Generalized connected domination in graphs

Mekkia Kouider ${ }^{1}$ and Preben Dahl Vestergaard ${ }^{2 \dagger}$
${ }^{1}$ Laboratoire de Recherche en Informatique, UMR 8623, Bât. 490, Université Paris Sud, 91405 Orsay, France. E-mail: km@lri.fr
${ }^{2}$ Dept. of Mathematics, Aalborg University, Fredrik Bajers Vej 7G, DK-9220 Aalborg Ø, Denmark.
E-mail: pdv@math.aau.dk

received Nov 10, 2003, revised Oct 19, 2005, accepted Jan, 2006.

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order $\gamma_{c}^{k}(G)$ of such a smallest set we relate to $\gamma_{c}(G)$, the order of a smallest connected dominating set. For a tree T we give bounds on $\gamma_{c}^{k}(T)$ in terms of minimum valency and diameter. For trees the inequality $\gamma_{c}^{k}(T) \leq$ $n-k-1$ is known to hold, we determine the class of trees, for which equality holds.

Keywords: connected domination, domination, tree
Mathematics Subject Classification: 05C69

1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by $\Delta(G)=\Delta$, the smallest by $\delta(G)=\delta$. By P_{n} we denote a path on n vertices and C_{n} denotes a circuit on n vertices. In a graph a leaf or pendant vertex is a vertex of valency one and a stem is a vertex adjacent to at least one leaf. In K_{2} each vertex is both a leaf and a stem. The set of leaves in a graph G is denoted by $\Omega(G)$. The set of neighbours to a vertex x is denoted $N(x)$. By $K_{1, k}$ we denote a star with one central vertex joined to k other vertices. A subdivided star is a star with a subdivision vertex on each edge. By the corona graph on H we understand the graph $G=H \circ K_{1}$ obtained from the graph H by adding for each vertex x in H one new vertex x^{\prime} and one new edge $x x^{\prime}$. In a corona graph each vertex is either a leaf or a stem adjacent to exactly one leaf. In particular, if H is a tree, we obtain a corona tree $T=H \circ K_{1}$.

The eccentricity $e(x)$ of a vertex x is defined by $e(x)=\max \{d(x, y) \mid y \in V(G)\}$. The diameter of G is $\operatorname{diam}(G)=\max \{e(x) \mid x \in V(G)\}$. Let $D \subseteq V(G)$, then $N(D)$ is the set of vertices which have a neighbour in D and $N[D]$ is the set of vertices which are in D or have a neighbour in $D, N[D]=$ $D \cup N(D)$. A set $D \subseteq V(G)$ dominates G if $V(G) \subseteq N[D]$, i.e. each vertex not in D is adjacent to a vertex in D. The domination number $\gamma(G)$ is the cardinality of a smallest dominating set in G.

For a given graph G it is NP-hard to determine its domination number $\gamma(G)$, but we can search for for upper bounds as O . Ore started doing about fifty years ago. Also it may be more tractable to restrict the

[^0]minimum dominating set problem to consider only such dominating sets which induce a connected subset of G, this problem is called the minimum connected dominating problem and it is still NP-complete; In network design theory it is called the maximum leaf spanning tree problem [4], the name will be clear from Section 2 below. We shall study a concept intermediate to the classical and the connected domination, namely by demanding the dominating set to induce at most a given number k of components, we aim at presenting upper bounds for its order γ_{c}^{k}. Quite likely there is a corresponding problem in network design theory, although we are aware of no reference.

A comprehensive introduction to domination theory is given in [7,14] and variations are discussed in [5, 13, 15].

Ore [10] proved the inequality below while C. Payan and N. H. Xuong [11], Fink, Jacobsen, Kinch and Roberts [3] determined its extremal graphs.

Proposition 1 Let G be a connected graph with n vertices, $n \geq 2$. Then $\gamma(G) \leq \frac{n}{2}$ and equality holds if and only if G is either a corona graph or a 4-circuit.

If a tree T has $\gamma(T)=\frac{n}{2}$, then n is even and Proposition 1 implies that T is a corona tree.
Definition For a positive integer k and a graph G with at most k components we define

$$
\gamma_{c}^{k}(G)=\min \{\mid D \| D \subseteq V(G), D \text { has at most } k \text { components and } D \text { dominates } G\}
$$

A set D attaining the minimum above is called a γ_{c}^{k}-set for G.

Example

$$
\gamma_{c}^{k}\left(P_{n}\right)=\gamma_{c}^{k}\left(C_{n}\right)= \begin{cases}n-2 k & \text { for } n \geq 3 k \\ \left\lceil\frac{n}{3}\right\rceil & \text { for } 1 \leq n \leq 3 k\end{cases}
$$

For $k=1$ we have that γ_{c}^{1} is the usual connected domination number, $\gamma_{c}^{1}(G)=\gamma_{c}(G)$.
There exists for every graph G a k such that $\gamma_{c}^{k}(G)=\gamma(G)$, e.g. $k=|G|$.
For G connected and $k \geq 1$, obviously, $\gamma(G) \leq \gamma_{c}^{k}(G) \leq \gamma_{c}(G)$.

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let $\epsilon_{F}(G)$ be the maximum number of leaves among all spanning forests of G, and $\epsilon_{T}(G)$ be the maximum number of leaves among all spanning trees of G. With this notation Niemen [9] proved statement (i) below about γ and Hedetniemi and Laskar [8] generalized it to statement (ii) about γ_{c}.
(i) $\gamma(G)=n-\epsilon_{F}(G)$,
(ii) $\gamma_{c}(G)=n-\epsilon_{T}(G)$.

In the next two theorems we extend these results to γ_{c}^{k}.
Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let $\epsilon_{F_{k}}(G)$ be the maximum number of leaves among all spanning forests of G with at most k trees. Then

$$
\gamma_{c}^{k}(G)=n-\epsilon_{F_{k}}(G)
$$

Proof: In any spanning forest F with at most k trees the leaves will be dominated by their stems, so $\gamma_{c}^{k}(G) \leq n-|\Omega(F)|$ and hence $\gamma_{c}^{k}(G) \leq n-\epsilon_{F_{k}}(G)$.

Conversely, let $D=D_{1} \cup D_{2} \cup \cdots \cup D_{t}, 1 \leq t \leq k$, be a γ_{c}^{k}-set for G. Choose for each D_{i} a spanning tree $T_{i}, 1 \leq i \leq t$. For each vertex in $V(G) \backslash D$ choose one edge which is incident with a vertex in D. We have constructed a spanning forest F with t components and at least $n-|D|=n-\gamma_{c}^{k}(G)$ leaves. Therefore $\epsilon_{F_{k}}(G) \geq n-\gamma_{c}^{k}(G)$ and Theorem 1 is proved.

Theorem 2 Let k be a positive integer and G a connected graph. Then

$$
\begin{aligned}
\gamma_{c}^{k}(G) & =\min \left\{\gamma_{c}^{k}\left(F_{k}\right) \mid F_{k} \text { is a spanning forest of } G \text { with at most } k \text { trees }\right\} \\
& =\min \left\{\gamma_{c}^{k}(T) \mid T \text { is a spanning tree of } G\right\}
\end{aligned}
$$

Proof: Let F_{k} be a spanning forest of G with at most k trees. Certainly $\gamma_{c}^{k}(G) \leq \gamma_{c}^{k}\left(F_{k}\right)$ since a set which dominates F_{k} also dominates G. Conversely, we can in G find a spanning forest F_{k} with at most k components such that $\gamma_{c}^{k}(G)=\gamma_{c}^{k}\left(F_{k}\right)$: As was originally also done in the proofs for (i) and (ii) above we construct F_{k} from a γ_{c}^{k}-set $D=D_{1} \cup D_{2} \cup \cdots \cup D_{t}, 1 \leq t \leq k$, by choosing a spanning tree T_{i} in each connected subgraph D_{i} and joining each vertex in $V(G) \backslash D$ to precisely one vertex in D. Obviously, $\gamma_{c}^{k}\left(F_{k}\right) \leq|D|=\gamma_{c}^{k}(G)$. This proves the first equality. For the second equality we observe that the first minimum is chosen among a larger set, so that $\min \gamma_{c}^{k}\left(F_{k}\right) \leq \min \gamma_{c}^{k}(T)$, and also that any F_{k} by addition of edges can produce a tree T with $\gamma_{c}^{k}(T) \leq \gamma_{c}^{k}\left(F_{k}\right)$.

Hartnell and Vestergaard [6] proved the following result.
Proposition 2 For $k \geq 1$ and G connected

$$
\gamma_{c}(G)-2(k-1) \leq \gamma_{c}^{k}(G) \leq \gamma_{c}(G)
$$

From Proposition 2 we can easily derive the following corollary which is a classical result proven by Duchet and Meyniel. [2]

Corollary 3 For any connected graph $G, \gamma_{c}(G) \leq 3 \gamma(G)-2$.
Proof: Let G be a connected graph with domination number $\gamma(G)$. Choose $k=\gamma(G)$, then $\gamma_{c}^{k}(G)=$ $\gamma(G)$. Substituting into Proposition 2 above we obtain $\gamma_{c}(G)-2(k-1) \leq \gamma(G)$ and that proves the corollary.

2.1 Other bounds on γ_{c}^{k}

Theorem 4 For a positive integer k and a connected graph G with maximum valency Δ we have
(A) $\gamma_{c}(G) \leq n-\Delta$ and for trees T equality holds if and only if T has at most one vertex of valency ≥ 3.
(B) $\gamma_{c}^{k}(G) \leq n-\frac{(r-1)(\delta-2)}{3}-2 k$ if G has diameter $r \geq 3 k-1$ and the minimum valency $\delta=\delta(G)$ is at least 3 .
(C) If G is a connected graph with two vertices of valency Δ at distance d apart, $d \geq 3$, then

$$
\begin{equation*}
\gamma_{c}^{k}(G) \leq n-2(\Delta-1)-2 \min \left\{k-1, \frac{d-2}{3}\right\} \tag{1}
\end{equation*}
$$

(D) Let $x \in V(G)$ have valency $d(x)$ and eccentricity $e(x)$. Then

$$
\begin{equation*}
\gamma_{c}^{k}(G) \leq n-d(x)-2 \min \left\{k-1, \frac{e(x)-2}{3}\right\} . \tag{2}
\end{equation*}
$$

Proof:

(A) Let T be a spanning tree of G with $\Delta(T)=\Delta(G)=\Delta$, then T has at least Δ leaves, and hence $\gamma_{c}(G) \leq \gamma_{c}(T) \leq n-\Delta$.
If T has two vertices of valency ≥ 3, the number of leaves in T will be larger than Δ, and we get strict inequality in (A). Clearly, a tree T with exactly one vertex of valency $\Delta \geq 3$ has equality in (A) and for $\Delta=2$, we obtain a path P_{n} with $\gamma_{c}\left(P_{n}\right)=n-2$.
(B) Let $P=v_{1} v_{2} v_{3} \ldots v_{3 t+u}, \quad k \leq t, 0 \leq u \leq 2$, be a diametrical path in G. The diameter of T equals the length of P, which is $r=3 t+u-1$. For $i=1, \ldots, t$ let $v_{3 i-1}$ have neighbours $v_{3 i-2}, v_{3 i}$ on P and $a_{i j}$ off $P, j=1, \ldots, s_{i} \quad s_{i} \geq \delta-2 \geq 1$. In $G-\left\{v_{3 i} v_{3 i+1} \mid 1 \leq i \leq k-1\right\}$ consider the $k-1$ disjoint stars with center $v_{3 i-1}$ and neighbours $N\left(v_{3 i-1}\right), \quad 1 \leq i \leq k-$ 1 , and the remaining tree to the right consisting of the path $v_{3 k-2} v_{3 k-1} v_{3 k} \ldots v_{3 t+u}$ and leaves $v_{3 i-1} a_{3 i-1}, \quad j=1, \ldots, s_{i}, \quad s_{i} \geq \delta-2 \geq 1$ adjacent to vertices $v_{3 i-1}, \quad k \leq i \leq t$.
Extend this forest of k trees to a spanning forest F with k trees in $G-\left\{v_{3 i} v_{3 i+1} \mid 1 \leq i \leq k-1\right\}$. The number of leaves in F is at least $t(\delta-2)+2 k$ and hence $\gamma_{c}^{k}(G) \leq n-t(\delta-2)-2 k$. From $t=\frac{r+1-u}{3} \geq \frac{r-1}{3}$ we obtain the desired result $\gamma_{c}^{k}(G) \leq n-\frac{(r-1)(\delta-2)}{3}-2 k$.
C Let v_{1}, v_{s} be two vertices in G with maximum valency, $d\left(v_{1}\right)=d\left(v_{s}\right)=\Delta$, and let $P=v_{1} v_{2} \ldots v_{s}$ be a shortest $v_{1} v_{s}$-path, $s=3 t+1+u, t \geq 1,0 \leq u \leq 2$.

Case 1, $t \geq k-1$: In $G-\left\{v_{3 i-1} v_{3 i} \mid 1 \leq i \leq k-2\right\}$ we extend the k trees listed below to a spanning forest F of G,

1. The star consisting of v_{1} joined to all its neighbours,
2. the $k-2$ paths of length two $v_{3 i} v_{3 i+1} v_{3 i+2}, 1 \leq i \leq k-2$,
3. the path $v_{3 k-3} v_{3 k-2} \ldots v_{s}$ together with all $\Delta-1$ neighbours of v_{s} outside of P.
F will have at least $2(\Delta-1)+2(k-1)$ leaves.
Case 2, $t \leq k-2: s=3 t+1+u, d=d\left(v_{1}, v_{s}\right)=s-1=3 t+u, t-1=\frac{d-u}{3}-1 \geq$ $\frac{d-2}{3}-1$. As before, we can find a spanning forest F of G whose number of leaves is at least $2 \Delta+2(t-1) \geq 2(\Delta-1)+2 \frac{d-2}{3}$ and consequently $\gamma_{c}^{k}(G) \leq n-2(\Delta-1)-2 \frac{d-2}{3}$.
The proof of D is similar.

3 Trees

For trees Hartnell and Vestergaard [6] found
Proposition 3 Let k be a positive integer and T a tree with $|V(T)|=n, n \geq 2 k+1$. Then $\gamma_{c}^{k}(T) \leq$ $n-k-1$.

This inequality is best possible. For $k=1$ the extremal trees are paths P_{n} and for $k \geq 2$ extremal trees will be described in the following Theorem 5.

A tree T is of type A if it contains a vertex x_{0} such that $T-x_{0}$ is a forest of trees $T_{1}, T_{2}, \ldots, T_{\alpha}, \alpha \geq 1$, such that each tree T_{i} is a corona tree and x_{0} is joined to a stem in each of the trees $T_{i}, 1 \leq i \leq \alpha$. We note that a subdivision of a star is a tree of type A.

A tree T is of type B if it contains a path $u v w$ such that $T-\{u, v, w\}$ is a forest of corona trees $T_{1}, T_{2}, \ldots, T_{s}, T_{s+1,}, \ldots, T_{\alpha}, \alpha \geq 2,1 \leq s<\alpha$ and u is joined to a stem in each of the trees $T_{1}, T_{2}, \ldots, T_{s}$, while w is joined to a stem in each of the trees $T_{s+1,}, \ldots, T_{\alpha}$.

Proposition 4 below was proven by Randerath and Volkmann [12], Baogen, Cockayne, Haynes, Hedetniemi and Shangchao [1].
Proposition 4 If T is a tree with n vertices, n odd, and $\gamma(T)=\left\lfloor\frac{n}{2}\right\rfloor$ then T is a tree of type A or B.
We shall now determine the trees extremal for Proposition 3.
Theorem 5 Let $k \geq 2$ be a positive integer and T a tree with n vertices, $n \geq 2 k+1$. Then $\gamma_{c}^{k}(T)=$ $n-k-1$ if and only if one of cases (i)-(iii) below occur.
(i) $k=\frac{n-1}{2}, \gamma_{c}^{k}(T)=\gamma(T)=\frac{n-1}{2}$ and T is of type A or B.
(ii) $k=\frac{n-2}{2}, \gamma_{c}^{k}(T)=\gamma(T)=\frac{n}{2}$ and T is a corona tree.
(iii) $k=\frac{n-3}{2}, \gamma_{c}^{k}(T)=\frac{n+1}{2}, \gamma(T)=\frac{n-1}{2}$ and T is a star $K_{1, k+1}$ with a subdvision vertex on each edge.

Proof: First, let $k \geq 2$ and a tree T of order n be given such that $n \geq 2 k+1$ and $\gamma_{c}^{k}(T)=n-k-1$. We shall prove that T is as described in one of the three cases (i)-(iii).

We note in passing that
Remark $1 \gamma(T) \leq k$ implies $\gamma_{c}^{k}(T)=\gamma(T)$, and that likewise $\gamma_{c}^{k}(T) \leq k$ implies $\gamma_{c}^{k}(T)=\gamma(T)$.
If $n=2 k+1$, or equivalently $k=\frac{n-1}{2}$, we have by assumption $\gamma_{c}^{k}(T)=n-k-1=k$ and, as just observed above, that implies that also $\gamma(T)=k$. Since $k=\left\lfloor\frac{n}{2}\right\rfloor$ we obtain from Proposition 4 that T is a tree of type A or B, so Case (i) occurs.

If $n=2 k+2$, or equivalently $k=\frac{n-2}{2}$ we have by assumption $\gamma_{c}^{k}(T)=n-k-1=k+1$. Certainly $\gamma(T) \leq \gamma_{c}^{k}(T)$, but if $\gamma(T) \leq k$ then we should have that $\gamma_{c}^{k}(T)=\gamma(T) \leq k$ in contradiction
to $\gamma_{c}^{k}(T)=k+1$, therefore $\gamma(T)=k+1=\frac{n}{2}$. From Proposition 1 we obtain that T is a corona tree, i.e. Case (ii) occurs.

We may now assume $n \geq 2 k+3$, and we shall prove that, in fact, n equals $2 k+3$ and that Case (iii) occurs.

Let $v_{1} v_{2} \ldots v_{\alpha}$ be a longest path in T. Since $\gamma_{c}^{k}(T)=n-k-1 \geq k+2 \geq 4, T$ is neither a star nor a bistar and therefore $\alpha \geq 5$. We must have $d_{T}\left(v_{2}\right)=2$, because otherwise $d_{T}\left(v_{2}\right) \geq 3$ and we could from T delete three leaves adjacent to v_{2}, if $d_{T}\left(v_{2}\right) \geq 4$, and in case $d_{T}\left(v_{2}\right)=3$ we could delete v_{2} and its two adjacent leaves. In both cases we would obtain a tree T^{\prime} of order $n-3 \geq 2(k-1)+1$ which by Proposition 3 has $\gamma_{c}^{k-1}\left(T^{\prime}\right) \leq(n-3)-(k-1)-1 \leq n-k-3$. Adding v_{2} to a $\gamma_{c}^{k-1}\left(T^{\prime}\right)$-set we would obtain $\gamma_{c}^{k}(T) \leq n-k-2$, a contradiction. Therefore $d_{T}\left(v_{2}\right)=2$.

The vertex v_{3} cannot be adjacent to two leaves c and d, say, because, then the tree $T^{\prime}=T-\left\{v_{1}, v_{2}, c, d\right\}$ would have order $n-4 \geq 2(k-1)+1$. Thus Proposition 3 gives that $\gamma_{c}^{k-1}\left(T^{\prime}\right) \leq(n-4)-(k-1)-1$ $\leq n-k-4$ and adding v_{2}, v_{3} to a $\gamma_{c}^{k-1}\left(T^{\prime}\right)$-set we would obtain $\gamma_{c}^{k}(T) \leq n-k-2$, a contradiction. So v_{3} can be adjacent to at most one leaf. The case $d_{T}\left(v_{3}\right)=3$ and v_{3} adjacent to one leaf c can similarly be seen to be impossible by considering $T^{\prime}=T \backslash\left\{v_{1}, v_{2}, v_{3}, c\right\}$.

On the other hand $d_{T}\left(v_{3}\right) \geq 3$, for assume $d_{T}\left(v_{3}\right)=2$, then $T^{\prime}=T \backslash\left\{v_{1}, v_{2}, v_{3}\right\}$ has $\gamma_{c}^{k-1}\left(T^{\prime}\right) \leq$ $n-k-3$ and addition of v_{2} to a $\gamma_{c}^{k-1}\left(T^{\prime}\right)$-set would give $\gamma_{c}^{k}(T) \leq n-k-2$, a contradiction.

Assume therefore that v_{3} besides v_{2} and v_{4} is adjacent to precisely one leaf c and to at least one further vertex a, where a has valency two and is adjacent to the leaf b. Then $T^{\prime}=T \backslash\left\{v_{1}, v_{2}, a, b\right\}$ has order $n-4 \geq 2(k-1)+1$ and Proposition 3 gives that (3) $\gamma_{c}^{k-1}\left(T^{\prime}\right) \leq(n-4)-(k-1)-1 \leq n-k-4$. In T^{\prime} the vertex c is a leaf and as any γ_{c}^{k-1}-set for T^{\prime} must contain one of $\left\{v_{3}, c\right\}$, we may assume it contains v_{3}. Addition of $\left\{v_{2}, a\right\}$ to a $\gamma_{c}^{k-1}\left(T^{\prime}\right)$-set now gives the contradiction $\gamma_{c}^{k}(T) \leq n-k-2$.

Assume finally that v_{3} has no leaf but besides v_{2} and v_{4} is adjacent to $a_{1}, a_{2}, \ldots, a_{t}, t \geq 1$, where each a_{i} has valency two and is adjacent to the leaf $b_{i}, 1 \leq i \leq t$.

We have $k-t \geq 1$ because $V(T) \backslash\left\{v_{1}, b_{1}, b_{2}, \ldots, b_{t}, v_{\alpha}\right\}$ is a connected subgraph with $n-t-2$ vertices which dominate T, so that $n-k-1=\gamma_{c}^{k}(T) \leq n-t-2$ giving $k-t \geq 1$. Consider the tree $T^{\prime}=T \backslash\left\{v_{1}, v_{2}, a_{1}, a_{2}, \ldots, b_{1}, b_{2}, \ldots, b_{t}, v_{3}\right\}$ of order $n-2 t-3$.

If $n-2 t-3 \geq 2(k-t)+1$ we obtain by Proposition 3 that $\gamma_{c}^{k-t}\left(T^{\prime}\right) \leq(n-2 t-3)-(k-t)-1 \leq$ $n-k-t-4$, and by addition of the $t+2$ vertices $\left\{v_{2}, v_{3}, a_{1}, a_{2}, \ldots, a_{t}\right\}$, (which span a connected subgraph of T), to a $\gamma_{c}^{k-t}\left(T^{\prime}\right)$-set we obtain $\gamma_{c}^{k}(T) \leq n-k-2$, a contradiction. So we have $n-2 t-3 \leq 2(k-t)$ and now $\left|V\left(T^{\prime}\right)\right|=n-2 t-3 \leq 2(k-t)$ implies $\gamma\left(T^{\prime}\right) \leq \frac{\left|V\left(T^{\prime}\right)\right|}{2} \leq k-t$ which by remark 1 gives that $\gamma_{c}^{k-t}\left(T^{\prime}\right)=\gamma\left(T^{\prime}\right)$ and hence addition of the $t+2$ vertices $\left\{v_{2}, v_{3}, a_{1}, a_{2}, \ldots, a_{t}\right\}$ to a $\gamma_{c}^{k-t}\left(T^{\prime}\right)$ set (having at most $k-t$ vertices) gives $\gamma_{c}^{k-t+1}(T) \leq k+2$. We now have $n-k-1=\gamma_{c}^{k}(T) \leq$ $\gamma_{c}^{k-t+1}(T) \leq k+2$ giving $n \leq 2 k+3$, so the assumption $n \geq 2 k+3$ implies $n=2 k+3$. By hypothesis $\gamma_{c}^{k}(T)=k+2$ and we have $\gamma(T) \leq k+1$ by Proposition 1 .

Thus $\gamma(T)=k+1$, (because otherwise $\gamma_{c}^{k}(T)=\gamma(T)<k+2$), and any $\gamma(T)$-set must consist of $k+1$ isolated vertices. As $\gamma(T)=\left\lfloor\frac{n}{2}\right\rfloor$ the tree T by Proposition 4 is of type A or B. But T cannot be of type B, for assume T is of type B. Then T consists of a 3-path, $u v w$, with each of its ends joined to stems of corona trees, and since we have just seen that $v_{3}, v_{\alpha-2}$ are neither stems nor leaves, they must play the role of u, w, so $\alpha=7$ and T consists of two subdivided stars centered respectively at $u=v_{3}$ and $w=v_{5}$ and a vertex $v=v_{4}$ joined to u and w. Among its γ-sets this tree T has one with two adjacent vertices, namely v_{2} and v_{3}, a contradiction, so T is of type A.

Using, in analogy to v_{2}, v_{3}, that $d_{T}\left(v_{\alpha-1}\right)=2$ and that $v_{\alpha-2}$ is not a stem, we get that $\alpha=5$ and T is a subdivided star so that (iii) occurs.

Conversely, it is easy to see that if (i), (ii) or (iii) holds then $\gamma_{c}^{k}(T)=\gamma(T)=n-k+1$. This proves Theorem 5.

References

[1] X. Baogen, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, Z. Shangchao: Extremal graphs for inequalities involving domination parameters, Discrete Math. 216 (2000), 1-10.
[2] P. Duchet, H. Meyniel: On Hadwiger's number and stability number, Ann. Discr. Math. 13 (1982), 71-74.
[3] J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts: On graphs having domination number half their order, Period. Math. Hungar. 16 (1985), 287-293.
[4] S. Guha, S. Khuller: Approximation algorithms for connected dominating sets, Algorithmica 20 (1998), 374-387.
[5] B.L. Hartnell, P.D. Vestergaard: Partitions and domination in graphs, J. of Combin. Math. and Combin. Comput. 46 (2003), 113-128.
[6] B.L. Hartnell, P.D. Vestergaard: Dominating sets with at most k components, Ars Combin. 74 (2005), 223-229.
[7] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater: Fundamentals of domination in graphs. Marcel Dekker, New York 1998.
[8] S.T. Hedetniemi, R.C. Laskar: Connected domination in graphs, B. Bollabas, ed.: Graph Theory and Combinatorics. Academic Press, London, 1984.
[9] J. Niemen: Two bounds for the domination number of a graph, J. Inst. Math. Applics. 13 (1974), 183-187.
[10] O. Ore: Theory of Graphs, Amer. Soc. Colloq. Publ. vol. 38. Amer. Math. Soc., Providence, RI 1962.
[11] C. Payan and N. H. Xuong: Domination-balanced graphs J. of Graph Theory 6 (1982), 23-32.
[12] B. Randerath, L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete Math. 191 (1998), 159-169.
[13] Zs. Tuza, P.D. Vestergaard: Domination in partitioned graphs. Discuss. Math. Graph Theory. 22 (2002), 199-210.
[14] E. Sampathkumar: Domination parameters of a graph pp. 271-299 in Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, eds.: Domination in Graphs, Advanced Topics. Marcel Dekker, New York 1998.
[15] S. Seager: Partition domination of graphs of minimum degree two. Congr. Numer. 132 (1998), 85-91.

[^0]: ${ }^{\dagger}$ Supported by the Danish Natural Science Research Council

