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Algebraic shifting and strongly edge
decomposable complexes

Satoshi Murai †

Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka
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Abstract. Let Γ be a simplicial complex with n vertices, and let ∆(Γ) be either its exterior algebraic shifted complex
or its symmetric algebraic shifted complex. If Γ is a simplicial sphere, then it is known that (a) ∆(Γ) is pure and
(b) h-vector of Γ is symmetric. Kalai and Sarkaria conjectured that if Γ is a simplicial sphere then its algebraic
shifting also satisfies (c) ∆(Γ) ⊂ ∆(C(n, d)), where C(n, d) is the boundary complex of the cyclic d-polytope with
n vertices. We show this conjecture for strongly edge decomposable spheres introduced by Nevo. We also show that
any shifted simplicial complex satisfying (a), (b) and (c) is the algebraic shifted complex of some simplicial sphere.
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Introduction
Algebraic shifting, which was introduced by , is a map which associates with each simplicial complex Γ
another simplicial complex ∆(Γ) having a simple structure, called shifted. There are two main variants
of algebraic shifting, called exterior algebraic shifting ∆e(-) and symmetric algebraic shifting ∆s(-) (see
§2 for the detail). The simplicial complex ∆e(Γ) (resp. ∆s(Γ)) is called the exterior (resp. symmetric)
algebraic shifted complex of Γ. The main application of algebraic shifting is the study of face vectors
of simplicial complexes. Indeed algebraic shifting has been giving several remarkable results on this
ground (see Björner and Kalai (1989)). On the other hand, one of the major open problem in the theory
of face vectors of simplicial complexes is the characterization of face vectors of simplicial spheres (that
is, simplicial complexes whose geometric realization is homeomorphic to a sphere). Let ∆(-) be either
∆e(-) or ∆s(-). If Γ is a (d − 1)-dimensional simplicial sphere then it is known that ∆(Γ) satisfies the
following properties (see §1 for the definition of the h-vector of simplicial complexes).

(a) ∆(Γ) is pure, that is, all facets of ∆(Γ) have the same cardinality;

(b) the h-vector of ∆(Γ) is symmetric, that is, hi(∆(Γ)) = hd−i(∆(Γ)) for i = 0, 1, . . . , d.
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To characterize face vectors of simplicial spheres by using algebraic shifting, Kalai and Sarkaria suggested
the following conjecture.

Conjecture 1 (Kalai, Sarkaria) Let C(n, d) be the boundary complex of a cyclic d-polytope with n ver-
tices. If Γ is a (d− 1)-dimensional simplicial sphere with n vertices then

(c) ∆(Γ) ⊂ ∆s
(
C(n, d)

)
.

An important fact on this conjecture is that if Conjecture 1 is true (for either exterior shifting or symmetric
shifting) then it yields the characterization of face vectors of simplicial spheres (see Kalai (1991, 2002)).
Moreover, Kalai conjectured that condition (a), (b) and (c) characterize algebraic shifted complexes of
simplicial spheres.

In this paper, we give two results on Conjecture 1. First, we show that Conjecture 1 is true for simplicial
spheres satisfying a certain combinatorial property, called strongly edge decomposable. (Note that, for
symmetric algebraic shifting, this result was essentially proved in Babson and Nevo (2008).) Second, we
show that for any (d−1)-dimensional pure shifted complex Σ with n vertices satisfying Σ ⊂ ∆s(C(n, d))
and hi(Σ) = hd−i(Σ) for i = 0, 1, . . . , d, there exists a simplicial sphere Γ such that ∆e(Γ) = ∆s(Γ) =
Σ. Thus, if Conjecture 1 is true, this result gives the sufficiency of the characterization of algebraic shifted
complexes of simplicial spheres.

1 Strongly edge decomposable simplicial complexes
In this section we study the strongly edge decomposable property introduced by Nevo (2006). Let Γ be
a simplicial complex on [n] = {1, 2, . . . , n}. Thus Γ is a collection of subsets of [n] satisfying that (i)
{i} ∈ Γ for all i ∈ [n] and (ii) if F ∈ Γ and G ⊂ F then G ∈ Γ. An element F of Γ is called a face of
Γ and maximal faces of Γ under inclusion are called facets of Γ. A simplicial complex is said to be pure
if all its facets have the same cardinality. Let fk(Γ) be the number of faces F ∈ Γ with |F | = k + 1,
where |F | is the cardinality of F . The dimension of Γ is dim Γ = max{k : fk(Γ) 6= 0}. The vector
f(Γ) = (f0(Γ), f1(Γ), . . . , fd−1(Γ)) is called the f -vector of Γ, where d = dim Γ + 1.

First, we define strongly edge decomposable complexes. Let Γ be a simplicial complex on [n]. The link
of Γ with respect to F ⊂ [n] is the simplicial complex

lkΓ(F ) = {G ⊂ [n] \ F : G ∪ F ∈ Γ}.

To simplify, we write lkΓ(v) = lkΓ({v}) and lkΓ(ij) = lkΓ({i, j}). Let 1 ≤ i < j ≤ n be integers.
The contraction CΓ(ij) of Γ with respect to {i, j} is the simplicial complex on [n] \ {i} which is obtained
from Γ by identifying the vertices i and j. In other words,

CΓ(ij) = {F ∈ Γ : i 6∈ F} ∪ {(F \ {i}) ∪ {j} : i ∈ F ∈ Γ}.

We say that Γ satisfies the Link condition with respect to {i, j} if

lkΓ(i) ∩ lkΓ(j) = lkΓ(ij).

Definition 1.1 The boundary complex of simplexes and {∅} are strongly edge decomposable and, recur-
sively, a pure simplicial complex Γ is said to be strongly edge decomposable if there exists {i, j} ∈ Γ
such that Γ satisfies the Link condition with respect to {i, j} and both CΓ(ij) and lkΓ(ij) are strongly
edge decomposable.
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The above definition is a natural extension of (Nevo, 2006, Definition 4.2). While Nevo assume that
Γ is a triangulated PL-manifold, we only assume that Γ is a pure simplicial complex. Strongly edge
decomposable complexes are not always a manifold, however, the class of strongly edge decomposable
complexes contains a certain class of simplicial spheres. For example, 2-spheres are always strongly edge
decomposable (see Nevo (2006)).

Second, we study the relation between the Link condition and shift operators. Let Γ be a simplicial
complex on [n]. For given integers 1 ≤ i < j ≤ n and for all F ∈ Γ, one defines

Cij(F ) =
{

(F \ {i}) ∪ {j}, if i ∈ F , j 6∈ F and (F \ {i}) ∪ {j} 6∈ Γ,
F, otherwise.

Let Shiftij(Γ) = {Cij(F ) : F ∈ Γ}. It is easy to see that Shiftij(Γ) is a simplicial complex satisfying
f(Shiftij(Γ)) = f(Γ) (see e.g., (Herzog, 2002, §8)). The operation Γ → Shiftij(Γ) was introduced by
Erdös et al. (1961), and played an important role in the classical extremal combinatorics of finite sets.

For a subset F ⊂ [n] and for a simplicial complex Γ on the vertex set [n] \ F we write

F ∗ Σ = {F ′ ∪G : F ′ ⊂ F and G ∈ Σ}.

The following simple fact, which easily follows from the definition of Shiftij(-), will play an important
role in the study of algebraic shifted complexes of strongly edge decomposable complexes.

Lemma 1.2 Let Γ be a simplicial complex on [n] and let 1 ≤ i < j ≤ n be integers. Then

Shiftij(Γ) = CΓ(ij) ∪
{
{i} ∪ F : F ∈

(
{j} ∗ lkΓ(ij)

)
∪
(
lkΓ(i) ∩ lkΓ(j)

)}
.

Next, we study the h-vector of strongly edge decomposable complexes.

Lemma 1.3 Let Γ be a (d−1)-dimensional strongly edge decomposable complex on [n]. Then dim CΓ(ij) =
d− 1 and dim lkΓ(ij) = d− 3 for any {i, j} ∈ Γ.

Proof: Since Γ is pure, dim lkΓ(ij) = d−3 is obvious. Suppose dim CΓ(ij) < d−1. Then all facets of Γ
contain {i, j}. Thus Γ is a cone (that is, Γ = {v}∗ lkΓ(v) for some {v} ∈ Γ). However, if Γ is a cone then
its contraction is again a cone. This contradicts the assumption since if Γ is strongly edge decomposable
then we can obtain the boundary of a simplex by taking contractions repeatedly. Thus dim CΓ(ij) = d−1.
2

Let Γ be a (d − 1)-dimensional simplicial complex. The h-vector h(Γ) = (h0(Γ), h1(Γ), . . . , hd(Γ))
of Γ is defined by the relations

hi(Γ) =
i∑

j=0

(−1)i−j

(
d− j
d− i

)
fj−1(Γ) and fi−1(Γ) =

i∑
j=0

(
d− j
d− i

)
hj(Γ),

where we set f−1(Γ) = 1. If Γ satisfies the Link condition w.r.t. {i, j} ∈ Γ then by Lemma 1.2 we have

fk(Γ) = fk

(
CΓ(ij)

)
+ fk−1

(
{j} ∗ lkΓ(ij)

)
for k = 0, 1, . . . , d− 1.
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Moreover, if dim CΓ(ij) = d− 1 and dim lkΓ(ij) = d− 3 then, by using the relation between f -vectors
and h-vectors, we have

hk(Γ) = hk

(
CΓ(ij)

)
+ hk−1

(
{j} ∗ lkΓ(ij)

)
= hk

(
CΓ(ij)

)
+ hk−1

(
lkΓ(ij)

)
for k = 0, 1, . . . , d.

Then, arguing inductively, the h-vector of strongly edge decomposable complexes satisfies the following
conditions.

Lemma 1.4 (Nevo) Let Γ be a (d− 1)-dimensional strongly edge decomposable complex. Then hi(Γ) =
hd−i(Γ) for i = 0, 1, . . . , d and h0(Γ) ≤ h1(Γ) ≤ · · · ≤ hb d

2 c
(Γ), where bd

2c is the integer part of d
2 .

Actually, the h-vector of strongly edge decomposable complexes satisfies a stronger condition. Indeed,
it is known that strongly edge decomposable complexes have the strong Lefschetz property (see §4). Thus
the g-vector of those complexes is an M -vector.

2 Algebraic shifting
In this section, we recall some basic properties of algebraic shifting. We refer the reader to Eisen-
bud (1995) and Herzog (2002) for the basis on Gröbner bases and generic initial ideals. Let S =
K[x1, . . . , xn] be a polynomial ring over an infinite fieldK with each deg xi = 1 andE =

∧
〈e1, . . . , en〉

the exterior algebra over K with each deg ei = 1. Let R be either S or E and let GLn(K) be the general
linear group with coefficients in K. Suppose that GLn(K) acts on R as the group of graded K-algebra
automorphisms. For a homogeneous ideal I of R, we write in(I) for the initial ideal of I w.r.t. the reverse
lexicographic order induced by 1 > 2 > · · · > n. The generic initial ideal of a homogeneous ideal I ⊂ R
is Gin(I) = in(ϕ(I)) for a generic choice of ϕ ∈ GLn(K).

Exterior algebraic shifting. Let Γ be a simplicial complex on [n]. For a subset F = {i1, . . . , ik} ⊂ [n]
with i1 < · · · < ik, the element eF = ei1 ∧ · · · ∧ eik

∈ E is called a monomial of E of degree k. The
exterior face ideal JΓ of Γ is the ideal of E generated by all monomials eF ∈ E with F 6∈ Γ. The exterior
algebraic shifted complex ∆e(Γ) of Γ is defined by

J∆e(Γ) = Gin(JΓ).

The map Γ→ ∆e(Γ) is called exterior algebraic shifting. Note that ∆e(Γ) may depend on the character-
istic of the base field K.

Symmetric algebraic shifting. Suppose char(K) = 0. Let Γ be a simplicial complex on [n]. The
Stanley–Reisner ideal IΓ of Γ is the ideal of S generated by all squarefree monomials xF =

∏
i∈F xi ∈ S

with F 6∈ Γ. Let M be the set of monomials on infinitely many variables x1, x2, . . . . The squarefree
operation Φ :M→M is the map defined by

Φ(xi1xi2xi3 · · ·xik
) = xi1xi2+1xi3+2 · · ·xik+k−1,

where i1 ≤ i2 ≤ · · · ≤ ik. For a monomial ideal I of S, we write G(I) for the unique minimal set
of monomial generators of I . If I ⊂ S is a monomial ideal satisfying Φ(u) ∈ S for all u ∈ G(I), we
write Φ(I) for the monomial ideal of S generated by {Φ(u) : u ∈ G(I)}. It is known that if I ⊂ S is a
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squarefree monomial ideal then Φ(u) ∈ S for all u ∈ G(Gin(I)) (see e.g., (Herzog, 2002, Lemma 8.15)).
The symmetric algebraic shifted complex ∆s(Γ) of Γ is defined by

J∆s(Γ) = Φ
(
Gin(IΓ)

)
.

The map Γ→ ∆s(Γ) is called symmetric algebraic shifting.

A simplicial complex Γ on [n] is said to be shifted if F ∈ Γ and i ∈ F imply (F \{i})∪{j} ∈ Γ for all
i < j ≤ n. Let Γ and Σ be simplicial complexes on [n] and let ∆(-) be either ∆e(-) or ∆s(-). Algebraic
shifting satisfies the following properties (see Herzog (2002) and Kalai (2002)).

(S1) ∆(Γ) is shifted;

(S2) If Γ is shifted then ∆(Γ) = Γ;

(S3) f(∆(Γ)) = f(Γ);

(S4) If Σ ⊂ Γ then ∆(Σ) ⊂ ∆(Γ).

Lemma 2.1 (Kalai) Let ∆(-) be either ∆e(-) or ∆s(-). For any simplicial complex Γ on [n], one has

∆({n+ 1} ∗ Γ) = {n+ 1} ∗∆(Γ).

We say that a simplicial complex Γ is Cohen–Macaulay if the ring S/IΓ is Cohen–Macaulay (see
Stanley (1996) for further information on the Cohen–Macaulay property).

Lemma 2.2 (Kalai) If Γ is Cohen–Macaulay over K then ∆e(Γ) (computed over K) and ∆s(Γ) are
pure. Also, a shifted complex is Cohen–Macaulay if and only if it is pure.

We refer the reader to Babson et al. (2006); Herzog (2002); Nevo (2005) for the proof of Lemmas 2.1
and 2.2. For further details on algebraic shifting, see the survey articles Herzog (2002) and Kalai (2002).

3 Exterior shifting of strongly edge decomposable complex
In this section, we will show that any (d− 1)-dimensional strongly edge decomposable complex Γ on [n]
satisfies ∆e(Γ) ⊂ ∆s(C(n, d)). We first recall the structure of ∆s(C(n, d)). Fix integers n > d > 0.
For integers 1 ≤ i < j ≤ n, we write [i] = {1, 2, . . . , i} and write [i, j] = {i, i + 1, . . . , j − 1, j}. For
i = 0, 1, . . . , bd

2c, let

Wi(n, d) =
{(

[n− d+ i, n] \ {n− d+ i}
)
∪ F : F ⊂ [n− d+ i− 1], |F | = i

}
and

Wd−i(n, d) =
{(

[n− d+ i, n] \ {n− i}
)
∪ F : F ⊂ [n− d+ i− 1], |F | = i

}
.

Let ∆(n, d) be the simplicial complex generated by
⋃d

i=0Wi(n, d) and let ∆(n, 0) = {∅}. The following
fact is known (see Kalai (1991) and Murai (2007a)).

Lemma 3.1 Let n > d > 0 be integers and let C(n, d) be the boundary complex of a cyclic d-polytope
with n vertices. Then

∆e
(
C(n, d)

)
= ∆s

(
C(n, d)

)
= ∆(n, d).
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To study Conjecture 1, we use nongeneric algebraic shifting. Let Γ be a simplicial complex on [n]. For
any ϕ ∈ GLn(K), we write ∆ϕ(Γ) for the simplicial complex defined by

J∆ϕ(Γ) = in
(
ϕ(JΓ)

)
.

The next fact can be proved in the same way as (Murai, 2007a, Proposition 2.4) by using (Murai, 2007a,
Lemma 1.5).

Lemma 3.2 Let Γ be a (d − 1)-dimensional simplicial complex on [n]. If ∆e(∆ϕ(Γ)) ⊂ ∆(n, d) for
some ϕ ∈ GLn(K) then ∆e(Γ) ⊂ ∆(n, d).

Lemma 3.2 has a nice relation to shift operators. The following fact is known (see Herzog (2002)).

Lemma 3.3 Let 1 ≤ i < j ≤ n be integers and let ϕij ∈ GLn(K) be the graded K-algebra automor-
phism of E induced by ϕij(ek) = ek for k 6= j and ϕij(ej) = ei + ej . Then, for any simplicial complex
Γ on [n], one has

Shiftij(Γ) = ∆ϕij
(Γ).

We also need the following fact, which immediately follows from (Nevo, 2005, Corollary 4.4).

Lemma 3.4 Let Γ be a simplicial complex on {m,m+1, . . . , n}with 1 ≤ m ≤ n and JΓ ⊂
∧
〈em, . . . , en〉

the exterior face ideal of Γ. Let JΓ + (e1, . . . , em−1) be the ideal of E generated by G(JΓ) and
e1, . . . , em−1. Then

Gin
(
JΓ + (e1, . . . , em−1)

)
= Gin(JΓ) + (e1, . . . , em−1).

Next, we study the structure of ∆(n, d). Let V ⊂ [n] and let Γ be a simplicial complex on V . Con-
sider the exterior face ideal JΓ in

∧
〈ek : k ∈ V 〉 and define the simplicial complex ∆e(Γ) on V by

J∆e(Γ) = Gin(JΓ). Let C(V, d) be the boundary complex of a cyclic d-polytope with the vertex set V .
Set ∆(V, d) = ∆e(C(V, d)) for d > 0 and ∆(V, 0) = {∅}.
Lemma 3.5 Let n > d ≥ 0 be integers. Then ∆([2, n], d) ⊂ ∆(n, d) and {1, n + 1} ∗ ∆([2, n], d) ⊂
∆(n+ 1, d+ 2).

Proof: If d = 0 then the statement is obvious. Suppose d > 0. Let F be a facet of ∆([2, n], d). Clearly
∆([2, n], d) = {{i1, . . . , ik} : {i1 − 1, . . . , ik − 1} ∈ ∆(n − 1, d)} by Lemma 3.1. Thus there exists
0 ≤ i ≤ d

2 and F ′ ⊂ [2, n− d+ i− 1] such that

F =
(
[n− d+ i, n] \ {n− d+ i}

)
∪ F ′ (1)

or

F =
(
[n− d+ i, n] \ {n− i}

)
∪ F ′. (2)

In both cases, it is clear that F ∈ ∆(n, d) and hence ∆([2, n], d) ⊂ ∆(n, d). Also, a routine computation
implies that if F is an element of the form (1) then {1, n + 1} ∪ F ∈ Wi+1(n + 1, d + 2), and if
F is an element of the form (2) then {1, n + 1} ∪ F ∈ Wd+2−(i+1)(n + 1, d + 2). Thus we have
{1, n+ 1} ∗∆([2, n], d) ⊂ ∆(n+ 1, d+ 2). 2

Now we will show that any (d−1)-dimensional strongly edge decomposable complex Γ on [n] satisfies
∆e(Γ) ⊂ ∆s(C(n, d)). We say that a (d− 1)-dimensional simplicial complex Γ on V ⊂ [n] satisfies the
shifting-theoretic upper bound relation if ∆e(Γ) ⊂ ∆(V, d).
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Proposition 3.6 Let Γ be a (d − 1)-dimensional simplicial complex on [n] and let 1 ≤ i < j ≤ n be
integers. Suppose dim CΓ(ij) = d−1 and dim lkΓ(i)∩lkΓ(j) = d−3. If CΓ(ij) and lkΓ(i)∩lkΓ(j) satisfy
the shifting-theoretic upper bound relation then Γ satisfies the shifting-theoretic upper bound relation.

Proof: By Lemmas 3.2 and 3.3, it is enough to show that ∆e(Shiftij(Γ)) ⊂ ∆(n, d). Let Γ1 = CΓ(ij),
Γ2 = {j} ∗ (lkΓ(i) ∩ lkΓ(j)) and Σ = Γ1 ∪ {{i} ∪ F : F ∈ Γ2}. Then Σ is a simplicial complex on [n]
since {j} ∗ (lkΓ(i) ∩ lkΓ(j)) ⊂ CΓ(ij). Also, since lkΓ(i) ∩ lkΓ(j) ⊃ lkΓ(ij), we have Shiftij(Γ) ⊂ Σ
by Lemma 1.2. Thus, by (S4), it suffices to show that ∆e(Σ) ⊂ ∆(n, d).

Since ∆e(Γ) is independent of the labeling of the vertices of Γ (see Kalai (2002)), we may assume that
i = 1, j = n and the vertex set of lkΓ(i) ∩ lkΓ(j) is a set of the form [m,n − 1] for some m ≥ 2. Set
E′ =

∧
〈e2, . . . , en〉 and Ẽ =

∧
〈em, . . . , en〉. Let JΓ1 ⊂ E′ be the exterior face ideal of Γ1 and JΓ2 ⊂ Ẽ

the exterior face ideal of Γ2. Then, since Σ = Γ1 ∪ {{1} ∪ F : F ∈ Γ2}, we have

JΣ = JΓ1

⊕
e1 ∧

(
JΓ2 + (e2, . . . , em−1)

)
,

where JΓ2 + (e2, . . . , em−1) is an ideal of E′. Then there exists a ϕ ∈ GLn−1(K) which acts on E′

such that in(ϕ(JΓ1)) = Gin(JΓ1) and in(ϕ(JΓ2 + (e2, . . . , em−1))) = Gin(JΓ2 + (e2, . . . , em−1)). Let
ϕ̃ ∈ GLn(K) be an automorphism of E defined by ϕ̃(e1) = e1 and ϕ̃(ek) = ϕ(ek) for k = 2, 3, . . . , n.
Then we have

J∆ϕ̃(Σ) = in
(
ϕ̃(JΣ)

)
= Gin(JΓ1)

⊕
e1 ∧Gin

(
JΓ2 + (e2, . . . , em−1)

)
.

Then it follows from Lemmas 2.1 and 3.4 that

Gin
(
JΓ2 + (e2, . . . , em−1)

)
= J{n}∗∆e(lkΓ(i)∩lkΓ(j)) + (e2, . . . , em−1).

Thus we have

∆ϕ̃(Σ) = ∆e(Γ1) ∪
{
{1} ∪ F : F ∈ {n} ∗∆e

(
lkΓ(i) ∩ lkΓ(j)

)}
⊂ ∆e(Γ1) ∪

(
{1, n} ∗∆e

(
lkΓ(i) ∩ lkΓ(j)

))
.

Since ∆e(Γ1) ⊂ ∆([2, n], d) and ∆e(lkΓ(i) ∩ lkΓ(j)) ⊂ ∆([m,n−1], d−2) by the assumption, Lemma
3.5 implies ∆ϕ̃(Σ) ⊂ ∆(n, d). Then by (S2) and (S4) we have

∆e
(
∆ϕ̃(Σ)

)
⊂ ∆e

(
∆(n, d)

)
= ∆(n, d).

Hence we have ∆e(Σ) ⊂ ∆(n, d) by Lemma 3.2 as desired. 2

If Γ is the boundary of a simplex then we have ∆e(Γ) = Γ = ∆(d + 1, d). Then the next statement
follows from Lemma 1.3 and Proposition 3.6 inductively.

Theorem 3.7 If Γ is a (d − 1)-dimensional strongly edge decomposable complex on [n] then ∆e(Γ) ⊂
∆(n, d).
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4 The strong Lefschetz property
In this section, we recall the relation between algebraic shifting and the strong Lefschetz property. Let
S = K[x1, . . . , xn] be a polynomial ring over an infinite field K with each deg xi = 1. For a graded
S-module M , we write Mk for the homogeneous component of degree k of M . We refer the reader to
Stanley (1996) for foundations on commutative algebra, such as the Cohen–Macaulay property and linear
systems of parameters (l.s.o.p. for short).

Let Γ be a (d − 1)-dimensional simplicial complex on [n]. The ring K[Γ] = S/IΓ is called the
Stanley–Reisner ring of Γ. It is known that the Krull dimension ofK[Γ] is equal to d (see Stanley (1996)).
We say that Γ has the strong Lefschetz property if K[Γ] is Cohen–Macaulay and there exist an l.s.o.p.
θ1, . . . , θd ∈ S1 of K[Γ] and a linear form ω ∈ S1 such that the multiplication map

ωd−2i :
(
K[Γ]/(θ1, . . . , θd)K[Γ]

)
i
→
(
K[Γ]/(θ1, . . . , θd)K[Γ]

)
d−i

is bijective for i = 0, 1, . . . , bd
2c. The strong Lefschetz property was used by Stanley (1980) to prove

the necessity of the characterization of face vectors of simplicial polytopes (see Stanley (1996) for further
information). It was conjectured that all simplicial spheres have the strong Lefschetz property since it
yields the characterization of face vectors of simplicial spheres. Conjecture 1 is closely related to this
conjecture. Indeed, Kalai (1991) proved the following result.

Lemma 4.1 (Kalai) Let Γ be a (d − 1)-dimensional Cohen–Macaulay complex on [n]. Then Γ has the
strong Lefschetz property in characteristic 0 if and only if ∆s(Γ) ⊂ ∆s(C(n, d)) and hi(Γ) = hd−i(Γ)
for i = 0, 1, . . . , d.

On the other hand, strongly edge decomposable complexes are Cohen–Macaulay and have the strong
Lefschetz property by the next theorem.

Theorem 4.2 Let Γ be a (d−1)-dimensional simplicial complex on [n] satisfying the Link condition with
respect to {i, j} ⊂ [n]. Suppose dim CΓ(ij) = d− 1 and dim lkΓ(ij) = d− 3.

(i) if CΓ(ij) and lkΓ(ij) have the strong Lefschetz property then Γ has the strong Lefschetz property.

(ii) if CΓ(ij) and lkΓ(ij) are Cohen–Macaulay then Γ is Cohen–Macaulay.

Theorem 4.2 (i) was first proved by Babson and Nevo (2008) in characteristic 0 (while they did not
claim that they proved it, all essential ingredients for the proof appeared in the paper), and the proof in
arbitrary characteristic was later given in Murai (2008).

Let Γ be a (d − 1)-dimensional strongly edge decomposable complex on [n]. By Theorem 4.2 Γ is
Cohen–Macaulay in arbitrary characteristic. Thus ∆e(Γ) and ∆s(Γ) are pure by Lemma 2.2. Also, the
h-vector of Γ is symmetric by Lemma 1.4. Moreover, by Theorems 3.7 and 4.2 together with Lemmas
3.1 and 4.1, it follows that ∆e(Γ) ⊂ ∆s(C(n, d)) and ∆s(Γ) ⊂ ∆s(C(n, d)). Thus algebraic shifted
complexes of strongly edge decomposable complexes satisfy condition (a), (b) and (c) in the Introduction.
To summarise, we have

Theorem 4.3 Let ∆(-) be either ∆e(-) or ∆s(-) and let Γ be a (d − 1)-dimensional strongly edge de-
composable complex on [n]. Then ∆(Γ) is pure, hi(∆(Γ)) = hd−i(∆(Γ)) for d = 0, 1, . . . , d and
∆(Γ) ⊂ ∆s(C(n, d)).

In the next section, we will show that the above theorem characterizes algebraic shifted complexes of
strongly edge decomposable complexes.
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5 Algebraic shifting and squeezed spheres
Squeezed spheres were introduced by Kalai (1988) by extending the construction of Billera–Lee polytopes
(Billera and Lee (1981)). The aim of this section is to prove the following result.

Theorem 5.1 Let ∆(-) be either ∆e(-) or ∆s(-) and let Σ be a (d−1)-dimensional pure shifted simplicial
complex on [n] satisfying hi(Σ) = hd−i(Σ) for i = 0, 1, . . . , d and Σ ⊂ ∆s(C(n, d)). Then there exists
a squeezed sphere Γ such that ∆(Γ) = Σ.

First we introduce squeezed spheres following (Kalai, 1988, §5.2) and (Murai, 2007b, §2). Fix integers
n > d > 0 and let m = n − d − 1. Let M[m] be the set of monomials in K[x1, . . . , xm] where
M[0] = {1}. A set U of monomials inM[m] is called an order ideal of monomials on [m] if U satisfies
(i) {1, x1, . . . , xm} ⊂ U and (ii) if u ∈ U and v ∈ M[m] divides u then v ∈ U . An order ideal
U of monomials on [m] is said to be shifted if uxi ∈ U and i < j ≤ m imply uxj ∈ U . For any
u = xi1 · · ·xik

∈M[m] with i1 ≤ · · · ≤ ik and with k ≤ d+1
2 , define a (d+ 1)-subset Fd(u) ⊂ [n] by

Fd(u) = {i1, i1 + 1} ∪ {i2 + 2, i2 + 3} ∪ . . . ∪ {ik + 2(k − 1), ik + 2k − 1} ∪ [n+ 2k − d, n]

where Fd(1) = [n− d, n]. Let U be a shifted order ideal of monomials of degree at most d+1
2 on [m] and

let Bd(U) be the simplicial complex generated by {Fd(u) : u ∈ U}. Kalai (1988) proved that Bd(U) is
a shellable d-ball with n vertices. This simplicial complex Bd(U) is called the squeezed d-ball w.r.t. U ,
and its boundary Sd(U) = ∂(Bd(U)) is called the squeezed (d − 1)-sphere w.r.t. U . The following fact
is known (see (Kalai, 1988, Proposition 5.3)).

Lemma 5.2 (Kalai) Let d ≥ 0 be an integer and U a shifted order ideal of monomials of degree at most
d+1

2 . Then {
F ∈ Bd(U) : |F | ≤ d

2
}

=
{
F ∈ Sd(U) : |F | ≤ d

2
}
.

Simplicial spheres are not always strongly edge decomposable (see (Dey et al., 1999, §7)). However, a
class of strongly edge decomposable complexes contains squeezed spheres.

Proposition 5.3 Squeezed spheres are strongly edge decomposable.

Since squeezed spheres are not always polytopal (Kalai (1988)), Proposition 5.3 shows that the class
of strongly edge decomposable spheres is not contained in the class of boundary complexes of simplicial
polytopes, which is a famous class of simplicial complexes whose Stanley–Reisner ring have the strong
Lefschetz property. The proof of Proposition 5.3 is given inductively by using the next lemma.

Lemma 5.4 Let d > 2 and n > d + 1 be integers. Let Sd(U) be a squeezed sphere on [n]. Then
Sd(U) satisfies the Link condition with respect to {1, 2} and both CSd(U)({1, 2}) and lkSd(U)({1, 2}) are
combinatorially isomorphic to some squeezed spheres.

Here we omit the proof of Lemma 5.4. (The proof is not difficult, however, we need to check which
subsets are facets of Sd(U) carefully.)

Next, we will show Theorem 5.1. For a (d− 1)-dimensional simplicial complex Γ on [n], let

U(Γ) = {u ∈M[n−d−1] : u 6∈ Gin(IΓ)},

where IΓ ⊂ S is the Stanley–Reisner ideal of Γ and Gin(-) is the generic initial ideal in characteristic 0.
Kalai (1991) proved the following result (see also (Kalai, 2002, p. 144)).
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Lemma 5.5 (Kalai) Let Γ be a (d−1)-dimensional simplicial complex on [n] having the strong Lefschetz
property in characteristic 0. Then U(Γ) is a shifted order ideal of monomials of degree at most d

2 on
[n−d−1]. Moreover, if Σ is a (d−1)-dimensional simplicial complex on [n] having the strong Lefschetz
property in characteristic 0 and satisfying U(Σ) = U(Γ) then ∆s(Σ) = ∆s(Γ).

The following result was shown in (Murai, 2007b, Proposition 4.1, Theorem 4.2 and Corollary 7.7).

Lemma 5.6 Let d ≥ 0 be an integer and U a shifted order ideal of monomials of degree at most d+1
2 .

Then ∆e(Bd(U)) = ∆s(Sd(U)). Moreover, if max{deg u : u ∈ U} ≤ d
2 then U(Sd(U)) = U.

Proposition 5.7 For any squeezed (d− 1)-sphere Sd(U) one has ∆e(Sd(U)) = ∆s(Sd(U)).

Proof: By (S2) it is enough to show ∆s(∆e(Sd(U))) = ∆s(∆s(Sd(U))). Note that ∆e(Sd(U)) and
∆s(Sd(U)) are Cohen–Macaulay by Lemma 2.2. Since squeezed spheres are strongly edge decompos-
able, by using (S2), it follows from Lemma 4.1 and Theorem 4.3 that ∆e(Sd(U)) and ∆s(Sd(U)) have
the strong Lefschetz property in characteristic 0. Then, by Lemma 5.5, what we must prove is

U
(
∆e(Sd(U))

)
= U

(
∆s(Sd(U))

)
.

Since U
(
∆e(Sd(U))

)
and U

(
∆s(Sd(U))

)
are sets of monomials of degree at most d

2 by Lemma 5.5, it
follows from Lemmas 5.2 and 5.6 that

U
(
∆e(Sd(U))

)
=

{
u ∈M[n−d−1] : u 6∈ Gin(I∆e(Sd(U)))

}
=

{
u ∈M[n−d−1] : u 6∈ Gin(I∆e(Bd(U))), deg u ≤ d

2
}

=
{
u ∈M[n−d−1] : u 6∈ Gin(I∆s(Bd(U))), deg u ≤ d

2
}

=
{
u ∈M[n−d−1] : u 6∈ Gin(I∆s(Sd(U)))

}
= U

(
∆s(Sd(U))

)
,

as desired. 2

Proof of Theorem 5.1: By Proposition 5.7, it is enough to prove the statement for symmetric algebraic
shifting. Since Σ is shifted and pure, Σ is Cohen–Macaulay by Lemma 2.2. Also, since ∆s(Σ) = Σ by
(S2), the assumption and Lemma 4.1 imply that Σ has the strong Lefschetz property in characteristic 0.
Then by Lemma 5.5 it follows that U(Σ) is a shifted order ideal of monomials of degree at most d

2 .
We will show ∆s(Sd(U(Σ))) = ∆s(Σ) = Σ. Since squeezed spheres have the strong Lefschetz

property by Theorem 4.2 and Proposition 5.3, what we must prove is U(Sd(U(Σ))) = U(Σ). However,
this equation immediately follows from Lemma 5.6. 2
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