Generalized connected domination in graphs

Mekkia Kouider¹ and Preben Dahl Vestergaard^{2†}

¹Laboratoire de Recherche en Informatique, UMR 8623, Bât. 490, Université Paris Sud, 91405 Orsay, France. E-mail: km@lri.fr

 2 Dept. of Mathematics, Aalborg University, Fredrik Bajers Vej 7G, DK–9220 Aalborg Ø, Denmark.

E-mail: pdv@math.aau.dk

received Nov 10, 2003, revised Oct 19, 2005, accepted Jan, 2006.

As a generalization of connected domination in a graph G we consider domination by sets having at most k components. The order $\gamma_c^k(G)$ of such a smallest set we relate to $\gamma_c(G)$, the order of a smallest connected dominating set. For a tree T we give bounds on $\gamma_c^k(T)$ in terms of minimum valency and diameter. For trees the inequality $\gamma_c^k(T) \leq n-k-1$ is known to hold, we determine the class of trees, for which equality holds.

Keywords: connected domination, domination, tree **Mathematics Subject Classification:** 05C69

1 Introduction

We consider simple non-oriented graphs. The largest valency in G is denoted by $\Delta(G) = \Delta$, the smallest by $\delta(G) = \delta$. By P_n we denote a path on n vertices and C_n denotes a circuit on n vertices. In a graph a **leaf** or **pendant vertex** is a vertex of valency one and a **stem** is a vertex adjacent to at least one leaf. In K_2 each vertex is both a leaf and a stem. The set of leaves in a graph G is denoted by $\Omega(G)$. The set of neighbours to a vertex x is denoted N(x). By $K_{1,k}$ we denote a star with one central vertex joined to k other vertices. A **subdivided star** is a star with a subdivision vertex on each edge. By the **corona graph** on H we understand the graph $G = H \circ K_1$ obtained from the graph H by adding for each vertex x in H one new vertex x' and one new edge xx'. In a corona graph each vertex is either a leaf or a stem adjacent to exactly one leaf. In particular, if H is a tree, we obtain a **corona tree** $T = H \circ K_1$.

The **eccentricity** e(x) of a vertex x is defined by $e(x) = \max\{d(x,y)|y \in V(G)\}$. The **diameter** of G is $\operatorname{diam}(G) = \max\{e(x)|x \in V(G)\}$. Let $D \subseteq V(G)$, then N(D) is the set of vertices which have a neighbour in D and N[D] is the set of vertices which are in D or have a neighbour in D, $N[D] = D \cup N(D)$. A set $D \subseteq V(G)$ dominates G if $V(G) \subseteq N[D]$, i.e. each vertex not in D is adjacent to a vertex in D. The **domination number** $\gamma(G)$ is the cardinality of a smallest dominating set in G.

For a given graph G it is NP-hard to determine its domination number $\gamma(G)$, but we can search for for upper bounds as O. Ore started doing about fifty years ago. Also it may be more tractable to restrict the

[†]Supported by the Danish Natural Science Research Council

minimum dominating set problem to consider only such dominating sets which induce a connected subset of G, this problem is called **the minimum connected dominating problem** and it is still NP-complete; In network design theory it is called the **maximum leaf spanning tree problem** [4], the name will be clear from Section 2 below. We shall study a concept intermediate to the classical and the connected domination, namely by demanding the dominating set to induce at most a given number k of components, we aim at presenting upper bounds for its order γ_c^k . Quite likely there is a corresponding problem in network design theory, although we are aware of no reference.

A comprehensive introduction to domination theory is given in [7, 14] and variations are discussed in [5, 13, 15].

Ore [10] proved the inequality below while C. Payan and N. H. Xuong [11], Fink, Jacobsen, Kinch and Roberts [3] determined its extremal graphs.

Proposition 1 Let G be a connected graph with n vertices, $n \ge 2$. Then $\gamma(G) \le \frac{n}{2}$ and equality holds if and only if G is either a corona graph or a 4-circuit.

If a tree T has $\gamma(T)=\frac{n}{2}$, then n is even and Proposition 1 implies that T is a corona tree. **Definition** For a positive integer k and a graph G with at most k components we define

$$\gamma_c^k(G) = \min\{|D||D \subseteq V(G), D \text{ has at most } k \text{ components and } D \text{ dominates } G\}.$$

A set D attaining the minimum above is called a γ_c^k -set for G.

Example

$$\gamma_c^k(P_n) = \gamma_c^k(C_n) = \begin{cases} n - 2k & \text{for } n \ge 3k \\ \lceil \frac{n}{3} \rceil & \text{for } 1 \le n \le 3k \end{cases}$$

For k=1 we have that γ_c^1 is the usual connected domination number, $\gamma_c^1(G)=\gamma_c(G)$. There exists for every graph G a k such that $\gamma_c^k(G) = \gamma(G)$, e.g. k = |G|. For G connected and $k \ge 1$, obviously, $\gamma(G) \le \gamma_c^k(G) \le \gamma_c(G)$.

2 General graphs

Let G be a connected graph with n vertices and k a positive integer. Let $\epsilon_F(G)$ be the maximum number of leaves among all spanning forests of G, and $\epsilon_T(G)$ be the maximum number of leaves among all spanning trees of G. With this notation Niemen [9] proved statement (i) below about γ and Hedetniemi and Laskar [8] generalized it to statement (ii) about γ_c .

(i)
$$\gamma(G) = n - \epsilon_F(G)$$
,

(ii)
$$\gamma_c(G) = n - \epsilon_T(G)$$
.

In the next two theorems we extend these results to γ_c^k .

Theorem 1 Let G be a connected graph with n vertices and k a positive integer. Let $\epsilon_{F_k}(G)$ be the maximum number of leaves among all spanning forests of G with at most k trees. Then $\gamma_c^k(G) = n - \epsilon_{F_k}(G).$

Proof: In any spanning forest F with at most k trees the leaves will be dominated by their stems, so $\gamma_c^k(G) \leq n - |\Omega(F)|$ and hence $\gamma_c^k(G) \leq n - \epsilon_{F_k}(G)$.

Conversely, let $D=D_1\cup D_2\cup\cdots\cup D_t,\ 1\leq t\leq k$, be a γ_c^k -set for G. Choose for each D_i a spanning tree $T_i, 1\leq i\leq t$. For each vertex in $V(G)\setminus D$ choose one edge which is incident with a vertex in D. We have constructed a spanning forest F with t components and at least $n-|D|=n-\gamma_c^k(G)$ leaves. Therefore $\epsilon_{F_k}(G)\geq n-\gamma_c^k(G)$ and Theorem 1 is proved.

Theorem 2 Let k be a positive integer and G a connected graph. Then

$$\gamma_c^k(G) = \min \{ \gamma_c^k(F_k) | F_k \text{ is a spanning forest of } G \text{ with at most } k \text{ trees } \}$$

$$= \min \{ \gamma_c^k(T) | T \text{ is a spanning tree of } G \}$$

Proof: Let F_k be a spanning forest of G with at most k trees. Certainly $\gamma_c^k(G) \leq \gamma_c^k(F_k)$ since a set which dominates F_k also dominates G. Conversely, we can in G find a spanning forest F_k with at most k components such that $\gamma_c^k(G) = \gamma_c^k(F_k)$: As was originally also done in the proofs for (i) and (ii) above we construct F_k from a γ_c^k -set $D = D_1 \cup D_2 \cup \cdots \cup D_t, \ 1 \leq t \leq k$, by choosing a spanning tree T_i in each connected subgraph D_i and joining each vertex in $V(G) \setminus D$ to precisely one vertex in D. Obviously, $\gamma_c^k(F_k) \leq |D| = \gamma_c^k(G)$. This proves the first equality. For the second equality we observe that the first minimum is chosen among a larger set, so that $\min_i \gamma_c^k(F_k) \leq \min_i \gamma_c^k(T)$, and also that any F_k by addition of edges can produce a tree T with $\gamma_c^k(T) \leq \gamma_c^k(F_k)$.

Hartnell and Vestergaard [6] proved the following result.

Proposition 2 For $k \ge 1$ and G connected

$$\gamma_c(G) - 2(k-1) \le \gamma_c^k(G) \le \gamma_c(G).$$

From Proposition 2 we can easily derive the following corollary which is a classical result proven by Duchet and Meyniel. [2]

Corollary 3 For any connected graph G, $\gamma_c(G) \leq 3\gamma(G) - 2$.

Proof: Let G be a connected graph with domination number $\gamma(G)$. Choose $k = \gamma(G)$, then $\gamma_c^k(G) = \gamma(G)$. Substituting into Proposition 2 above we obtain $\gamma_c(G) - 2(k-1) \le \gamma(G)$ and that proves the corollary.

2.1 Other bounds on γ_c^k

Theorem 4 For a positive integer k and a connected graph G with maximum valency Δ we have

(A) $\gamma_c(G) \leq n - \Delta$ and for trees T equality holds if and only if T has at most one vertex of valency ≥ 3 .

(B)
$$\gamma_c^k(G) \leq n - \frac{(r-1)(\delta-2)}{3} - 2k$$
 if G has diameter $r \geq 3k-1$ and the minimum valency $\delta = \delta(G)$ is at least 3.

(C) If G is a connected graph with two vertices of valency Δ at distance d apart, $d \geq 3$, then

$$\gamma_c^k(G) \le n - 2(\Delta - 1) - 2\min\{k - 1, \frac{d - 2}{3}\}.$$
 (1)

(D) Let $x \in V(G)$ have valency d(x) and eccentricity e(x). Then

$$\gamma_c^k(G) \le n - d(x) - 2\min\{k - 1, \frac{e(x) - 2}{3}\}.$$
 (2)

Proof:

- (A) Let T be a spanning tree of G with $\Delta(T) = \Delta(G) = \Delta$, then T has at least Δ leaves, and hence $\gamma_c(G) \leq \gamma_c(T) \leq n \Delta$.
 - If T has two vertices of valency ≥ 3 , the number of leaves in T will be larger than Δ , and we get strict inequality in (A). Clearly, a tree T with exactly one vertex of valency $\Delta \geq 3$ has equality in (A) and for $\Delta = 2$, we obtain a path P_n with $\gamma_c(P_n) = n 2$.
- (B) Let $P=v_1v_2v_3\dots v_{3t+u}, \quad k\leq t, 0\leq u\leq 2$, be a diametrical path in G. The diameter of T equals the length of P, which is r=3t+u-1. For $i=1,\dots,t$ let v_{3i-1} have neighbours v_{3i-2},v_{3i} on P and a_{ij} off $P,j=1,\dots,s_i$ $s_i\geq \delta-2\geq 1$. In $G-\{v_{3i}v_{3i+1}|1\leq i\leq k-1\}$ consider the k-1 disjoint stars with center v_{3i-1} and neighbours $N(v_{3i-1}), \quad 1\leq i\leq k-1$, and the remaining tree to the right consisting of the path $v_{3k-2}v_{3k-1}v_{3k}\dots v_{3t+u}$ and leaves $v_{3i-1}a_{3i-1}, \quad j=1,\dots,s_i, \quad s_i\geq \delta-2\geq 1$ adjacent to vertices $v_{3i-1}, \quad k\leq i\leq t$.

Extend this forest of k trees to a spanning forest F with k trees in $G-\{v_{3i}v_{3i+1}|1\leq i\leq k-1\}$. The number of leaves in F is at least $t(\delta-2)+2k$ and hence $\gamma_c^k(G)\leq n-t(\delta-2)-2k$. From $t=\frac{r+1-u}{3}\geq \frac{r-1}{3}$ we obtain the desired result $\gamma_c^k(G)\leq n-\frac{(r-1)(\delta-2)}{3}-2k$.

C Let v_1, v_s be two vertices in G with maximum valency, $d(v_1) = d(v_s) = \Delta$, and let $P = v_1 v_2 \dots v_s$ be a shortest $v_1 v_s$ -path, $s = 3t + 1 + u, t \ge 1, 0 \le u \le 2$.

Case 1, $t \ge k - 1$: In $G - \{v_{3i-1}v_{3i}|1 \le i \le k - 2\}$ we extend the k trees listed below to a spanning forest F of G,

- 1. The star consisting of v_1 joined to all its neighbours,
- 2. the k-2 paths of length two $v_{3i}v_{3i+1}v_{3i+2}$, $1 \le i \le k-2$,
- 3. the path $v_{3k-3}v_{3k-2}\dots v_s$ together with all $\Delta-1$ neighbours of v_s outside of P. F will have at least $2(\Delta-1)+2(k-1)$ leaves.

Case 2,
$$t \le k-2$$
: $s = 3t+1+u, d = d(v_1, v_s) = s-1 = 3t+u, t-1 = \frac{d-u}{3}-1 \ge \frac{d-2}{3}-1$. As before, we can find a spanning forest F of G whose number of leaves is at least $2\Delta + 2(t-1) \ge 2(\Delta-1) + 2\frac{d-2}{3}$ and consequently $\gamma_c^k(G) \le n - 2(\Delta-1) - 2\frac{d-2}{3}$.

The proof of D is similar.

3 Trees

For trees Hartnell and Vestergaard [6] found

Proposition 3 Let k be a positive integer and T a tree with $|V(T)| = n, n \ge 2k + 1$. Then $\gamma_c^k(T) \le n - k - 1$.

This inequality is best possible. For k=1 the extremal trees are paths P_n and for $k\geq 2$ extremal trees will be described in the following Theorem 5.

A tree T is of type A if it contains a vertex x_0 such that $T-x_0$ is a forest of trees $T_1, T_2, \ldots, T_\alpha, \alpha \geq 1$, such that each tree T_i is a corona tree and x_0 is joined to a stem in each of the trees $T_i, 1 \leq i \leq \alpha$. We note that a subdivision of a star is a tree of type A.

A tree T is of type B if it contains a path uvw such that $T - \{u, v, w\}$ is a forest of corona trees $T_1, T_2, \ldots, T_s, T_{s+1}, \ldots, T_{\alpha}, \alpha \geq 2, 1 \leq s < \alpha$ and u is joined to a stem in each of the trees T_1, T_2, \ldots, T_s , while w is joined to a stem in each of the trees $T_{s+1}, \ldots, T_{\alpha}$.

Proposition 4 below was proven by Randerath and Volkmann [12], Baogen, Cockayne, Haynes, Hedetniemi and Shangchao [1].

Proposition 4 If T is a tree with n vertices, n odd, and $\gamma(T) = \lfloor \frac{n}{2} \rfloor$ then T is a tree of type A or B.

We shall now determine the trees extremal for Proposition 3.

Theorem 5 Let $k \geq 2$ be a positive integer and T a tree with n vertices, $n \geq 2k + 1$. Then $\gamma_c^k(T) = n - k - 1$ if and only if one of cases (i)-(iii) below occur.

(i)
$$k = \frac{n-1}{2}$$
, $\gamma_c^k(T) = \gamma(T) = \frac{n-1}{2}$ and T is of type A or B .

(ii)
$$k = \frac{n-2}{2}$$
, $\gamma_c^k(T) = \gamma(T) = \frac{n}{2}$ and T is a corona tree.

(iii)
$$k = \frac{n-3}{2}$$
, $\gamma_c^k(T) = \frac{n+1}{2}$, $\gamma(T) = \frac{n-1}{2}$ and T is a star $K_{1,k+1}$ with a subdvision vertex on each edge.

Proof: First, let $k \geq 2$ and a tree T of order n be given such that $n \geq 2k+1$ and $\gamma_c^k(T) = n-k-1$. We shall prove that T is as described in one of the three cases (i)-(iii).

We note in passing that

Remark 1 $\gamma(T) \leq k$ implies $\gamma_c^k(T) = \gamma(T)$, and that likewise $\gamma_c^k(T) \leq k$ implies $\gamma_c^k(T) = \gamma(T)$.

If n=2k+1, or equivalently $k=\frac{n-1}{2}$, we have by assumption $\gamma_c^k(T)=n-k-1=k$ and, as just observed above, that implies that also $\gamma(T)=k$. Since $k=\lfloor\frac{n}{2}\rfloor$ we obtain from Proposition 4 that T is a tree of type A or B, so Case (i) occurs.

If n=2k+2, or equivalently $k=\frac{n-2}{2}$ we have by assumption $\gamma_c^k(T)=n-k-1=k+1$. Certainly $\gamma(T)\leq \gamma_c^k(T)$, but if $\gamma(T)\leq k$ then we should have that $\gamma_c^k(T)=\gamma(T)\leq k$ in contradiction

to $\gamma_c^k(T) = k+1$, therefore $\gamma(T) = k+1 = \frac{n}{2}$. From Proposition 1 we obtain that T is a corona tree, i.e. Case (ii) occurs.

We may now assume $n \ge 2k + 3$, and we shall prove that, in fact, n equals 2k + 3 and that Case (iii) occurs

Let $v_1v_2\dots v_\alpha$ be a longest path in T. Since $\gamma_c^k(T)=n-k-1\geq k+2\geq 4$, T is neither a star nor a bistar and therefore $\alpha\geq 5$. We must have $d_T(v_2)=2$, because otherwise $d_T(v_2)\geq 3$ and we could from T delete three leaves adjacent to v_2 , if $d_T(v_2)\geq 4$, and in case $d_T(v_2)=3$ we could delete v_2 and its two adjacent leaves. In both cases we would obtain a tree T' of order $n-3\geq 2(k-1)+1$ which by Proposition 3 has $\gamma_c^{k-1}(T')\leq (n-3)-(k-1)-1\leq n-k-3$. Adding v_2 to a $\gamma_c^{k-1}(T')$ -set we would obtain $\gamma_c^k(T)\leq n-k-2$, a contradiction. Therefore $d_T(v_2)=2$.

The vertex v_3 cannot be adjacent to two leaves c and d, say, because, then the tree $T' = T - \{v_1, v_2, c, d\}$ would have order $n-4 \geq 2(k-1)+1$. Thus Proposition 3 gives that $\gamma_c^{k-1}(T') \leq (n-4)-(k-1)-1 \leq n-k-4$ and adding v_2, v_3 to a $\gamma_c^{k-1}(T')$ -set we would obtain $\gamma_c^k(T) \leq n-k-2$, a contradiction. So v_3 can be adjacent to at most one leaf. The case $d_T(v_3) = 3$ and v_3 adjacent to one leaf c can similarly be seen to be impossible by considering $T' = T \setminus \{v_1, v_2, v_3, c\}$.

On the other hand $d_T(v_3) \geq 3$, for assume $d_T(v_3) = 2$, then $T' = T \setminus \{v_1, v_2, v_3\}$ has $\gamma_c^{k-1}(T') \leq n-k-3$ and addition of v_2 to a $\gamma_c^{k-1}(T')$ -set would give $\gamma_c^k(T) \leq n-k-2$, a contradiction.

Assume therefore that v_3 besides v_2 and v_4 is adjacent to precisely one leaf c and to at least one further vertex a, where a has valency two and is adjacent to the leaf b. Then $T' = T \setminus \{v_1, v_2, a, b\}$ has order $n-4 \geq 2(k-1)+1$ and Proposition 3 gives that (3) $\gamma_c^{k-1}(T') \leq (n-4)-(k-1)-1 \leq n-k-4$. In T' the vertex c is a leaf and as any γ_c^{k-1} -set for T' must contain one of $\{v_3, c\}$, we may assume it contains v_3 . Addition of $\{v_2, a\}$ to a $\gamma_c^{k-1}(T')$ -set now gives the contradiction $\gamma_c^k(T) \leq n-k-2$.

Assume finally that v_3 has no leaf but besides v_2 and v_4 is adjacent to $a_1, a_2, \ldots, a_t, t \ge 1$, where each a_i has valency two and is adjacent to the leaf $b_i, 1 \le i \le t$.

We have $k-t \geq 1$ because $V(T) \setminus \{v_1, b_1, b_2, \dots, b_t, v_\alpha\}$ is a connected subgraph with n-t-2 vertices which dominate T, so that $n-k-1=\gamma_c^k(T) \leq n-t-2$ giving $k-t \geq 1$. Consider the tree $T'=T \setminus \{v_1, v_2, a_1, a_2, \dots, b_1, b_2, \dots, b_t, v_3\}$ of order n-2t-3.

If $n-2t-3\geq 2(k-t)+1$ we obtain by Proposition 3 that $\gamma_c^{k-t}(T')\leq (n-2t-3)-(k-t)-1\leq n-k-t-4$, and by addition of the t+2 vertices $\{v_2,v_3,a_1,a_2,\ldots,a_t\}$, (which span a connected subgraph of T), to a $\gamma_c^{k-t}(T')$ -set we obtain $\gamma_c^k(T)\leq n-k-2$, a contradiction. So we have $n-2t-3\leq 2(k-t)$ and now $|V(T')|=n-2t-3\leq 2(k-t)$ implies $\gamma(T')\leq \frac{|V(T')|}{2}\leq k-t$ which by remark 1 gives that $\gamma_c^{k-t}(T')=\gamma(T')$ and hence addition of the t+2 vertices $\{v_2,v_3,a_1,a_2,\ldots,a_t\}$ to a $\gamma_c^{k-t}(T')$ -set (having at most k-t vertices) gives $\gamma_c^{k-t+1}(T)\leq k+2$. We now have $n-k-1=\gamma_c^k(T)\leq \gamma_c^{k-t+1}(T)\leq k+2$ giving $n\leq 2k+3$, so the assumption $n\geq 2k+3$ implies n=2k+3. By hypothesis $\gamma_c^k(T)=k+2$ and we have $\gamma(T)\leq k+1$ by Proposition 1. Thus $\gamma(T)=k+1$, (because otherwise $\gamma_c^k(T)=\gamma(T)< k+2$), and any $\gamma(T)$ -set must consist of k+1 isolated vertices. As $\gamma(T)=\lfloor \frac{n}{2}\rfloor$ the tree T by Proposition 4 is of type A or B. But T cannot be of

Thus $\gamma(T)=k+1$, (because otherwise $\gamma_c^k(T)=\gamma(T)< k+2$), and any $\gamma(T)$ -set must consist of k+1 isolated vertices. As $\gamma(T)=\lfloor\frac{n}{2}\rfloor$ the tree T by Proposition 4 is of type A or B. But T cannot be of type B, for assume T is of type B. Then T consists of a 3-path , uvw, with each of its ends joined to stems of corona trees, and since we have just seen that $v_3,v_{\alpha-2}$ are neither stems nor leaves, they must play the role of u,w, so $\alpha=7$ and T consists of two subdivided stars centered respectively at $u=v_3$ and $w=v_5$ and a vertex $v=v_4$ joined to u and w. Among its γ -sets this tree T has one with two adjacent vertices, namely v_2 and v_3 , a contradiction, so T is of type A .

Using, in analogy to v_2, v_3 , that $d_T(v_{\alpha-1}) = 2$ and that $v_{\alpha-2}$ is not a stem, we get that $\alpha = 5$ and T is a subdivided star so that (iii) occurs.

Conversely, it is easy to see that if (i), (ii) or (iii) holds then $\gamma_c^k(T) = \gamma(T) = n - k + 1$. This proves Theorem 5.

References

- [1] X. Baogen, E.J. Cockayne, T.W. Haynes, S.T. Hedetniemi, Z. Shangchao: *Extremal graphs for inequalities involving domination parameters*, Discrete Math. 216 (2000), 1-10.
- [2] P. Duchet, H. Meyniel: *On Hadwiger's number and stability number*, Ann. Discr. Math. 13 (1982), 71-74.
- [3] J. F. Fink, M. S. Jacobson, L. F. Kinch, J. Roberts: *On graphs having domination number half their order*, Period. Math. Hungar. 16 (1985), 287-293.
- [4] S. Guha, S. Khuller: *Approximation algorithms for connected dominating sets*, Algorithmica 20 (1998), 374-387.
- [5] B.L. Hartnell, P.D. Vestergaard: *Partitions and domination in graphs*, J. of Combin. Math. and Combin. Comput. 46 (2003), 113-128.
- [6] B.L. Hartnell, P.D. Vestergaard: *Dominating sets with at most k components*, Ars Combin. 74 (2005), 223-229.
- [7] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater: *Fundamentals of domination in graphs*. Marcel Dekker, New York 1998.
- [8] S.T. Hedetniemi, R.C. Laskar: *Connected domination in graphs*, B. Bollabas, ed.: *Graph Theory and Combinatorics*. Academic Press, London, 1984.
- [9] J. Niemen: Two bounds for the domination number of a graph, J. Inst. Math. Applics. 13 (1974), 183-187.
- [10] O. Ore: Theory of Graphs, Amer. Soc. Colloq. Publ. vol. 38. Amer. Math. Soc., Providence, RI 1962.
- [11] C. Payan and N. H. Xuong: Domination-balanced graphs J. of Graph Theory 6 (1982), 23-32.
- [12] B. Randerath, L. Volkmann, *Characterization of graphs with equal domination and covering number*, Discrete Math. 191 (1998), 159-169.
- [13] Zs. Tuza, P.D. Vestergaard: *Domination in partitioned graphs*. Discuss. Math. Graph Theory. 22 (2002), 199-210.
- [14] E. Sampathkumar: *Domination parameters of a graph* pp. 271-299 in Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, eds.: *Domination in Graphs, Advanced Topics*. Marcel Dekker, New York 1998.
- [15] S. Seager: Partition domination of graphs of minimum degree two. Congr. Numer. 132 (1998), 85-91.