLs” (qQTFPLs), and define as follows: an FPL of sizeN = 4n + 2
is a qQTFPL if its symmetric difference with its image under a90 degree rotation is reduced to a single
4-cycle at the center of the grid; furthermore, we require that a qQTFPL contain the two horizontal edges
of this center cycle.

The alternating-sign matrices corresponding to qQTFPLs are exactly those which have quarter-turn
invariance except for the four center entries(a2n,2n, a2n+1,2n, a2n,2n+1, a2n+1,2n+1), which must take
respective values(1, 0, 0, 1) or (0,−1,−1, 0). This particular class of ASMs does not seem to have been
considered previously in the literature, and their enumerating sequence does not appear in the Online
Encyclopedia of Integer Sequences [24].

Robbins [23] conjectured, and Kuperberg [15] proved, amongother things, that the numbers of FPLs
of sizeN , HTFPLs of size2N , and QTFPLs of size4N , are bound by the very intriguing formula

AQT(4N) = AHT(2N)A(N)2; (2)

based on exhaustive enumeration up toN = 4, we conjecture the following similar formula:

Conjecture 1 The number of qQTFPLs of size4N + 2 is

AQT(4N + 2) = AHT(2N + 1)A(N + 1)A(N). (3)

Actually, a refined identity seems to hold, which nicely extends a further conjecture of Robbins:
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Conjecture 2 Let A(n; y) (respectively,AHT(n; y), AQT(n; y)) denote the enumerating polynomial of
FPLs (respectively, HTFPLs, qQTFPLs) of sizen; each object is given weightyk, wherek is the index of
the column (numbered0 to n−1) containing the single nonzero entry in the first line of the corresponding
alternating-sign matrix; then for anyn ≥ 1,

AQT(4n + 2; y) = yAHT(2n + 1; y)A(n + 1; y)A(n; y). (4)

2.2 Link patterns
Any FPL f of sizeN has alink pattern, which is a partition of the set of integers1 to 2N into pairs,
defined as follows: first label the endpoints of the open loops1 to 2N in clockwise or counterclockwise
order (for definiteness, we use counterclockwise order, starting with the top left endpoint); then the link
pattern will include pair{i, j} if and only if the FPL contains a loop whose two endpoints are labeledi
andj. Because the loops are noncrossing, the link pattern satisfies thenoncrossingcondition: if a link
pattern contains two pairs{i, j} and{k, ℓ}, then one cannot havei < k < j < ℓ. The possible link
patterns for FPLs of sizeN are counted by the Catalan numbersCN = 1

N+1

(

2N
N

)

, and an easy encoding
of link patterns by Dyck words (or well-formed parenthese words) is as follows: if{i, j} is one of the
pairs of the pattern withi < j, the i-th letter of the Dyck word is ana (which stands for an opening
parenthese) while thej-th letter is ab (closing parenthese).

If an FPL is invariant under a half-turn rotation, then clearly its link patternπ has a symmetry property:
if {i, j} ∈ π, then{i + N, j + N} ∈ π (taking integers modulo2N ). If N is odd, the partition is into an
odd number of pairs, and exactly one pair will be of the form{i, i + N}; if N is even, no pair of the form
{i, i + N} will be present. This symmetry lets one encode a half-turn-invariant link pattern with a word
w of lengthN instead of2N , as follows: for1 ≤ i ≤ N , if i is matched withj with i < j < j + N , then
thei-th letter is ana; if i is matched withi+N (oddN ), then thei-th letter is ac; otherwise,i is matched
with j wherej < i or j > i + N , and thei-th letter is ab.

It is easy to check that, for evenN , the wordw hasN/2 occurrences ofa andb, and is thus abilateral
Dyck word, while for oddN , it has exactly one occurrence ofc and(N − 1)/2 occurrences of each ofa
andb, and is of the formw = ucv. In this case,vu has to be a Dyck word. Overall, the total number of
possible link patterns is counted by the unified formula N !

⌊N/2⌋!⌈N/2⌉! .
The 2N generatorse1, . . . , e2N of the cyclic Temperley-Lieb algebraact on link patterns of sizeN

FPLs in the following way: if link patternπ contains pairs{i, j} and{i + 1, k}, theneiπ = π′, whereπ′

is obtained fromπ by replacing the pairs{i, j} and{i + 1, k} by {i, i + 1} and{j, k}; if {i, i + 1} ∈ π,
thenπ′ = π. One easily checks that theei operators satisfy the Templerley-Lieb commutation relations

e2
i = ei, eiei±1ei = ei±1eiei±1, eiej = ejei when|i − j| > 1

(generator indices, just like integers in the link pattern,are used modulo2N ). Similarly, theN “sym-
metrized” operatorse′i = eiei+N (for N ≥ 2) act on the link patterns of HTFPLs of sizeN , and theseN
symmetrized operators also satisfy the commutation relations for theN -generator cyclic Temperley-Lieb
algebra.

In both the nonsymmetric and half-turn-symmetric cases, one can define a Markov chain on link pat-
terns where, at each time step, one of the appropriate generators is chosen uniformly at random and applied
to the current state. In each case, the Markov chain is easilychecked to be irreducible and aperiodic, hence
it has a unique stationary distribution. Recent interest inFPLs and their link patterns is largely due to the
following conjectures; see [9, 18, 28] for recent advances,and the bibliography in [25] :
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Conjecture 3 (Razumov, Stroganov [20])The stationary distribution for link patterns of sizeN is

µ(π) =
A(N ; π)

A(N)
.

Conjecture 4 (de Gier [7, 17]) The stationary distribution for half-turn-invariant linkpatterns of sizeN
is

µHT(π) =
AHT(N ; π)

AHT(N)
.

By their definitions, the stationary distributionsµ andµHT are invariant under the “rotation” mapping
(in the noncrossing partition view)i 7→ i + 1 mod 2N . Wieland [26] bijectively proved that the dis-
tribution of link patterns of FPLs also has this property; his bijection maps HTFPLs to HTFPLs and
(even-sized) QTFPLs to QTFPLs, so the same is true of the distributions of their link patterns. It is easy
to check that the same bijection maps qQTFPLs to qQTFPLs (with the special provision that it might
change the edges around the center square from “two horizontal edges” to “two vertical edges”, so the
edges around this center square might have to be inverted).

3 Link patterns of QTFPLs
Let N = 4n. Any QTFPLf of sizeN is also a HTFPL, so its link pattern can be described by a bilateral
Dyck wordw of lengthN . But, becausef is invariant under a quarter-turn rotation,ww must be invariant
under conjugation with its left factorw′ of lengthN/2. This means we must havew = w′.w′, and thus
w′ is also a bilateral Dyck word.

Thus, the link patterns of QTFPLs of size4n can be described by the same words that we use to describe
link patterns of HTFPLs of size2n. We useAQT(N ; w) (whereN is divisible by 4, andw is a bilateral
Dyck word of lengthN/2) to denote the set of all QTFPLs of sizeN with link patternw (or link pattern
w.w when viewed as HTFPLs), andAQT(N ; w) to denote its cardinality.

We conjecture the following:

Conjecture 5 For anyn ≥ 0 and bilateral Dyck wordw of length2n,

AQT(4n; w) = AHT(2n; w).A(n)2. (5)

In other words, the link patterns of even-sized QTFPLs are distributedexactlyas those of HTFPLs with
half their size.

Conjecture 5 has been checked by exhaustive enumeration up to k = 5 (there are 114640611228 QTF-
PLs of size 20; the next term in the sequence is 10995014015567296, which makes exhaustive generation
unreasonable).

Whenf ∈ AQT(4n + 2) is a qQTFPL, it is also a HTFPL and its link pattern as such is described
by a bilateral Dyck word of length4N + 2. But, again, the link pattern is of a special form: because of
the rotational symmetry, the paths entering the center square of the grid by its four corners are rotational
images of each other, and cannot form closed loops. Thus, these paths exit the grid at 4 endpoints, which
form a single orbit under the quarter-turn rotation. Furthermore, the HTFPL link pattern is necessarily of
the formuavubv or ubvuav, wherevu is a Dyck word of length2n (this implies that the factorization is
unique). If we retain only the first2n + 1 letters of this word, and replace the distinguisheda or b letter
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with a c, what we obtain is exactly the link pattern of a HTFPL of sized2n + 1; this is what we hereafter
call the link pattern off . Note that if, in the definition of qQTFPLs, we required that the center square
have vertical edges instead of horizontal edges, this wouldonly change link patterns as HTFPLs (patterns
of the formuavubv would becomeubvuav would becomeuavubv, and vice versa) but not as qQTFPLs.

As an example, the qQTFPL shown in Figure 2(a) has link pattern babca as a qQTFPL,babaababba as
a HTFPL, andaabaababbababaababbb as a full FPL link pattern.

With this convention, we have a conjecture for the link patterns of qQTFPLs of size4n + 2, relating
them to those of HTFPLs of size2n + 1:

Conjecture 6 For anyn ≥ 0 and any half-turn-invariant link patternw of length2n + 1,

AQT(4n + 2; w) = AHT(2n + 1; w)A(n + 1)A(n). (6)

Of course, summation over all link patterns gives Conjecture 1, and this can be interpreted as saying
that link patterns of qQTFPLs of size4n + 2 are distributed exactly as those of HTFPLs of size2n + 1.

Conjectures 1, 2 and 6 have been checked by exhaustive enumeration up ton = 4; the total number
of qQTFPLs of size 18 is39204 · 429 · 42 = 706377672. The next term in the conjectured sequence,
7422987 · 7436 · 429 = 23679655141428, is out of reach of exhaustive enumeration programs.

A note on terminology: in the rest of this paper, whenever we mention the link pattern of a QTFPL or
qQTFPL, it should be understood to mean the word with length half the size of the FPL; if we need to
reference the link pattern as an FPL (which is a Dyck word withlength double the size of the FPL), we
will write full link pattern.

4 A special case: the rarest link pattern
In this section, we prove special cases of Conjectures 5 and 6when the considered link pattern is a very
specific one. When the wanted link pattern is of the formbnan (for QTFPLs) orbncan (for qQTFPLs),
the HTFPLs whose enumeration appear in the conjectures havefull link patterna2nb2n or a2n+1b2n+1,
respectively. In each case, there is only one HTFPL with sucha full link pattern; in fact, there is only one
FPL with such a link pattern (this has been noticed by many authors; one easy way to properly prove it is
with the fixed edge technique of de Gier which we use below). Thus, to prove the corresponding special
cases of Conjectures 5 and 6, we only need to prove that the corresponding QTFPLs and qQTFPLs are
counted byA(n)2 andA(n)A(n + 1), respectively. Both proofs are through a bijection with a specific
class of plane partitions.

For our purposes, aplane partition of sizek is a tiling of the regular hexagonHk of sidek with rhombi
of unit side. When the hexagon is tiled with equilateral triangles of unit side, the dual graph is a region
Rk of the honeycomb lattice, and rhombus tilings are in naturalbijection with perfect matchings ofRk.

A plane partition is said to becyclically symmetricif the tiling is invariant under a rotation of 120
degrees, andself-complementaryif it is invariant under a central symmetry (the terminologyis somewhat
confusing when plane partitions are viewed as tilings, but it is standard). Thus,cyclically symmetric,
self-complementaryplane partitions (CSSCPPs for short) are those that are invariant under a rotation of
60 degrees. It is easy to see that CSSCPPs only exist for even sizes, and it is known that the number of
CSSCPP of size2n is equal toA(n)2.

We define aquasi-cyclically symmetric, self-complementary plane partition (qCSSCPP) of size2n + 1
as a rhombus tiling, invariant under rotation of 60 degrees,of the regular hexagon of size2n + 1 with



Link patterns of quarter-turn symmetric FPL 337

(a) (b)

Fig. 2: (a) Example qQTFPL of size 10 and (b) Example qCSSCPP of size7

the central unit side hexagon removed. Such tilings (with a hole of a possibly different size) appear as
punctured plane partitionsin [8], where the connection with cyclically symmetrics tilings of a hexagon
with a triangular hole [6] is noticed.

We will prove the following:

Theorem 7 For anyn ≥ 1, there is a bijection betweenAQT(4n; bnan) and the set of CSSCPPs of size
2n, and a bijection betweenAQT(4n + 2; bncan) and the set of qCSSCPPs of size2n + 1.

(b)(a)

A

C

B

Fig. 3: Fixed edges for (a)AQT(12, bbbaaa) (b) AQT(14, bbbcaaa)

The known enumeration of CSSCPPs then concludes the proof of(5) for patternbnan; to prove (6) for
patternbncan, we will need our last theorem:

Theorem 8 The number of qCSSCPPs of size2n + 1 is A(n)A(n + 1).

Proof of Theorem 7: We rely on the technique of “fixed edges” due to de Gier [7], as used by Caselli and
Krattenthaler in [2] (see also [10, 3]). The technique uses the fact that, for a given link pattern, there may
be a large set of edges which appear in all FPLs with this particular link pattern. In some cases, this makes
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it possible to find a bijection between the target set of FPLs and the perfect matchings of some particular
planar graph, typically a region of the hexagonal lattice.

QTFPLs with link patternbnan have the full link patternan(anbn)3bn, which consists of 4 sets of
n nested arches each. This means that, on each of the grid sides, all n outgoing links are forbidden
from connecting to each other; thus, by Lemma 3.1 of [3], the following edges are fixed in every FPL
f ∈ A(4n; an(anbn)3bn):

• each horizontal edge whoseleft endpoint has odd sum of coordinates, inside the triangle whose
vertices have coordinates(0, 0), (4n − 2, 0) and(2n − 1, 2n− 1) (triangleABC on Figure 3(a));

• their orbits under the action of the 90 degree rotation centered at(2n − 1/2, 2n− 1/2).

Similarly, qQTFPLs with link patternbncan have as their full link patterna2n+1bnan+1bn+1anb2n+1

(four sets of nested arches, with alternatinglyn + 1, n, n + 1 andn arches each). Again, the same fixed
edges appear, as shown in Figure 3(b).

(a) (b)

Fig. 4: Graphs of non-fixed edges for (a)AQT(12, bbbaaa) (b) AQT(14, bbbcaaa)

In a QTFPL of size4n, the four “center” edges joining verticesC and its rotational images must either
all be included, or all excluded; with these vertices already having one incident fixed edge each, they must
be excluded. This in turn forces the presence of four more fixed edges, as shown in Figure 3(a). (The
symmetry conditions also force additional edges in the corners, but it is slightly more convenient to not
mention them now.)

To prove that we indeed have a bijection, we need to check thatall QTFPLs (respectively, qQTFPLs)
sharing the above-mentioned edges have link patternbnan) (respectively,bncan). We do this in detail for
the QTFPL case; the proof for qQTFPL is similar.

Consider the2n paths starting from endpoints along segmentAB. The horizontal fixed edges inside
triangleABC prevent them from connecting with each other, so that each ofthem will exit triangle
ABC either to the top (through segmentAC, includingC but excludingA) or to the bottom (through
segmentCB, includingB but excludingC. Any path exiting through segmentAC will be connected to
one from the top border, while any path exiting through segment CB will be connected to one from the
bottom border. Thus, the link pattern will be of the formbka2n−k, wherek is the number of paths exiting
along segmentAC. But quarter-turn symmetry implies that the number of pathsexiting triangleABC
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through segmentAC is equal to the number of paths entering triangleABC from the bottom triangle;
thus,k = 2n − k, and the link pattern is indeedbnan.

(a)G6 (b) G7

Fig. 5: Quotients under rotation of the nonfixed edge graphs in Figure 4

Note that in both the QTFPL and qQTFPL cases, each vertex in the grid is incident to either 1 or 2 fixed
edges. Thus, if we delete from the grid the fixed edges and the “forbidden” edges (those non-fixed edges
that are incident to at least one vertex with two incident fixed edges), we get a graph whose rotationally
invariant perfect matchings are in bijection with the considered symmetric FPLs. These two graphs,
shown on Figure 4, naturally have a rotational symmetry of order4, so we need only consider the perfect
matchings of their orbit graphs under this rotational symmetry, which are shown on Figure 5 (the dashed
lines in Figure 4 show where to “cut” to obtain the quotients). For QTFPLs, this quotient graph is exactly
the orbit graph, under rotational symmetry of order6, of the honeycomb graphR2n; for qQTFPLs, it is
the orbit graph, under rotational symmetry of order6, of the “holed” honeycomb graphR′

2n+1. Putting
all pieces together, we have the required bijections between FPLs and plane partitions. 2

Proof of Theorem 8: We now turn to the enumeration of qCSSCPPs of size2n + 1, for which we know
that they are in bijection with the perfect matchings of the quotiented honeycomb lattice regionG2n+1.

Notice thatG2n+1, as shown in Figure 5, has a reflective symmetry, with2n vertices on the symmetry
axis. Thus, we can use Ciucu’s Matching Factorization Theorem [4] (or, rather, the slight generalization
proved in Section 7 of [4], and used, in a very similar contextto ours, in [5]), and we get that the number
of perfect matchings ofG2n+1 is 2nM∗(G′

2n+1), whereG′
2n+1 is G2n+1 with all edges incident to

the symmetry axis, and lying below it, removed, and edges lying on the symmetry axis weighted1/2;
andM∗(G) denotes the weighted enumeration of perfect matchings ofG, that is, the sum over perfect
matchings of the product of weights of selected edges.

G′
2n+1, when redrawn as a region of the honeycomb lattice, is the dual of regionR′

2n+1 of the triangular
lattice (shown on Figure 6(b), with the weight1/2 rhombi greyed), on which we need to count rhombi
tilings. n + 1 rhombi on the right border ofR′

2n+1 are fixed (will appear in all tilings). Using a classical
correspondence between rhombi tilings and weighted configurations of nonintersecting lattice paths, we
are left with counting the number of nonintersecting (square) lattice path configurations, where the paths,
using East and South unit steps, collectively join verticesAi, 0 ≤ i ≤ n−1, to verticesBj, 0 ≤ j ≤ n−1,
with respective coordinates(i, 2i + 2) and(2j, j); the horizontal edges with right endpointsBj carry a
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(a)
1/2 1/2

(b) (c)

1/2

1/2

A0

A1

A2

B0

B1

B2

Fig. 6: (a) Honeycomb regionG′
7, (b) Triangular latticeR′

7 and (c) corresponding square lattice points

weight1/2, so that the weighted enumeration of paths joining verticesAi andBj is

w(Ai, Bj) =
1

2

(

i + j + 1

2j − i

)

+

(

i + j + 1

2j − i − 1

)

=
1

2
(3i + 4)

(i + j + 1)!

(2j − i)!(2i − j + 2)!
.

The Lindström-Gessel-Viennot theorem [16, 12] now expressesM∗(G′
2n+1) as the determinant

M∗(G′
2n+1) = det (w(Ai, Bj))0≤i,j≤n−1

; (7)

factoring out3i+4

2
in line i of the matrix, we get the number of perfect matchings ofG2n+1 as

M(G2n+1) =

(

n−1
∏

i=0

3i + 4

)

det

(

(i + j + 1)!

(2j − i)!(2i − j + 2)!

)

0≤i,j≤n−1

. (8)

The determinant in (8) happens to be the special casex = 2, y = 0 of [13, Theorem 40] (the enumera-
tion of CSSCPPs of size2n by the same method, as in [5, 6], corresponds tox = 1, y = 0). Factoring in
the product, this yields

M(G2n+1) =

n−1
∏

i=0

i!(i + 1)!(3i + 1)!(3i + 4)!

(2i)!(2i + 1)!(2i + 2)!(2i + 3)!
. (9)

Using this expression, one easily checks thatM(G2n+1)/M(G2n−1) = A(n + 1)/A(n − 1), thus
proving the theorem by induction (the casen = 1 corresponds to checking that there are only 2 qCSSPPs
of size3).

2

5 Further comments
The starting point and first motivation for this paper, as thetitle suggests, was Conjecture 5, which nicely
complements the previous conjectures of Razumov-Stroganov and de Gier. This suggests that a combina-
torial proof of one of the conjectures might be adapted to yield proofs of all of them, possibly by explicitly
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devising operators on FPLs that project to theei operators on link patterns, while having suitable bijective
properties.

The definitions of qQTFPLs and qCSSCPPs evolved out of an attempt to devise a general framework
for the random generation of symmetric FPLs and plane partitions [11]; their enumerative properties came
as a total surprise.

A proof of Conjecture 1, using techniques inspired from [15,21], will be given in an upcoming pa-
per [1].
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