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A universal word for a finite alphabet A and some integer n ≥ 1 is a word over A such that every word in An appears

exactly once as a subword (cyclically or linearly). It is well-known and easy to prove that universal words exist for

any A and n. In this work we initiate the systematic study of universal partial words. These are words that in addition

to the letters from A may contain an arbitrary number of occurrences of a special ‘joker’ symbol ✸ /∈ A, which can

be substituted by any symbol from A. For example, u = 0✸011100 is a linear partial word for the binary alphabet

A = {0, 1} and for n = 3 (e.g., the first three letters of u yield the subwords 000 and 010). We present results on

the existence and non-existence of linear and cyclic universal partial words in different situations (depending on the

number of ✸s and their positions), including various explicit constructions. We also provide numerous examples of

universal partial words that we found with the help of a computer.
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1 Introduction

De Bruijn sequences are a centuries-old and well-studied topic in combinatorics, and over the years they

found widespread use in real-world applications, e.g., in the areas of molecular biology [10, 23], computer

security [25], computer vision [24], robotics [28] and psychology experiments [27]. More recently, they

have also been studied in a more general context by constructing universal cycles for other fundamental

combinatorial structures such as permutations or subsets of a fixed ground set (see e.g. [4, 20, 8, 19, 29]).

In the context of words over a finite alphabet A, we say that a word u is universal for An if u contains

every word of length n ≥ 1 over A exactly once as a subword. We distinguish cyclic universal words

and linear universal words. In the cyclic setting, we view u as a cyclic word and consider all subwords

of length n cyclically across the boundaries of u. In the linear setting, on the other hand, we view u as

a linear word and only consider subwords that start and end within the index range of letters of u. From
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this definition it follows that the length of a cyclic or linear universal word must be |A|n or |A|n + n− 1,

respectively. For example, for the binary alphabet A = {0, 1} and for n = 3, u = 0001011100 is a

linear universal word for A3. Observe that a cyclic universal word for An can be easily transformed into

a linear universal word for An, so existence results in the cyclic setting imply existence results for the

linear setting. Note also that reversing a universal word, or permuting the letters of the alphabet yields a

universal word again. The following classical result is the starting point for our work (see [11, 31, 22]).

Theorem 1 For any finite alphabet A and any n ≥ 1, there exists a cyclic universal word for An.

The standard proof of Theorem 1 is really beautiful and concise, using the De Bruijn graph, its line

graph and Eulerian cycles (see [8] and Section 2 below).

1.1 Universal partial words

In this paper we consider the universality of partial words, which are words that in addition to letters from

A may contain any number of occurrences of an additional special symbol ✸ /∈ A. The idea is that every

occurrence of ✸ can be substituted by any symbol from A, so we can think of ✸ as a ‘joker’ or ‘wildcard’

symbol. Formally, we define A✸ := A ∪ {✸} and we say that a word v = v1v2 · · · vn ∈ An appears as

a factor in a word u = u1u2 · · ·um ∈ Am
✸

if there is an integer i such that ui+j = ✸ or ui+j = vj for

all j = 1, 2, . . . , n. In the cyclic setting we consider the indices of u in this definition modulo m. For

example, in the linear setting and for the ternary alphabet A = {0, 1, 2}, the word v = 021 occurs twice

as a factor in u = 120✸120021 because of the subwords 0✸1 and 021 of u, whereas v does not appear as

a factor in u′ = 12✸11✸.

Partial words were introduced in [1], and they too have real-world applications (see [6] and references

therein). In combinatorics, partial words appear in the context of primitive words [5], of (un)avoidability

of sets of partial words [7, 2], and also in the study of the number of squares [17] and overlap-freeness [18]

in (infinite) partial words. The concept of partial words has been extended to pattern-avoiding permuta-

tions in [9].

The notion of universality given above extends straightforwardly to partial words, and we refer to a

universal partial word as an upword for short. Again we distinguish cyclic upwords and linear upwords.

The simplest example for a linear upword for An is ✸n := ✸✸ · · ·✸, the word consisting of n many ✸s,

which we call trivial. Let us consider a few more interesting examples of linear upwords over the binary

alphabet A = {0, 1}. We have that ✸✸0111 is a linear upword for A3, whereas ✸✸01110 is not a linear

upword for A3, because replacing the first two letters ✸✸ by 11 yields the same factor 110 as the last

three letters. Similarly, 0✸1 is not a linear upword for A2 because the word 10 ∈ A2 does not appear as a

factor (and the word 01 ∈ A2 appears twice as a factor).

1.2 Our results

In this work we initiate the systematic study of universal partial words. It turns out that these words are

rather shy animals, unlike their ordinary counterparts (universal words without ‘joker’ symbols). That

is, in stark contrast to Theorem 1, there are no general existence results on upwords, but also many

non-existence results. The borderline between these two cases seems rather complicated, which makes

the subject even more interesting (this is true also for non-binary alphabets, as the constructions of the

follow-up paper [16] indicate). In addition to the size of the alphabet A and the length n of the factors,

we also consider the number of ✸s and their positions in an upword as problem parameters.
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n k
1 1 ✸

2 1 ✸011 (Thm. 9, Thm. 17)

2 — (Thm. 6)

3 1 ✸00111010 (Thm. 9)

2 0✸011100 (Thm. 10)

3 — (Thm. 6)

4 — (Thm. 7)

4 1 ✸00011110100101100 (Thm. 9)

2 0✸010011011110000 (Thm. 10)

3 01✸0111100001010 (Thm. 10)

4 — (Thm. 6)

5 — (Thm. 7)

6 01100✸011110100
7 — (Thm. 7)

8 0011110✸0010110
5 1 ✸0000111110111001100010110101001000 (Thm. 9)

2 0✸01011000001101001110111110010001 (Thm. 10)

3 01✸011000001000111001010111110100 (Thm. 10)

4 011✸0111110000010100100011010110 (Thm. 10)

5 — (Thm. 6)

6 00101✸0010011101111100000110101
7 010011✸010000010101101111100011
8 0100110✸01000001110010111110110
9 01110010✸0111110110100110000010

10 010011011✸010001111100000101011
11 0101000001✸01011111001110110001
12 01010000011✸0101101111100010011
13 001001101011✸001010000011111011
14 0011101111100✸00110100010101100
15 01010000010011✸0101101111100011
16 001000001101011✸001010011111011

Tab. 1: Examples of linear upwords for An, A = {0, 1}, with a single ✸ at position k from the beginning

or end for n = 1, 2, 3, 4, 5 and all possible values of k (upwords where the ✸ is closer to the end of the

word than to the beginning can be obtained by reversal). A dash indicates that no such upword exists.
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We first focus on linear upwords. For linear upwords containing a single ✸, we have the following

results: For non-binary alphabets A (i.e., |A| ≥ 3) and n ≥ 2, there is no linear upword for An with a

single ✸ at all (Theorem 5 below). For the binary alphabet A = {0, 1}, the situation is more interesting

(see Table 1): Denoting by k the position of the ✸, we have that for n ≥ 2, there is no linear upword

for An with k = n (Theorem 6), and there are no linear upwords in the following three cases: n = 3
and k = 4, and n = 4 and k ∈ {5, 7} (Theorem 7). We conjecture that these are the only non-existence

cases for a binary alphabet (Conjecture 8). To support this conjecture, we performed a computer-assisted

search and indeed found linear upwords for all values of 2 ≤ n ≤ 13 and all possible values of k other

than the ones excluded by the beforementioned results. Some of these examples are listed in Table 1, and

the remaining ones are available on the third author’s website [30]. We also prove the special cases k = 1
and k ∈ {2, 3, . . . , n− 1} of our conjecture (Theorems 9 and 10, respectively).

For linear upwords containing two ✸s we have the following results: First of all, Table 2 shows exam-

ples of linear upwords with two ✸s for the binary alphabet A = {0, 1} for n = 2, 3, 4, 5. We establish

a sufficient condition for non-existence of binary linear upwords with two ✸s (Theorem 11), which in

particular shows that a (1− o(1))-fraction of all ways of placing two ✸s among the N = Θ(2n) positions

does not yield a valid upword. Moreover, we conclude that there are only two binary linear upwords where

the two ✸s are adjacent (Corollary 12), namely ✸✸ for n = 2 and ✸✸0111 for n = 3 (see Table 2). We

also construct an infinite family of binary linear upwords with two ✸s (Theorem 13). Let us now discuss

cyclic upwords. Note that the trivial solution ✸
n is a cyclic upword only for n = 1. For the cyclic setting

we have the following rather general non-existence result: If gcd(|A|, n) = 1, then there is no cyclic

upword for An (Corollary 16). In particular, for a binary alphabet |A| = 2 and odd n, there is no cyclic

upword for An. In fact, we know only of a single cyclic upword for the binary alphabet A = {0, 1} and

any n ≥ 2, namely ✸001✸110 for n = 4 (up to cyclic shifts, reversal and letter permutations).

1.3 Outline of this paper

This paper is organized as follows. In Section 2 we introduce some notation and collect basic observations

that are used throughout the rest of the paper. In Sections 3 and 4 we prove our results on linear upwords

containing a single or two ✸s, respectively. Section 5 contains the proofs on cyclic upwords. Finally,

Section 6 discusses possible directions for further research, including some extensions of our results to

non-binary alphabets.

2 Preliminaries

For the rest of this paper, we assume w.l.o.g. that the alphabet is A = {0, 1, . . . , α− 1}, so α ≥ 2 denotes

the size of the alphabet. We often consider the special case α = 2 of the binary alphabet, and then for

x ∈ {0, 1} we write x for the complement of x. Moreover, for any word u, we let |u| denote its length. As

we mentioned before, reversing a universal word and/or permuting the letters of the alphabet again yields

a universal word. We can thus assume w.l.o.g. that in an upword u the letters of A appear in increasing

order from left to right, i.e., the first occurence of symbol i is before the first occurence of symbol j
whenever i < j. Moreover, if u can be factored as u = xyz, where x and z do not contain any ✸s, then

we can assume that |x| ≤ |z|.
One standard approach to prove the existence of universal words is to define a suitable graph and

to search for a Hamiltonian path/cycle in this graph (another more algebraic approach uses irreducible

polynomials). Specifically, the De Bruijn graph Gn
A has as vertices all elements from An (all words of



On universal partial words 5

n
2 ✸✸ (Cor. 12)

3 ✸✸0111 (Cor. 12, Thm. 17)

✸001011✸
4 ✸00011✸1001011 (Thm. 13)

✸0001011✸10011
001✸110✸001

5 ✸0100✸101011000001110111110010
✸0000111✸100010010101100110111 (Thm. 13)

✸00001001✸10001101011111011001
✸0000100111✸100011001010110111
✸00001010111✸10001101100100111
0✸0011✸0100010101101111100000
0✸010110✸00011101111100100110
0✸0101110✸0001101100100111110
0✸010111110✸00011011001001110
0✸0101101110✸0001100100111110
00✸0011✸00101011011111010000
01✸01100101110✸0100000111110
01✸0110010111110✸01000001110
01✸0100000101011000111110✸110
001✸0101✸001110111110000010
011✸011010010✸0111110000010
011✸0110101001000✸011111000
011✸0111110001101010000010✸10
011✸011010000011111000100101✸1
01001✸1110✸010000011011001

Tab. 2: Examples of linear upwords for An, A = {0, 1}, with two ✸s for n = 2, 3, 4, 5.
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length n over A), and a directed edge from a vertex u to a vertex v whenever the last n− 1 letters of u are

the same as the first n− 1 letters of v. We call such an edge (u, v) an x-edge, if the last letter of v equals

x. Figure 1 (a) and (b) shows the graph Gn
A, A = {0, 1}, for n = 2 and n = 3, respectively. Clearly, a

linear universal word for An corresponds to a Hamiltonian path in Gn
A, and a cyclic universal word to a

Hamiltonian cycle in this graph. Observe furthermore that Gn
A is the line graph of Gn−1

A . Recall that the

line graph L(G) of a directed graph G is the directed graph that has a vertex for every edge of G, and a

directed edge from e to e′ if in G the end vertex of e equals the starting vertex of e′. Therefore, the problem

of finding a Hamiltonian path/cycle in Gn
A is equivalent to finding an Eulerian path/cycle in Gn−1

A . The

existence of an Eulerian path/cycle follows from the fact that the De Bruijn graph is connected and that

each vertex has in- and out-degree α (this is one of Euler’s famous theorems [12], see also [3, Theorem

1.6.3]). This proves Theorem 1. In fact, this existence proof can be easily turned into an algorithm to

actually find (many) universal words (using Hierholzer’s algorithm [21] or Fleury’s algorithm [14]).

11

10

00

01

G2
A

(a)

010

100

000

001

101

110

111

011

G3
A = L(G2

A)

(b)

S(u, 1, n) S(u, 2, n)

S(u, 3, n)

S(u, 4, n)

S(u, 5, n)

S(u, 6, n)

H(u, n), u = 0✸011100

(c)

Fig. 1: The De Bruijn graphs G2
A (a) and G3

A = L(G2
A) (b) for A = {0, 1} with a spanning subgraph

H(u, n) of G3
A for the linear upword u = 0✸011100 for A3 (H(u, n) is shown by solid edges). Part (c)

if the figure shows a schematic drawing of the graph H(u, n). H(u, n) is the line graph of the highlighted

sequences of edges in G2
A.

We now discuss how this standard approach of proving the existence of universal words can be extended

to universal partial words. Specifically, we collect a few simple but powerful observations that will be used

in our proofs later on.

For any vertex v of Gn
A, we let Γ+(v) and Γ−(v) denote the sets of out-neighbours and in-neighbours

of v, respectively (both are sets of vertices of Gn
A). As we mentioned before, we clearly have |Γ+(v)| =

|Γ−(v)| = α.
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Observation 2 For any vertex v = v1v2 · · · vn of Gn
A and its set of out-neighbours Γ+(v), there are

α − 1 vertices different from v with the same set of out-neighbours Γ+(v), given by xv2v3 · · · vn, where

x ∈ A \ {v1}. For any vertex v = v1v2 · · · vn of Gn
A and its set of in-neighbours Γ−(v), there are

α− 1 vertices different from v with the same set of in-neighbours Γ−(v), given by v1v2 · · · vn−1x, where

x ∈ A \ {vn}.

For any linear upword u for An, we define a spanning subgraph H(u, n) of the De Bruijn graph Gn
A as

follows, see Figure 1 (c): For any i = 1, 2, . . . , N−n+1, we let S(u, i, n) denote the set of all words that

are obtained from the subword of u of length n starting at position i by replacing any occurences of ✸ by

a letter from the alphabet A. Clearly, if there are d many ✸s in this subword, then there are αd different

possibilities for substitution, so we have |S(u, i, n)| = αd. Note that the sets S(u, i, n) form a partition

of the vertex set of Gn
A (and H(u, n)). The directed edges of H(u, n) are given by all the edges of Gn

A

induced between every pair of consecutive sets S(u, i, n) and S(u, i + 1, n) for i = 1, 2, . . . , N − n.

For example, for the linear upword u = 0✸011100 over the binary alphabet A = {0, 1} for n = 3
we have S(u, 1, n) = {000, 010}, S(u, 2, n) = {001, 101}, S(u, 3, n) = {011}, S(u, 4, n) = {111},

S(u, 5, n) = {110} and S(u, 6, n) = {100}, and the spanning subgraph H(u, n) of G3
A is shown in

Figure 1 (c). To give another example with the same A and n, for the linear upword u = ✸✸0111we have

S(u, 1, n) = {000, 010, 100, 110}, S(u, 2, n) = {001, 101}, S(u, 3, n) = {011}, S(u, 4, n) = {111},

and then H(u, n) is a binary tree of depth 2 with an additional edge emanating from the root.

The following observation follows straightforwardly from these definitions.

Observation 3 Let u = u1u2 · · ·uN be a linear upword for An. A vertex in S(u, i, n), i = 1, 2, . . . , N−
n, has out-degree 1 in H(u, n) if ui+n ∈ A, and out-degree α if ui+n = ✸. A vertex in S(u, i, n),
i = 2, 3, . . . , N − n + 1, has in-degree 1 in H(u, n) if ui−1 ∈ A, and in-degree α if ui−1 = ✸. The

vertices in S(u, 1, n) have in-degree 0, and the vertices in S(u,N − n+ 1, n) have out-degree 0.

By this last observation, the graph H(u, n) is determined only by the positions of the ✸s in u. In-

tuitively, the ✸s lead to branching in the graph H(u, n) due to the different possibilities of substituting

symbols from A. In particular, if u has no ✸s, then H(u, n) is just a spanning path of Gn
A (i.e., a Hamil-

tonian path, so we are back in the setting of Theorem 1). So when searching for a linear universal partial

word u with a particular number of ✸s at certain positions, we essentially search for a copy of the span-

ning subgraph H(u, n) in Gn
A. We will exploit this idea both in our existence and non-existence proofs.

For the constructions it is particularly useful (and for our computer-searches it is computationally much

more efficient) to not search for a copy of H(u, n) in Gn
A directly, but to rather search for the correspond-

ing sequences of edges in Gn−1

A , which can be seen as generalizations of Eulerian paths that were used

before in the proof of Theorem 1 (see Figure 1 (a)). For example, to search for a linear upword u with a

single ✸ at position k ∈ {1, 2, . . . , n − 1}, we can prescribe the first k − 1 letters and the n letters after

the ✸ (with a particular choice of symbols from A, or by iterating over all possible choices), and search

for an Eulerian path in the subgraph of Gn−1

A that remains when deleting from it all edges that correspond

to the prescribed prefix of u (see the proofs of Theorems 9 and 10 below). This idea can be generalized

straightforwardly to search for upwords with other ✸ patterns (see for example the proof of Theorem 13

below).

The next lemma will be used repeatedly in our proofs (both for existence and non-existence of up-

words). The proof uses the previous two graph-theoretical observations to derive dependencies between

letters of an upword.
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Lemma 4 Let u = u1u2 · · ·uN be a linear upword for An, A = {0, 1, . . . , α − 1}, n ≥ 2, such that

uk = ✸ and uk+n 6= ✸ (we require k+ n ≤ N ). Then for all i = 1, 2, . . . , n− 1 we have that if ui 6= ✸,

then uk+i = ui. Moreover, we have that if un 6= ✸, then α = 2 and uk+n = un.

Proof: By Observation 3, each vertex in the set S(u, k + 1, n) has in-degree α in H(u, n), and each

vertex in S(u, k, n) has out-degree 1. By Observation 2, for each v = v1v2 · · · vn ∈ S(u, k + 1, n) there

are α − 1 other vertices (different from the ones in S(u, k + 1, n)) in Gn
A with the same set Γ−(v) of α

many in-neighbors, namely vx := v1 · · · vn−1x, where x ∈ A \ {vn} (see Figure 2). As the in-degree

of every vertex of Gn
A is exactly α, and in H(u, n) all vertices except the ones in S(u, 1, n) already have

in-degree at least 1, it follows that each of the vertices vx must be equal to one of the vertices in S(u, 1, n).
It follows that if ui 6= ✸ then uk+i 6= ✸ and ui = vi = uk+i for all i = 1, 2, . . . , n − 1. Moreover,

if un 6= ✸ and α ≥ 3, then there are at least two vertices vx, x ∈ A \ {vn}, ending with different

symbols x, each of which must be equal to one of the vertices in S(u, 1, n), which is impossible because

all words in this set end with the same symbol un. It follows that if un 6= ✸ then we must have α = 2
and un = x 6= vn = uk+n, so uk+n = un. ✷

vx
vx = v1 · · · vn−1x, x ∈ A \ {vn}

S(u, 1, n) S(u, k, n)

S(u, k + 1, n)

v
v = v1v2 · · · vn

H(u, n) (solid edges)

. . .

Fig. 2: Illustration of the proof of Lemma 4.

3 Linear upwords with a single ✸

3.1 Non-existence results

Our first result completely excludes the existence of linear upwords with a single ✸ for non-binary alpha-

bets.

Theorem 5 For A = {0, 1, . . . , α− 1}, α ≥ 3, and any n ≥ 2, there is no linear upword for An with a

single ✸.

Proof: Suppose that such an upword u = u1u2 · · ·uk−1✸uk+1 · · ·uN exists. We claim that the ✸ in u is

preceded or followed by at least n symbols from A. If not, then u would have at most αn different factors,

which is strictly less than αn for α ≥ 3 and n ≥ 2. So we assume w.l.o.g. that the ✸ in u is followed

by at least n symbols from A, i.e., k + n ≤ N . By Lemma 4 we have ui = ✸ or uk+i = ui for all

i = 1, 2, . . . , n− 1 and un = ✸, which implies k = n and therefore un+i = ui for all i = 1, . . . , n− 1.

But this means that the word v := un+1 · · ·u2n ∈ An appears twice as a factor in u starting at positions
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1 and n + 1 (in other words, the vertex v ∈ S(u, n + 1, n) is identical to a vertex from S(u, 1, n) in

H(u, n)), a contradiction. ✷

Our next result excludes several cases with a single ✸ for a binary alphabet.

Theorem 6 For A = {0, 1} and any n ≥ 2, there is no linear upword for An with a single ✸ at position

n from the beginning or end.

Proof: We first consider the case n = 2. Suppose that there is an upword u = u1✸u3 for An. Assuming

w.l.o.g. that u1 = 0, we must have u3 = 1, otherwise the word 00 would appear twice as a factor. But

then the word 10 does not appear as a factor in u = 0✸1, while 01 appears twice, a contradiction.

For the rest of the proof we assume that n ≥ 3. Suppose there was an upword u =
u1u2 · · ·un−1✸un+1 · · ·uN with N = 2n−1. Note that N−n ≥ n, or equivalently 2n ≥ 2n+1, holds by

our assumption n ≥ 3, so the ✸ in u is followed by at least n more symbols from A. Applying Lemma 4

yields that un+i = ui for all i = 1, . . . , n − 1, which means that the word v := un+1 · · ·u2n ∈ An

appears twice as a factor in u starting at positions 1 and n+ 1, a contradiction. ✷

In contrast to Theorem 5, for a binary alphabet we can only exclude the following three more (small)

cases in addition to the cases excluded by Theorem 6 (all the exceptions are marked in Table 1).

Theorem 7 For A = {0, 1}, there is no linear upword for An with a single ✸ at position k from the

beginning or end in the following three cases: n = 3 and k = 4, and n = 4 and k ∈ {5, 7}.

Proof: Suppose that there is an upword u = u1u2u3✸u5u6u7 for the case n = 3. Applying Lemma 4

twice to u and its reverse we obtain that u5u6u7 = u1u2u3 and u1u2u3 = u5u6u7, a contradiction.

To prove the second case suppose that there is an upword of the form u = u1u2u3u4✸u6 · · ·u15

for n = 4. Applying Lemma 4 twice to u and its reverse we obtain that u has the form u =
u1u2u3u4✸u1u2u3u4u10u11u1u2u3u4. We assume w.l.o.g. that u1 = 0. The word z := 0000 must

appear somewhere as a factor in u, and since u12 = u1 = 1, the only possible starting positions for z in

u are 1, 2, . . . , 8. However, the starting positions 1, 2, 5, 6, 7 can be excluded immediately, as they would

cause z to appear twice as a factor in u. On the other hand, if z starts at positions 3, 4 or 8, then the

neighboring letters must both be 1, causing 0101, 1010 or 1101, respectively, to appear twice as a factor

in u, a contradiction.

The proof of the third case proceeds very similarly to the second case, and allows us to conclude that

such an upword u must have the form u = u1u2u3u4u5u6✸u1u2u3u4u3u4u5u6. We assume w.l.o.g. that

u3 = 0. The word z := 0000 must appear somewhere as a factor in u, and since u12 = u3 = 1 the only

possible starting positions for z in u are 1, 2, . . . , 8. The starting positions 1, 3, 4, 6, 8 can be excluded

immediately, as they would cause z to appear twice as a factor in u. On the other hand, if z starts at

positions 2, 5 or 7, then the neighboring letters must both be 1, causing 0011, 0101 or 0000, respectively,

to appear twice as a factor in u, a contradiction.

✷

3.2 Existence results

We conjecture that for a binary alphabet and a single ✸, the non-existence cases discussed in the previous

section are the only ones.
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Conjecture 8 For A = {0, 1} and any n ≥ 1, there is a linear upword for An containing a single ✸ at

position k in every case not covered by Theorem 6 or Theorem 7.

Recall the numerical evidence for the conjecture discussed in the introduction. In the remainder of this

section we prove some cases of this general conjecture.

Theorem 9 For A = {0, 1} and any n ≥ 2, there is a linear upword for An with a single ✸ at the first

position that begins with ✸0n−11.

Note that by Lemma 4, every linear upword for An with a single ✸ of the form u = ✸u2u3 · · ·uN

satisfies the conditions u2 = u3 = · · · = un = un+1, i.e., w.l.o.g. it begins with ✸0n−11 (up to letter

permutations).

Proof: Consider the word v = v1v2 · · · vn+1 := ✸0n−11 and the corresponding three edges

(0n−1, 0n−1), (10n−2, 0n−1) and (0n−1, 0n−21) in the De Bruijn graph Gn−1

A . Denote the graph ob-

tained from Gn−1

A by removing these three edges and the isolated vertex 0n−1 by G′. Clearly, the edges

of G′ form a connected graph, and every vertex in G′ has in- and out-degree exactly two, except the vertex

y := 0n−21 which has one more out-edge than in-edges and the vertex z := 10n−2 which has one more

in-edge than out-edges. Therefore, G′ has an Eulerian path starting at y and ending at z, and this Eulerian

path yields the desired upword that begins with v. ✷

For any binary word w ∈ Ak, A = {0, 1}, and any n ≥ 1, we write c(w, n) = c1c2 · · · cn for

the word given by ci = wi for i = 1, 2, . . . , k, ci = ci−k for all i = k + 1, k + 2, . . . , n − 1 and

cn = cn−k. Informally speaking, c(w, n) is obtained by concatenating infinitely many copies of w,

truncating the resulting word at length n and complementing the last symbol. For example, we have

c(011, 7) = 0110111 and c(011, 8) = 01101100. Using this terminology, the starting segment of the

linear upword from Theorem 9 can be written as ✸c(0, n). The next result is a considerable extension of

the previous theorem.

Theorem 10 For A = {0, 1}, any n ≥ 3 and any k ∈ {2, 3, . . . , n− 1}, there is a linear upword for An

with a single ✸ at the k-th position that begins with 01k−2
✸c(01k−1, n).

The idea of the proof of Theorem 10 is a straightforward generalization of the approach we used to

prove Theorem 9 before, and boils down to showing that the De Bruijn graph Gn−1

A without the edges that

are given by the prescribed upword prefix still has an Eulerian path.

Proof: The words 0✸c(01, 3)100 = 0✸011100, 0✸c(01, 4)11011110000 = 0✸010011011110000 and

01✸c(011, 4)100001010 = 01✸0111100001010 from Table 1 show that the statement is true for n = 3
and n = 4. For the rest of the proof we assume that n ≥ 5. Consider the word w = w1w2 · · ·wk+n :=
01k−2

✸c(01k−1, n). For i = 1, 2, . . . , k we let v0i and v1i denote the two words from S(w, i, n − 1)
obtained by substituting ✸ in w by 0 or 1, respectively. Moreover, let vk+1 = wk+1 · · ·wk+n−1 be the

unique word from S(w, k+1, n−1) and vk+2 = wk+2 · · ·wk+n the unique word from S(w, k+2, n−1),
and define V 0 := {v0i | i = 1, 2, . . . , k}, V 1 := {v1i | i = 1, 2, . . . , k}, V 2 := {vk+1, vk+2} and

V ′ := V 0 ∪ V 1 ∪ V 2. We proceed to show that |V ′| = 2k + 1, i.e., only two of the words just defined

coincide, namely v11 = vk+1 (v11 is given by the first n − 1 letters of w = 01k−1c(01k−1, n), and vk+1

is given by the first n − 1 letters of c(01k−1, n), which are equal). In other words, the corresponding

set of vertices in Gn−1

A has size 2k + 1 (see Figure 3). If k = 2, then this can be verified directly by

considering the number of leading and trailing 0s and 1s of the vertices in V 0, V 1 and V 2. We now
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v01 v02 v03 v0k−1
v0k v11 = vk+1

vk+2

v12

v13v1k−1

v1k

. . .

. . .

V 0

V 1

V 2

Fig. 3: Subgraph of Gn−1

A constructed in the proof of Theorem 10.

assume that k ≥ 3. Every word from V 0, except possibly v01 , contains the factor 00 exactly once and is

uniquely identified by the position of this factor, proving that |V 0| = k. The words in V 1 are all uniquely

identified by the number of leading 1s, which equals 0 for v11 and k − i+ 1 for i = 2, 3, . . . , k, implying

that |V 1| = k. We now show that V 0 and V 1 are disjoint. To prove this we use again that all the words

in V 0, except possibly v01 , contain the factor 00, and that moreover no word from V 1 contains this factor.

However v01 does not contain the factor 00 only in the case k = n− 1, and then v01 starts and ends with 0,

unlike any of the words from V 1 in this case, proving that V 0 and V 1 are disjoint. It remains to show that

vk+2 /∈ V 0∪V 1. If k = n−1, then vk+2 = 1n−1 and all other words from V 0 and V 1 contain at least one

0, so vk+2 /∈ V 0 ∪ V 1. If k ≤ n− 2, then the word vk+2 = wk+2 · · ·wk+n satisfies wk+n = wn, i.e., its

last letter and the one k positions to the left of it are complementary (recall the definition of c(01k−1, n)),
a property that does not hold for any of the words in V 1, implying that vk+2 /∈ V 1. Moreover, in this case

all words from V 0 contain the factor 00 exactly once and are uniquely identified by the position of this

factor, and vk+2 might contain the factor 00 only at the last two positions, so the only potential conflict

could arise in the case k = n−2 when v01 = 01n−400 ends with 00. However, in this case vk+2 = 1n−300
is still different from v01 . We conclude that vk+2 /∈ V 0 ∪ V 1 in all cases. Combining these observations

shows that |V ′| = |V 0|+ |V 1|+ |V 2| − 1 = 2k + 1, as claimed.

Consider the set of 2k + 1 edges E′ := {(v0i , v
0
i+1) | i = 1, 2, . . . , k − 1} ∪ {(v1i , v

1
i+1) | i =

1, 2, . . . , k − 1} ∪ {(v0k, vk+1), (v
1
k, vk+1), (vk+1, vk+2)} in the De Bruijn graph Gn−1

A (see Figure 3).

They span a subgraph on V ′ that has the following pairs of out-degrees and in-degrees: (1, 0) for the

vertex v01 , (0, 1) for the vertex vk+2, (1, 1) for the vertices v0i and v1i , i = 2, 3, . . . , k, (2, 2) for the vertex

v11 = vk+1.

We denote the graph obtained from Gn−1

A by removing the edges in E′ and the isolated vertex v11 =
vk+1 by G′. Clearly, every vertex in G′ has the same in- and out-degree (1 or 2), except the vertex vk+2

which has one more out-edge than in-edges, and the vertex v01 which has one more in-edge than out-edges.

To complete the proof of the theorem we show that G′ contains an Eulerian path (which must start at vk+2

and end at v01), and to do this, it suffices (by the before-mentioned degree conditions) to show that G′ is

connected.

We first consider the case k ≤ n− 2: From any vertex v ∈ G′, we follow 0-edges until we either reach

the vertex 0n−1 or a vertex from V ′ for which the next 0-edge is from E′ (this could happen right at the

beginning if v ∈ V ′). In this case we follow 1-edges until we reach the vertex 1n−1, and from there we

follow 0-edges until we reach 0n−1. (We only ever follow edges in forward direction.) We claim that in
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this process we never use an edge from E′, which shows that G′ is connected. To see this suppose we

encounter a vertex v′ from V ′ for which the next 0-edge is from E′. This means that v′ has k − 1 trailing

1s (here we use that k ≤ n − 2), so following a 1-edge leads to a vertex that has k trailing 1s, and in

the next step to a vertex that has k + 1 trailing 1s. Note that the vertices in V ′ \ {vk+2} have at most

k − 1 trailing 1s, and vk+2 has at most k trailing 1s, so we avoid any edges from E′ on our way to 1n−1.

Moreover, on the way from 1n−1 to 0n−1 via 1n−1−i0i, i = 1, 2, . . . , n − 1, we do not use any edges

from E′ either, because any vertex from V ′ \ {vk+2} that starts with a 1 has at least two transitions from

1s to 0s, or vice versa, when reading it from left to right (using again k ≤ n− 2), and 0n−1 /∈ V ′.

Now consider the case k = n − 1: From any vertex v ∈ G′, we follow 0-edges until we either reach

the vertex 0n−1 or the only vertex v01 = 01n−30 from V ′ \ {vk+1} for which the next 0-edge is from

E′. In this case we follow a single 1-edge to 1n−301 = v13 , and from there we follow 0-edges until we

reach 0n−1. Similarly to before, we need to argue that we never use an edge from E′ in this process. On

the way from 1n−301 = v13 to 0n−1 we never use any edges from E′, because any vertices on this path

except the first one 1n−301 and the last two 10n−2 and 0n−1 contain the factor 010, so all these vertices

are different from V ′ (for n ≥ 5 and k = n− 1 no word from V ′ contains 010 as a factor), implying that

all edges except possibly the last one are safe. However, since 0n−1 /∈ V ′, the last edge is safe, too.

These arguments show that G′ is connected, so it has an Eulerian path, and this Eulerian path yields the

desired upword that begins with w. This completes the proof. ✷

4 Linear upwords with two ✸s

In this section we focus on binary alphabets. Many of the non-existence conditions provided in this section

can be generalized straightforwardly to non-binary alphabets, as we briefly discuss in Section 6 below.

4.1 Non-existence results

Theorem 11 For A = {0, 1} and any n ≥ 5, there is no linear upword for An with two ✸s of the form

u = x✸y✸z if |x|, |y|, |z| ≥ n or |x| = n− 1 or |z| = n− 1 or |y| ≤ n− 2.

As Table 2 shows, there are examples of linear upwords with two ✸s whenever the conditions in The-

orem 11 are violated. Put differently, for every upword u = x✸y✸z in the table for n ≥ 5 we have that

one of the numbers |x|, |y|, |z| is at most n − 1, |x| 6= n − 1, |z| 6= n − 1 and |y| ≥ n − 1. Note that

already by the first condition |x|, |y|, |z| ≥ n, a (1−o(1))-fraction of all choices of placing two ✸s among

N = Θ(2n) positions are excluded as possible candidates for upwords.

Proof: We first assume that |x|, |y|, |z| ≥ n, i.e., yn, zn ∈ A. Applying Lemma 4 yields zi = yi = xi ∈ A
for i = 1, 2, . . . , n− 1 and zn = yn = xn, so the word y1y2 · · · yn = z1z2 · · · zn appears twice as a factor

in u, a contradiction.

We now assume that |x| = n − 1 (the case |z| = n − 1 follows by symmetry). Note that the number

of factors of u is at most 2(|y| + 1) + 4(|z| + 1): This is because every subword ending at the first ✸

or at a letter from y contains at most one ✸, giving rise to two factors, and every subword ending at the

second ✸ or at a letter from z contains at most two ✸s, giving rise to four factors. This number is at most

2n + 4n = 6n for |y|, |z| ≤ n − 1, which is strictly less than 2n for n ≥ 5. Therefore, we must have

|y| ≥ n or |z| ≥ n in this case. We assume w.l.o.g. that |y| ≥ n, i.e., yn ∈ A. Applying Lemma 4 yields

yi = xi ∈ A for i = 1, 2, . . . , n− 1, implying that the word y1y2 · · · yn appears twice as a factor in u, a

contradiction.
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We now assume that |y| ≤ n−2. In this case we must have |x| ≥ n or |z| ≥ n, because if |x|, |z| ≤ n−1
then the number of factors of u is at most 2(|y|+1)+ 4(|z|+1) ≤ 2(n− 1)+4n ≤ 6n, which is strictly

less than 2n for n ≥ 5. We assume w.l.o.g. that |z| ≥ n. Let k := |y| + 1 ≤ n − 1 and consider

the subword y′ := y✸z1z2 · · · zn−k of u, which is well-defined since |z| ≥ n (k is the position of the

✸ in y′). Since k ≤ n − 1 we have y′n = zn−k ∈ A. Applying Lemma 4 yields that |x| = |y|.
Moreover, if k = 1 (|x| = |y| = 0) then the same lemma yields y′2 = y′3 = · · · = y′n−1 = y′n, i.e.,

z1 = z2 = · · · = zn−2 = zn−1 and zn−1 = zn−3, a contradiction. On the other hand, if k ≥ 2, then

zi+kℓ = yi = xi for all i = 1, 2, . . . , k− 1 and ℓ = 0, 1, . . . with i+ kℓ ≤ n− 1, i.e., the factors obtained

from the subword y′ in u appear twice, starting at position 1 and position k + 1, a contradiction. ✷

Corollary 12 For A = {0, 1} and any n ≥ 2, ✸✸ for n = 2 and ✸✸0111 for n = 3 are the only linear

upwords for An containing two ✸s that are adjacent (up to reversal and letter permutations).

Proof: The non-existence of linear upwords with two adjacent ✸s for n ≥ 5 follows from Theorem 11,

because for such an upword u = x✸✸z the subword y between the two ✸s is empty, so |y| = 0 ≤ n− 2.

For n = 4 and |y| = 0 the estimate in the third part in the proof of Theorem 11 can be strengthened

to show that if |x|, |z| ≤ n − 1, then the number of factors of u is strictly less than 4n ≤ 2n unless

u = u1u2u3✸✸u6u7u8, which means we can continue the argument as before, leading to a contradiction.

The exceptional case u = u1u2u3✸✸u6u7u8 can be excluded as follows: Applying Lemma 4 shows that

u2 = u6 and u3 = u7, and then it becomes clear that the factor 0000, at whatever position within u
it is placed, would appear twice. For n = 3 the only possible linear upwords with two adjacent ✸s by

Lemma 4 are u = ✸✸u3u3u3u6, which leads to ✸✸0111 (w.l.o.g. u3 = 0, and for 111 to be covered we

must have u6 = 1), and u = u1✸✸u4 is impossible because u10u4 appears twice as a factor (starting at

positions 1 and 2). For n = 2 the only possible linear upword with two ✸s is ✸✸. ✷

4.2 Existence results

Our next result provides an infinite number of binary linear upwords with two ✸s (see Table 2).

Theorem 13 For A = {0, 1} and any n ≥ 4, there is a linear upword for An with two ✸s that begins

with ✸0n−11n−2
✸10n−21.

Proof: Consider the word w = w1w2 · · ·w3n−1 := ✸0n−11n−2
✸10n−21. It is easy to check that

w yields 3n + 1 different factors x1x2 · · ·xn ∈ An, and each of these factors gives rise to an edge

(x1x2 · · ·xn−1, x2x3 · · ·xn) in the De Bruijn graph Gn−1

A . The set E′ of these edges and their end

vertices V ′ form a connected subgraph that has in- and out-degree 1 for all vertices in V ′ except for

v′0 := 0n−1, v′1 := 1n−1, v′2 := 10n−2 and v′3 := 1n−20 which have in- and out-degree 2, and y := 0n−21
and z := 01n−2 which have in-degree 2 and out-degree 1, or in-degree 1 and out-degree 2, respectively.

We denote the graph obtained from Gn−1

A by removing the edges in E′ and the vertices v′0, v
′

1, v
′

2 and v′3
by G′. Clearly, every vertex in G′ has the same in- and out-degree (1 or 2), except the vertex y which has

only one outgoing edge, and the vertex z which has only one incoming edge. To complete the proof of the

theorem we show that G′ contains an Eulerian path (which must start at y and end at z), and to do this, it

suffices (by the before-mentioned degree conditions) to show that G′ is connected.

If n = 4, then G′ consists only of the edges (y, 010), (010, 101), (101, z) (a connected graph), so for

the rest of the proof we assume that n ≥ 5. Consider a vertex v in G′ other than z.
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If v ends with 0, consider the (maximum) number k of trailing 0s. Note that k ≤ n− 3, as the vertices

v′2 and v′0 that correspond to the cases k ∈ {n− 2, n− 1} are not in G′. From v we follow 1-edges and

0-edges alternatingly, starting with a 1-edge, until we either reach the vertex s := 1n−301 or the vertex

t := 010101 · · · ∈ An−1 (this could happen right at the beginning if v = t). From s or t we follow

1-edges until the vertex z.

If v ends with 1, then we do the following: If v 6= s we follow a single 0-edge, and then proceed as

before until the vertex z. If v = s we directly follow 1-edges until z. (Note that we only ever follow edges

in forward direction.)

We claim that in this process we never use an edge from E′, which shows that G′ is connected. To see

this we first consider the case that we start at a vertex v with k ≤ n − 3 trailing 0s. If k ≥ 2, then the

vertex reached from v via a 1-edge is not in V ′, because no vertex in V ′ has a segment of k ≤ n − 3
consecutive 0s surrounded by 1s. Also, none of the next vertices before reaching t is from V ′, because all

contain the factor 0010, unlike any word in V ′. If k = 1, then the vertex reached from v by following a

1-edge is either s ∈ V ′ (then we stop) or not in V ′, as no other vertex from V ′ ends with 101. If it is not

in V ′, then the next vertex reached via a 0-edge could be in V ′, but all the subsequent vertices until (and

including) t are not, since they all contain the factor 0101, unlike any word in V ′. This shows that none

of the edges traversed from v to s or t is from E′. Moreover, none of the vertices traversed between s and

z or between t and z is from V ′, because they all contain the factor 0101 or 1011, unlike any word in V ′,

so we indeed reach z without using any edges from E′.

Now consider the case that we start at a vertex v that ends with 1. The only interesting case is v 6= s.

There are only two 0-edges in E′ starting at a vertex that ends with 1, namely the edges starting at v′1 and

s. However, v is different from v′1 because v′1 is not part of G′, and v is different from s by assumption.

We conclude that the 1-edge we follow is not from E′.

These arguments show that G′ is connected, so it has an Eulerian path, and this Eulerian path yields the

desired upword that begins with w. This completes the proof. ✷

5 Cyclic upwords

Throughout this section, all indices are considered modulo the size of the corresponding word. All the no-

tions introduced in Section 2 can be extended straightforwardly to cyclic upwords, where factors are taken

cyclically across the word boundaries. In particular, when defining the graph H(u, n) for some cyclic up-

word = u1u2 · · ·uN we consider the subsets of words S(u, i, n) cyclically for all i = 1, 2, . . . , N . Then

the first two statements of Observation 3 hold for all vertices S(u, i, n), i = 1, 2, . . . , N . The next lemma

is the analogue of Lemma 4 for cyclic upwords.

Lemma 14 Let u = u1u2 · · ·uN be a cyclic upword for An, where A = {0, 1, . . . , α− 1} and n ≥ 2. If

uk = ✸ then uk+n = ✸.

Proof: Suppose that uk = ✸ and uk+n 6= ✸. By Observation 3, each vertex in the set S(u, k + 1, n)
has in-degree α in H(u, n), and each vertex in S(u, k, n) has out-degree 1. By Observation 2, for each

v = v1v2 · · · vn ∈ S(u, k+1, n) there are α− 1 other vertices (different from the ones in S(u, k+1, n))
in Gn

A with the same set Γ−(v) of α many in-neighbors, namely vx := v1 · · · vn−1x, where x ∈ A\{vn}.

As the in-degree of every vertex of Gn
A is exactly α, and in H(u, n) all vertices already have in-degree at
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least 1, it follows that the vertices vx can not be part of H(u, n), a contradiction to the fact that H(u, n)
is a spanning subgraph of Gn

A. ✷

Lemma 15 immediately yields the following corollary, which captures various rather severe conditions

that a cyclic upword must satisfy, relating its length N , the size α of the alphabet, and the value of the

parameter n.

Corollary 15 Let u = u1u2 · · ·uN be a cyclic upword for An, where A = {0, 1, . . . , α− 1} and n ≥ 2,

with at least one ✸. Then we have N = αn−d for some d, 1 ≤ d ≤ n− 1, such that n divides dN .

Proof: By Lemma 14, for any ✸ in u, the other two symbols in distance n from it must be ✸s as well.

Thus, the indices 1, 2, . . . , N are partitioned into gcd(n,N) many residue classes modulo n, and all

symbols at positions from the same residue class are either all ✸s or all letters from A. Let d denote the

number of ✸s among any n consecutive symbols of u, then we have 1 ≤ d ≤ n− 1 (there is at least one

✸, but not all letters can be ✸s), and any starting position in u gives rise to αd different factors, implying

that N = αn−d. Furthermore, the d many ✸s within any n consecutive letters of u are partitioned into

n/ gcd(n,N) many blocks with the same ✸ pattern, so n/ gcd(n,N) must divide d, and this condition is

equivalent to n dividing d gcd(n,N) and to n dividing dN . ✷

As an immediate corollary of our last result, we can exclude the existence of cyclic upwords for many

combinations of α and n.

Corollary 16 Let A = {0, 1, . . . , α− 1} and n ≥ 2. If gcd(α, n) = 1, then there is no cyclic upword for

An. In particular, for α = 2 and odd n, there is no cyclic upword for An.

Proof: Suppose that such an upword u = u1u2 · · ·uN exists. Then by Corollary 15 we have N = αn−d

for some d, 1 ≤ d ≤ n − 1, such that n divides dN . However, as gcd(α, n) = 1, n does not divide

N = αn−d, so n must divide d, which is impossible, yielding a contradiction. ✷

By Corollaries 15 and 16, for a binary alphabet (α = 2), the only remaining potential parameter values

for cyclic upwords are n = 2 and d = 1, n = 4 and d ∈ {1, 2}, n = 6 and d = 3, n = 8 and

d ∈ {1, 2, . . . , 6}, n = 10 and d = 5, n = 12 and d ∈ {3, 6, 9}, etc. The case n = 2 and d = 1 can

be easily exluded: w.l.o.g. such a word has the form ✸0, leading to the factor 00 appearing twice (and 11

does not appear as a factor at all). However, for n = 4 and d = 1 we have the cyclic upword ✸001✸110,

which we already mentioned in the introduction. This is the only cyclic upword for a binary alphabet that

we know of. Cyclic upwords for any even alphabet size α ≥ 4 and n = 4 have been constructed in the

follow-up paper [16].

6 Outlook

In this paper we initiated the systematic study of universal partial words, and we hope that our results and

the numerous examples of upwords provided in the tables (see also the extensive data available on the

website [30]) generate substantial interest for other researchers to continue this exploration, possibly in

one of the directions suggested below.

Concerning the binary alphabet A = {0, 1}, it would be interesting to achieve complete classification

of linear upwords containing a single ✸, as suggested by Conjecture 8. For two ✸s such a task seems

somewhat more challenging (recall Table 2, Theorem 11 and see the data from [30]). Some examples
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n
3 ✸✸✸

4 ✸✸✸01111 (Thm. 17)

✸✸001✸11010
✸001✸110✸00
0✸001✸110✸0

5 ✸0010✸0111✸10011011000001
✸0000111✸10001001101100101✸1
✸00001110✸100010100110101111✸
✸0000100111✸10001101100101✸1
✸0000101110✸1000110101001111✸
✸00001111101✸10001011001✸01
✸000010101110✸10001101001111✸
✸0000101001110✸1000110101111✸
✸00001101100111✸1000100101✸1
✸0000110101001110✸1000101111✸
✸00001101100100111✸1000101✸1
✸000010010101111100✸1101✸00
0✸1100✸001111101101000101✸1

Tab. 3: Examples of linear upwords for An, A = {0, 1}, with three ✸s for n = 3, 4, 5.

of binary linear upwords with three ✸s are listed in Table 3, and deriving some general existence and

non-existence results for this setting would certainly be of interest.

The next step would be to consider the situation of more than three ✸s present in a linear upword. The

following easy-to-verify example in this direction was communicated to us by Rachel Kirsch [16].

Theorem 17 For A = {0, 1} and any n ≥ 2, ✸n−101n is a linear upword for An with n− 1 many ✸s.

Complementing Theorem 17, we can prove the following non-existence result in this direction, but it

should be possible to obtain more general results.

Theorem 18 For A = {0, 1}, any n ≥ 4 and any 2 ≤ d ≤ n − 2, there is no linear upword for An that

begins with ✸
dxd+1xd+2 . . . xn+2 with xi ∈ A for all i = d+ 1, . . . , n+ 2.

The proof of Theorem 18 is easy by applying Lemma 4 to the first and second ✸. We leave the details

to the reader.

It would also be interesting to find examples of binary cyclic upwords other than ✸001✸110 for n = 4
mentioned before.

Finally, a natural direction would be to search for (linear or cyclic) upwords for non-binary alphabets,

but we anticipate that no non-trivial upwords exist in most cases (recall Theorem 5). As evidence for this

we have the following general non-existence result in this setting.

Theorem 19 For A = {0, 1, . . . , α− 1}, α ≥ 3, and any d ≥ 2, for large enough n there is no linear or

cyclic upword for An with exactly d many ✸s.
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Theorem 19 shows in particular that for a fixed alphabet size α and a fixed number d ≥ 2 of diamonds,

there are only finitely many possible candidates for upwords with d diamonds (which in principle could all

be checked by exhaustive search). The proof idea is that for fixed d and large enough n, such an upword

must contain a ✸ and a symbol from A in distance n, and then applying Lemma 4 or Lemma 14 yields a

contradiction (recall the proof of Theorem 5). We omit the details here. On the positive side, upwords for

even alphabet sizes α ≥ 4 and n = 4 have been constructed in [16] (and these upwords are even cyclic).

A question that we have not touched in this paper is the algorithmic problem of efficiently generating

upwords. As a preliminary observation in this direction we remark here that some of the linear upwords

constructed in Theorem 9 and 10 can also be obtained by straightforward modifications of the FKM de

Bruijn sequences constructed in [15, 13], for which efficient generation algorithms are known [26].
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