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1 Introduction
Lattice paths are a natural model in queuing theory: indeed, the evolution of a queue can be seen
as a sum of jumps, a subject e.g. considered in Feller (1968). In this article we consider jumps
restricted to a given finite set of integers J, where each jump j ∈ J is associated with a weight (or
probability) pj . The evolution of a queue naturally corresponds to lattice paths constrained to be
non-negative. For example, if J = {−1,+1}, this corresponds to the so-called Dyck paths dear to the
heart of combinatorialists. Moreover, we also consider the model where “catastrophes” are allowed.
Definition 1.1. A catastrophe is a jump from an altitude j > 0 (−j ∉ J) to altitude 0, see Figure 1.
Such a jump corresponds to a “reset” of the queue. The model of queues with catastrophes was

e.g. considered in Krinik, Rubino, Marcus, Swift, Kasfy, and Lam (2005) and Krinik and Mohanty
(2010), which list many other references. In financial mathematics, this also gives a natural, simple
model of the evolution of stock markets, allowing bankruptcies at any time with a small probability q
(for the analysis and the applications of related discrete models, see e.g. Schoutens (2003), Elliott and
Kopp (2005)). In probability theory and statistical mechanics, it was also considered under the name
“random walks with resetting”, see e.g. Kusmierz, Majumdar, Sabhapandit, and Schehr (2014). It is
also related to random population dynamics, see e.g. Ben-Ari, Roitershtein, and Schinazi (2017), to
the random the Poland–Scheraga model for DNA denaturation, as analysed by Harris and Touchette
(2017), or to Markov chains with restarts, as studied by Janson and Peres (2012).
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Acat Anocat Acat Acat Anocat

Figure 1: Decomposition of a Dyck path with 3 catastrophes into 5 arches. Acat stands for an “arch
ending with a catastrophe” (a walk for which the first return to altitude 0 is a catastrophe), while
Anocat stands for an “arch with no catastrophe”.

Link with a continued fraction. We first start with the observation that the generating function
H(z) of Dyck paths with catastrophes ending at altitude 0 has the following continued fraction
expansion:

H(z) =
1

1 −
z2

1 − z −
z2

1 −
z2

1 −
z2

1 − ⋱

. (1)

We give two proofs of this phenomenon in Theorem 3.1. In this article, we also tackle the question
of what happens for more general sets of jumps than {−1,+1}, and we provide the enumeration and
asymptotics of the corresponding number of lattice paths under several constraints.
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Link with generating trees. In combinatorics, such lattice paths are related to generating trees,
which are a convenient tool to enumerate and generate many combinatorial structures in some in-
cremental way (like e.g. permutations avoiding some pattern), see e.g. West (1996). In such trees,
the distribution of the children of each node follows exactly the same dynamics as lattice paths with
some “extended” jumps, as was intensively investigated by the Florentine school of combinatorics,
e.g. in Barcucci, Del Lungo, Pergola, and Pinzani (1999), Duchi, Fédou, and Rinaldi (2004), Ferrari,
Pergola, Pinzani, and Rinaldi (2011). For example, these “extended” jumps can be a continuous
set of jumps: from altitude k, one can jump to any altitude between 0 and k, possibly with some
weights, plus a finite set of bounded jumps. This model can be seen as an intermediate model between
Dyck paths and our lattice paths with catastrophes; we investigated it in our series of articles Ban-
derier, Bousquet-Mélou, Denise, Flajolet, Gardy, and Gouyou-Beauchamps (2002), Banderier (2002),
Banderier and Merlini (2003), Banderier, Fédou, Garcia, and Merlini (2003). In this article, we will,
however, see that several statistics of lattice paths with catastrophes behave in a rather different way
than these walks with a continuous set of jumps, even if they share the following unusual property:
both of them correspond to random walks with an “infinite negative drift” (in fact, a space-dependent
drift tending to −∞ when the altitude increases). At the same time, they are constrained to remain at
non-negative altitudes; this leads to some counter-intuitive behaviour: unlike classical directed lattice
paths, the limiting object is no more directly related to Brownian motion theory.

Enumeration and asymptotics: why context-free grammars would be a wrong idea here.
One way to analyse our lattice paths could be to use a context-free grammar approach, see Labelle
and Yeh (1990): this leads to a system of algebraic equations, and therefore we already know “for
free” that the corresponding generating functions are algebraic. However, this system involves nearly
(c+ d)2 equations (where −c is the largest negative jump and d the largest positive jump), so solving
it (with resultants or Gröbner bases) leads to computations taking a lot of time and memory (a bit
complexity exponential in (c + d)2): even for c = d = 10, the needed memory to compute the algebraic
equation with this method would be more than the expected number of particles in the universe!
Another drawback of this method is that it would be a “case-by-case” analysis: for each new set of
jumps, one would have to do new computations from scratch. Hence, with this method, there is no
way to access “universal” asymptotic results: while it is well known that the coefficients of algebraic
functions exhibit an asymptotic behaviour of the type fn ∼ C.Annα, only the “critical exponent” α
can be proven to belong to a specific set (see Banderier and Drmota (2015)). What is more, there is
no hope to have easy access to C and A with this context-free grammar approach, in a way which is
independent of a case-by-case computation (which, what is more, would be impossible for c+d > 20).

The solution: kernel method and analytic combinatorics. In this article, we offer an alternative
to context-free grammars. Our approach uses methods of analytic combinatorics for directed lattice
paths: the kernel method and singularity analysis, as presented in Banderier and Flajolet (2002),
Flajolet and Sedgewick (2009). It allows us to get exact enumeration, the typical behaviour of lattice
paths with catastrophes, and has the advantage of offering universal results for the asymptotics as
well as generic closed forms, whatever the set of jumps is.
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Plan of this article. First, in Section 2, we present the model of walks with catastrophes and
derive their generating functions. In Section 3, we establish a bijection between two generalizations
of Dyck paths. In Section 4, we analyse our model in more detail and first derive the asymptotic
number of excursions and meanders. Then we use these results to obtain limit laws for the number of
catastrophes, the number of returns to zero, the final altitude, the cumulative size of catastrophes, the
average size of a catastrophe, and the waiting time for the first catastrophe (see Figures 2 and 3). In
Section 5, we discuss the uniform random generation of such lattice paths. In Section 6, we summarize
our results and mention some possible extensions.

−6 −7
−4

Figure 2: In this article, we analyse the number of Dyck paths with catastrophes, the waiting time
for the first catastrophe (here, 15, due to the −6 jump in red), its size (here, 6), the number of
returns to 0 (here, 5), the number of catastrophes (here, 3, in red), the total sum of their sizes (here,
6 + 7 + 4), and therefore the average size of a catastrophe.

Figure 3: A Dyck path with catastrophes drawn uniformly at random (among excursions of length
n = 400). For this example, the walk has 35 returns to zero, of which 22 are catastrophes. The
waiting time for the first catastrophe is 8, its size is 5, the sum of the sizes of all catastrophes is
124 (therefore an average catastrophe has size 5.63). For all these parameters, this article shows how
these quantities evolve when n gets larger. More generally, we give the corresponding limit laws for
walks with catastrophes allowing any finite set of jumps.



Lattice paths with catastrophes 5

2 Generating functions
In this section, we give some explicit formulae for the generating functions of non-negative lattice
paths with catastrophes. We consider the set of jumps {−c, . . . ,+d} where a weight pi is attached to
each jump i and we associate to this set of jumps the following jump polynomial :

P (u) =
d

∑
i=−c

piu
i. (2)

Every catastrophe is also assigned a weight q > 0. The weight of a lattice path is the product of the
weights of its jumps. The weights pj and q are real and non-negative: in fact, even if they would
be taken from C, our enumerative formulae would remain valid. The non-negativity of the weights
or the fact that d < +∞ and P ′(1) < +∞ only play a role for establishing the universal asymptotic
phenomena presented in Section 4.
The generating functions of directed lattice paths can be expressed in terms of the roots ui(z),

i = 1, . . . , c, of the kernel equation
1 − zP (ui(z)) = 0 . (3)

More precisely, this equation has c+d solutions. The small roots are the c solutions with the property
ui(z) ∼ 0 for z ∼ 0. The remaining d solutions are called large roots as they satisfy ∣vi(z)∣ ∼ +∞ for
z ∼ 0. The generating functions of four classical types of lattice paths are shown in Table 1.

ending anywhere ending at 0

unconstrained
(on Z)

walk/path (W) bridge (B)
W (z) = 1

1−zP (1) B(z) = z
c

∑
i=1

u′i(z)
ui(z)

constrained
(on Z)

meander (M) excursion (E)
M(z) = 1

1−zP (1)

c

∏
i=1

(1 − ui(z)) E(z) = (−1)c−1

p−cz

c

∏
i=1
ui(z)

Table 1: The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for directed lattice paths.
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These results follow from the expression for the bivariate generating function M(z, u) of meanders,
see Bousquet-Mélou and Petkovšek (2000) and Banderier and Flajolet (2002) : Let mn,k be the
number of meanders of length n going from altitude 0 to altitude k, then

M(z, u) = ∑
n,k≥0

mn,kz
nuk = ∑

k≥0
Mk(z)u

k
=
∏
c
i=1(u − ui(z))

uc(1 − zP (u))
. (4)

This formula is obtained by the kernel method: Starting from (3), it consists in setting u = ui(z)

in the functional equation which mimics the recursive definition of a meander. This results in new
and simpler equations which lead to the closed form (4). The generating function of excursions is
E(z) ∶=M(z,0).
Let us now investigate which perturbation is introduced by allowing catastrophes in this model.

First, we partition the set of jumps J = J+ ⊍ J− ⊍ J0 into the set of positive jumps (j ∈ J+ iff(i) j > 0),
the set of negative jumps (j ∈ J− iff j < 0), and the possible zero jump (j ∈ J0 iff j = 0).
Theorem 2.1 (Generating functions for lattice paths with catastrophes). Let fn,k be the number of
meanders with catastrophes of length n from altitude 0 to altitude k. Then the generating function
F (z, u) = ∑k≥0 Fk(z)u

k = ∑n,k≥0 fn,ku
kzn is algebraic and satisfies

F (z, u) =D(z)M(z, u) =D(z)
∏
c
i=1(u − ui(z))

uc(1 − zP (u))
, (5)

Fk(z) =D(z)Mk(z) =D(z)
1
pdz

d

∑
`=1

v−k−1
` ∏

1≤j≤d
j≠`

1
vj − v`

, for k ≥ 0, (6)

where D(z) = 1
1−Q(z) is the generating function of excursions ending with a catastrophe, Q(z) =

zq (M(z) −E(z) −∑−j∈J−Mj(z)), and where, for any set of jumps encoded by P (u), the ui’s and
the vi’s are the small roots and the large roots of the kernel equation (3).

Proof: Take an arbitrary non-negative path of length n. Let ω0 be the last time it returns to the
x-axis with a catastrophe (or ω0 ∶= 0 if the path contains no catastrophe). This point gives a unique
decomposition into an initial excursion which ends with a catastrophe (this might be empty), and a
meander without any catastrophes. This directly gives (5).
What remains is to describe the initial part D(z). Consider an arbitrary excursion ending with a

catastrophe. We decompose it with respect to its catastrophes, into a sequence of paths having only
one catastrophe at their very end and none before, which we count by Q(z). Thus,

D(z) =
1

1 −Q(z)
. (7)

Because of Definition 1.1 of a catastrophe, Q(z) is given by the generating function of meanders
that are neither excursions nor meanders ending at altitudes ∣j∣ (j ∈ J−) followed by a final catastrophe.
This implies the shape of Q(z): Q(z) = zq (M(z) −E(z) −∑−j∈J−Mj(z)).

(i) “iff” is Paul Halmos’ convenient abbreviation of “if and only if”.
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Remark 2.2. Our results depend on the choice of Definition 1.1 of catastrophes. Some slightly
different definitions could be used without changing their structure. For example, one could consider
allowing catastrophes from any altitude (in this case, Q(z) = zqM(z)). In order to ensure an easy
adaptation to different models, we will state all our subsequent results in terms of a generic Q(z).
Let us now consider a famous class of lattice paths (see e.g. Stanley (2011)), which we call in this

article “classical” Dyck paths.
Definition 2.3. A Dyck meander is a path constructed from the possible jumps +1 and −1, each with
weight 1, and being constrained to stay weakly above the x-axis. A Dyck excursion is additionally
constrained to return to the x-axis. Accordingly, the polynomial encoding the allowed jumps is
P (u) = u−1 + u.
For these paths, when one also allows catastrophes of weight q = 1, one gets the following generating

functions.
Corollary 2.4 (Generating functions for Dyck paths with catastrophes). The generating function of
Dyck meanders with catastrophes, F (z,1) = ∑n≥0mnz

n, satisfies

F (z,1) = z(u1(z) − 1)
z2 + (z2 + z − 1)u1(z)

= 1 + z + 2z2
+ 4z3

+ 8z4
+ 17z5

+ 35z6
+O(z7

),

where the small root u1(z) of the kernel is in fact the generating functions of Catalan numbers:
u1(z) = 1−

√
1−4z2

2 . Moreover, mn is also the number of equivalence classes of Dyck excursions of
length 2n + 2 for the pattern duu, see OEIS A274115(ii).
The generating function of Dyck excursions with catastrophes, F0(z) = ∑n≥0 enz

n, is

F0(z) =
(2z − 1)u1(z)

z2 + (z2 + z − 1)u1(z)
= 1 + z2

+ z3
+ 3z4

+ 5z5
+ 12z6

+ 23z7
+O(z8

).

This sequence en corresponds to OEIS A224747. Moreover, e2n is also the number of Dumont permu-
tations of the first kind of length 2n avoiding the patterns 1423 and 4132, see OEIS A125187.

Proof: The formulae for F (z,1) and F0(z) are a direct application of Theorem 2.1. Then one notes
that (F0(z) + F0(−z))/2 equals the generating function of Dumont permutations of the first kind
of length 2n avoiding the patterns 1423 and 4132, see Burstein (2005) for the definition of such
permutations, and the derivation of their generating function. In Manes, Sapounakis, Tasoulas, and
Tsikouras (2016), two Dyck excursions are said to be equivalent if they have the same length and all
occurrences of the pattern duu are at the same places. They derived the generating function for the
number of equivalence classes, which appears to be equal to F (z,1).

In the next section we will analyse Dyck paths with catastrophes in more detail. On the way we
solve some conjectures of the On-Line Encyclopedia of Integer Sequences.
(ii) Such references are links to the web-page dedicated to the corresponding sequence in the On-Line Encyclopedia of
Integer Sequences, http://oeis.org.

https://oeis.org/A274115
https://oeis.org/A224747
https://oeis.org/A125187
http://oeis.org
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3 Bijection for Dyck paths with catastrophes
The goal of this section is to establish a bijection between two classes of extensions of Dyck paths(iii).
We consider two extensions of classical Dyck paths (see Figure 4 for an illustration):

1. Dyck paths with catastrophes are Dyck paths with the additional option of jumping to the
x-axis from any altitude h > 1; and

2. 1-horizontal Dyck paths are Dyck paths with the additional allowed horizontal step (1,0) at
altitude 1.

−6

(a) Dyck arch ending with a catastrophe

1

(b) 1-horizontal Dyck arch

Figure 4: An arch is an excursion going back to altitude 0 only once. The bijection of Theorem 3.1
transforms Dyck arches ending with catastrophes into 1-horizontal Dyck arches, and vice versa.

Theorem 3.1 (Bijection for Dyck paths with catastrophes). The number en of Dyck paths with
catastrophes of length n is equal to the number hn of 1-horizontal Dyck paths of length n: en = hn.

Proof: A first proof that en = hn follows from a continued fraction approach: Each level k + 1 of the
continued fraction encodes the non-negative jumps starting from altitude k and the negative jumps
going to altitude k (see e.g. Flajolet (1980)). The jumps +1 and −1 translate into z2 in Equation (8)
below. At altitude 1, a horizontal jump is also allowed; this translates into the z term in the continuous
fraction. We thus get the continued fraction of Equation (1). Simplifying its periodic part, we get

H(z) = ∑
n≥0

hnz
n
=

1

1 −
z2

1 − z − z2C(z)

, (8)

where C(z) is the generating function of classical Dyck paths, C(z) = 1/(1−z2C(z)). One then gets
that H(z) equals the closed form of F0(z) given in Corollary 2.4. We now give a bijective procedure
which transforms every Dyck path with catastrophes into a 1-horizontal Dyck path, and vice versa.
(iii) We thus prove several conjectures by Alois P. Heinz, R. J. Mathar, and other contributors in the On-Line Encyclo-
pedia of Integer Sequences, see sequences A224747 and A125187 therein.

https://oeis.org/A224747
https://oeis.org/A125187
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Every Dyck path with catastrophes can be decomposed into a sequence of arches, see Figure 1.
There are two types of arches: arches ending with catastrophes Acat(z) and arches ending with a
jump j ∈ J given by Anocat(z). This gives the alternative decomposition to (6) illustrated in Figure 1:

F0(z) =
1

1 − (Acat(z) +Anocat(z))
.

Thus, without loss of generality, we continue our discussion only for arches. The following procedure
is visualized in Figure 4.
Let us start with an arbitrary arch of Dyck paths with catastrophes. It is either a classical Dyck

path, and therefore also a 1-horizontal Dyck path, or it ends with a catastrophe of size h. First, we
associate the catastrophe with h up steps (1,1). Specifically, we draw horizontal lines to the left
until we hit an up step. All but the first one are replaced by horizontal steps. Finally, we replace the
catastrophe by a down step (1,−1). All parts in between stay the same. Note that we replaced h− 1
up steps, and therefore decreased the altitude by h−1, but we also replaced the catastrophe of size h
by a down step, which represents a gain of altitude by h − 1. Thus, we again return to the x-axis.
Furthermore, all horizontal steps are at altitude 1. Thus, we always stay weakly above the x-axis, and
we got an arch of a 1-horizontal Dyck path. The inverse mapping is analogous.
The most important building blocks in the previous bijection were arches ending with a catastrophe.

Let us note that these can be enumerated by an explicit formula.
Proposition 3.2 (Dyck arches ending with a catastrophe). Let A(z) = ∑n≥0 anz

n be the generating
function of arches ending with a catastrophe. Then one has the following closed forms

an = (
n − 2
⌊n−3

2 ⌋
),

Acat(z) = z
M(z) −E(z) −M1(z)

E(z)
=

1
2

2z2 + z − 1 +
√

(1 − 2z) (1 + 2z) (1 − z)2

1 − 2z
= z3

+ z4
+ 3z5

+ 4z6
+ 10z7

+ 15z8
+ 35z9

+O(z10
),

where M(z),E(z) and M1(z) are the generating functions of classical Dyck paths for meanders,
excursions, and meanders ending at 1, respectively, see OEIS A037952.

Proof: Every excursion ending with a catastrophe can be uniquely decomposed into an initial excursion
and a final arch with a catastrophe. By Theorem 2.1 we get the generating function of Acat(z) =

Q(z)
E(z) .

In order to compute an, additionally drop the initial up-jump which is necessary for all such arches
of positive length. The remaining part is a Dyck meander (always staying weakly above the x-axis)
that does not end on the x-axis. Thus,

an+2 = (
n

⌊n2 ⌋
)

´¹¹¹¹¹¸¹¹¹¹¶
meanders

−
1

n/2 + 1
(
n
n
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
excursions

[[n even]],

where [[P ]] denotes the Iverson bracket, which is 1 if the condition P is true, and 0 otherwise.

https://oeis.org/A037952
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4 Asymptotics and limit laws
The natural model in which all paths of length n have the same weight creates a probabilistic model in
which the drift of the walk is then space-dependent: it converges to minus infinity when the altitude of
the paths is increasing. So, unlike the easier classical Dyck paths (and their generalization via directed
lattice paths, having a finite set of given jumps), we are losing the intuition offered by Brownian motion
theory. This leads to the natural question of what the asymptotics of the fundamental parameters of
our “lattice paths with catastrophes” are. This is the question we are going to answer now.
To this aim, some useful results of Banderier and Flajolet (2002) are the asymptotic enumeration

formulae for the four types of paths shown in Table 1. A key result is the fact that the principal small
root u1(z) and the principal large root v1(z) of the kernel equation (3) are conjugated to each other
at their dominant singularity ρ = 1

P (τ) , where τ > 0 is the minimal real positive solution of P ′(τ) = 0.
In particular, it holds that

u1(z) = τ −C
√

1 − z/ρ +O (1 − z/ρ) ,

v1(z) = τ +C
√

1 − z/ρ +O (1 − z/ρ) ,

with the constant C ∶=

√

2 P (τ)
P ′′(τ) . This singularity ρ of u1(z) and v1(z) turns out to be the dominant

singularity of the generating functions of directed lattice paths.
We refer to Flajolet and Sedgewick (2009) for the notion of dominant singularity and a clear

presentation of its fundamental role in the asymptotics of the coefficients of a generating function.
It could be the case that the generating functions have several dominant singularities. This happens
when one has a periodicity in the support of the jump polynomial P .

Definition 4.1. We say that a function F (z) has periodic support of period p or (for short) F (z) is
p-periodic if there exists a function H(z) and an integer b such that F (z) = zbH(zp). If this holds
only for p = 1, the function is said to be aperiodic.

In Banderier and Wallner (2017a, Lemma 8.7 and Theorem 8.8) we show how to deduce the
asymptotics of walks having periodic jump polynomials from the results on aperiodic ones. Therefore,
without loss of generality we consider only the aperiodic jump polynomials in this article.

4.1 Asymptotic number of lattice paths
Because of its key role in the expression given in Theorem 2.1, we start by analysing the function
D(z) = 1

1−Q(z) . In particular, we need to find its singularities, which are given by the behaviour of

Q(z) = zq
⎛

⎝
M(z) −E(z) − ∑

−j∈J−
Mj(z)

⎞

⎠
.
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Caveat: Even if we already know that the radii of convergence ρM , ρE , ρMj ofM(z),E(z),Mj(z),
it is a priori not granted that Q(z) does not have a larger radius of convergence (some cancellations
could occur). In fact, the results of Banderier and Flajolet (2002) allow us to prove that no such
cancellations occur here via the asymptotics of the coefficients ofM(z),E(z), andMj(z). Therefore
the radius of convergence of Q(z) is ρQ = min(ρM , ρE , ρMj).
We now determine the radius of convergence ρD of D(z).

Lemma 4.2 (Radius of convergence of D). Let Z be the set of zeros of 1−Q(z) of minimal modulus
with ∣z∣ ≤ ρ. This set is either empty or has exactly one real positive element which we call ρ0. The
sign of the drift δ ∶= P ′(1) of the walk dictates the location of the radius of convergence ρD:

• If δ ≥ 0, we have ρD = ρ0 <
1

P (1) ≤ ρ.

• If δ < 0, it also depends on the value Q(ρ):

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

Q(ρ) > 1 ⇐⇒ ρD = ρ0 < ρ,

Q(ρ) = 1 ⇐⇒ ρD = ρ0 = ρ,

Q(ρ) < 1 ⇐⇒ ρD = ρ and Z is empty.

Proof: As D(z) = 1/(1 − Q(z)) is a generating function with positive coefficients, Pringsheim’s
theorem implies that it has a dominant singularity on the real positive axis, which we call r. This
singularity is either r = ρQ, the singularity of Q(z), or it is the smallest real positive zero of 1−Q(z)

(if it exists, it is denoted by ρ0 and it is therefore such that ρ0 ≤ ρQ).
What is more, D(z) has no other dominant singularity: When r = ρQ this follows from the

aperiodicity of E(z),M(z), and Mj(z) proven in Banderier and Flajolet (2002). When r = ρ0 this
follows from the strong triangle inequality. Indeed, as Q(z) has non-negative coefficients and is
aperiodic, one has ∣Q(z)∣ < Q(∣z∣) = 1 for any ∣z∣ = r, z ≠ r.
It remains to determine the location of the singularity. The functions E(z) and Mj(z) are analytic

for ∣z∣ < ρ, whereas the behaviour of M(z) depends on the drift δ = P ′(1). For δ ≥ 0 it possesses a
simple pole at ρ1 ∶=

1
P (1) ≤ ρ, i.e. ρQ = ρ1. Thus, limz→ρ−1 Q(z) = +∞, and together with Q(0) = 0

this implies that there is a solution 0 < ρ0 < ρ1 ≤ ρ.
For δ < 0 we have that ∣Q(z)∣ is bounded for ∣z∣ < ρ, and we have ρQ = ρ. Thus, for a fixed jump

polynomial P (u) any case can be attained by a variation of q. As Q(z) is monotonically increasing
on the real axis, it suffices to compare its value at its maximum Q(ρ).

Note that Q(z) strongly depends on the weight of the catastrophes q > 0. Therefore, for a fixed
step set P (u) with negative drift one can obtain any of the three possible cases by a proper choice
of q.
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Theorem 4.3 (Asymptotics of excursions ending with a catastrophe). Let dn be the number of
excursions ending with a catastrophe. The asymptotics of dn depend on the structural radius ρ and
the possible singularity ρ0:

dn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ−n0
ρ0Q′(ρ0) + o(K

n) if ρ0 < ρ (for some K such that K < 1
ρ0
),

ρ−n

η
√
πn

(1 +O ( 1
n
)) if ρ0 = ρ,

D(ρ)2ηρ−n

2
√
πn3 (1 +O ( 1

n
)) if ρ0 does not exist,

where η is given by the Puiseux expansion of Q(z) = Q(ρ) − η
√

1 − z/ρ +O(1 − z/ρ) for z → ρ. The
last two cases occur only when δ < 0.

Proof: The critical exponent α in the Puiseux expansion of D(z) in (1 − z/r)α for r = ρ0 or r = ρ,
respectively, satisfies

• α = −1 if ρ0 < ρ,
• α = −1/2 if ρ0 = ρ,
• α = 1/2 if ρ0 does not exist.

Indeed, the singularity of D(z) arises at the minimum of ρ and ρ0, as derived in Lemma 4.2. In the
first case ρ0 < ρ, the singularity is a simple pole as the first derivative of the denominator at ρ0 is
strictly positive. We get for z → ρ0

1 −Q(z) = (1 −Q(ρ0))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

+ρ0Q
′
(ρ0))(1 − z/ρ0) +O ((1 − z/ρ0)

2) . (9)

This yields a simple pole at ρ0 for 1
1−Q(z) and singularity analysis then gives the asymptotics of dn.

If ρ0 does not exist, or if ρ0 = ρ, we get a square root behaviour for z → ρ

1 −Q(z) = (1 −Q(ρ)) + η
√

1 − z/ρ +O (1 − z/ρ) . (10)

For ρ0 = ρ the constant term is 0, and we get for z → ρ

D(z) =
1

η
√

1 − z/ρ
(1 +O(

√
1 − z/ρ)) . (11)

Yet, if ρ0 does not exist, the constant term does not vanish. This gives for z → ρ

D(z) =D(ρ) − ηD(ρ)2
√

1 − z/ρ +O (1 − z/ρ) . (12)

Applying singularity analysis yields the result.

With the help of the last result we are able to derive the asymptotic number of lattice paths with
catastrophes. Let us state the result for excursions next.
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Theorem 4.4 (Asymptotics of excursions with catastrophes). The number of excursions with catas-
trophes en is asymptotically equal to

en =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(ρ0)
ρ0Q′(ρ0)ρ

−n
0 + o(Kn) (for some K such K < 1/ρ0) if ρ0 < ρ,

E(ρ)
η

ρ−n√
πn

(1 +O ( 1
n
)) if ρ0 = ρ,

F0(ρ)
2 (

√

2 P (τ)
P ′′(τ)

1
τ
+ ηD(ρ)) ρ−n√

πn3 (1 +O ( 1
n
)) if ρ0 does not exist.

Proof: Since F0(z) = D(z)E(z), the singularity is either at ρ0 or ρ = 1
P (τ) . Combining the results

from Theorem 4.3 and Banderier and Flajolet (2002, Theorem 3) gives the result. Note that the cases
ρ0 = ρ and when ρ0 does not exist are only possible for δ < 0.
Next we also state the asymptotic number of meanders. The only difference is the appearance of

M(z) instead of E(z), and a factor 1
τ−1 instead of 1

τ
in the first term when ρ0 does not exist.

Theorem 4.5 (Asymptotics of meanders with catastrophes). The number of meanders with catas-
trophes mn is asymptotically equal to

mn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(ρ0)
ρ0Q′(ρ0)ρ

−n
0 + o(Kn) (for some K such K < 1/ρ0) if ρ0 < ρ,

M(ρ)
η

ρ−n√
πn

(1 +O ( 1
n
)) if ρ0 = ρ,

F (ρ,1)
2 (

√

2 P (τ)
P ′′(τ)

1
τ−1 + ηD(ρ)) ρ−n√

πn3 (1 +O ( 1
n
)) if ρ0 does not exist.

Proof: Analogous to the proof of Theorem 4.4 the result follows after some tiresome computations
from the fact that F (z,1) =D(z)M(z). Combining the results from Theorem 4.3 and Banderier and
Flajolet (2002, Theorem 4) gives the result.
Remark 4.6. In the previous proofs we needed that P (u) is an aperiodic jump set. Otherwise, the
generating function Q(z) does not have a unique singularity on its circle of convergence, but several.
In such cases one needs to consider all singularities and sum their contributions; however, this can lead
to cancellations, thus extra care is necessary. A systematic approach of the periodic cases is treated
in Banderier and Wallner (2017a). These considerations about periodicity are only necessary when
the dominant asymptotics come from the singularity ρ, while when ρ0 < ρ, we have a unique dominant
simple pole (the possibly periodic functions E(z) and Mj(z) do not contribute to the asymptotics).
This polar behaviour occurs e.g. for Dyck paths.
Corollary 4.7. The number of Dyck paths with catastrophes en and Dyck meanders with catastro-
phes mn are respectively asymptotically equal to
en = Ceρ

−n
0 (1 +O (1/n)) (Ce ≈ 0.10381 is the positive root of 31C3

e − 62C2
e + 35Ce − 3) and

mn = Cmρ
−n
0 (1 +O (1/n)) (Cm ≈ 0.32679 is the positive root of 31C3

m − 31C2
m + 16Cm − 3),

where ρ0 ≈ 0.46557 is the unique positive root of ρ3
0 + 2ρ2

0 + ρ0 − 1.
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Proof: We apply the results of Theorems 4.4 and 4.5. This directly gives

ρ0 =
1
6
(116 + 12

√
93)

1/3
+

2
3
(116 + 12

√
93)

−1/3
−

2
3
≈ 0.46557,

which is strictly smaller than ρ = 1/2. The minimal polynomials of the algebraic numbers ρ0,Ce,
and Cm are computed by resultants.

Remark 4.8. It is one of the surprising behaviours of Dyck paths with catastrophes: they involve
algebraic quantities of degree 3; this was quite counter-intuitive to predict a priori, as Dyck path
statistics usually involve by design algebraic quantities of degree 2.
As a direct consequence of the last two theorems, we observe that our walks with catastrophes have

the feature that excursions and meanders have the same order of magnitude: en = Θ(mn), whereas
it is often en = Θ(mn/n) for other classical models of lattice paths. In probabilistic terms this means
that the set of excursions is not a null set with respect to the set of meanders. We quantify more
formally this claim in the following corollary.
Corollary 4.9 (Ratio of excursions). The probability that a meander with catastrophes of length n is
in fact an excursion is equal to

en
mn

∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(ρ0)
M(ρ0) if ρ0 < ρ,

E(ρ)
M(ρ) if ρ0 = ρ,

F0(ρ)
F (ρ,1) (1 − 1/ (τ +

√
P ′′(τ)
2P (τ) τ(τ − 1)ηD(ρ))) if ρ0 does not exist.

For Dyck walks, this gives P(meander of length n is an excursion) = en/mn ≈ 0.31767.
In the next sections, we will need the following variant of the supercritical composition scheme from

Flajolet and Sedgewick (2009, Proposition IX.6), in which we add a perturbation function q(z). In
the following, we denote by ρf the radius of convergence of a function f(z).
Proposition 4.10 (Perturbed supercritical composition). Consider a combinatorial structure F con-
structed from H components according to the bivariate composition scheme F (z, u) = q(z)g(uh(z)).
Assume that g(z) and h(z) satisfy the supercriticality condition h(ρh) > ρg, that g is analytic in ∣z∣ < R

for some R > ρg, with a unique dominant singularity at ρg, which is a simple pole, and that h is aperi-
odic. Furthermore, let q(z) be analytic for ∣z∣ < ρh. Then the number χ ofH-components in a random
F-structure of size n, corresponding to the probability distribution [ukzn]F (z, u)/[zn]F (z,1) has a
mean and variance that are asymptotically proportional to n; after standardization, the parameter χ
satisfies a limiting Gaussian distribution, with speed of convergence O(1/

√
n).

Proof: As q(z) is analytic at the dominant singularity, it contributes only a constant factor to the
asymptotics. Then Hwang’s quasi-power theorem, see Flajolet and Sedgewick (2009, Theorem IX.8),
gives the claim.
A simple (and useful) application of this result in the context of sequences leads to:
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Proposition 4.11 (Perturbed supercritical sequences). Consider a sequence scheme F = Q×Seq(uH)

that is supercritical, i.e., the value of h at its dominant positive singularity satisfies h(ρh) > 1. Assume
that h is aperiodic, h(0) = 0, and q(z) is analytic for ∣z∣ < ρ, where ρ is the positive root of h(ρ) = 1.
Then the number Xn of H-components in a random F-structure of size n is, after standardization,
asymptotically Gaussian with(iv)

E(Xn) ∼
n

ρh′(ρ)
, V(Xn) ∼ n

ρh′′(ρ) + h′(ρ) − ρh′(ρ)2

ρ2h′(ρ)3 .

What is more, the number X(m)n of components of some fixed size m is asymptotically Gaussian with
asymptotic mean ∼ θmn, where θm = hmρ

m/(ρh′(ρ)).

Proof: The proof follows exactly the same lines as Flajolet and Sedgewick (2009, Proposition IX.7).
We state it for completeness. The first part is a direct consequence of Proposition 4.10 with g(z) =
(1 − z)−1 and ρg replaced by 1. The second part results from the bivariate generating function

F (z, u) =
q(z)

1 − (u − 1)hmzm − h(z)
,

and from the fact that u close to 1 induces a smooth perturbation of the pole of F (z,1) at ρ,
corresponding to u = 1.

4.2 Average number of catastrophes
In Theorem 2.1 we have seen that excursions consist of two parts: a prefix containing all catastrophes
followed by the type of path one is interested in. If we want to count the number of catastrophes, it
suffices therefore to analyse this prefix given by D(z). What is more, due to (7) we already know how
to count catastrophes: by counting occurrences of Q(z). Thus, let dn,k be the number of excursions
ending with a catastrophe of length n with k catastrophes. Then we have

D(z, v) ∶= ∑
n,k≥0

dn,kz
nvk =

1
1 − vQ(z)

.

Let cn,k be the number of excursions with k catastrophes, we get

C(z, v) ∶= ∑
n,k≥0

cn,kz
nvk =D(z, v)E(z). (13)

Let Xn be the random variable giving the number of catastrophes in excursions of length n drawn
uniformly at random:

P (Xn = k) =
[znvk]C(z, v)

[zn]C(z,1)
.

(iv) The formula for the asymptotics of V(Xn) in Flajolet and Sedgewick (2009, Proposition IX.7) contains some typos
and misses the ρ-factors in the numerator and one in the denominator.
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Theorem 4.12 (Limit law for the number of catastrophes). The number of catastrophes of a random
excursion with catastrophes of length n admits a limit distribution, with the limit law being dictated
by the relation between the singularities ρ (the structural radius ρ = 1/P (τ) where τ > 0 is the minimal
real positive solution of P ′(τ) = 0) and ρ0 (the minimal real positive root of 1 −Q(z) with ∣z∣ < ρ).

1. If ρ0 < ρ, the standardized random variable

Xn − µn

σ
√
n

, with µ =
1

ρ0Q′(ρ0)
and σ2

=
ρ0Q

′′(ρ0) +Q
′(ρ0) − ρ0Q

′(ρ0)
2

ρ2
0Q

′(ρ0)3 ,

converges in law to a standard Gaussian variable N(0,1) ∶

lim
n→∞

P(
Xn − µn

σ
√
n

≤ x) =
1

√
2π ∫

x

−∞
e−y

2/2 dy.

2. If ρ0 = ρ, the normalized random variable Xn
ϑ
√
n
, with ϑ =

√
2
η
, converges in law to a Rayleigh

distributed random variable with density xe−x2/2:

lim
n→∞

P(
Xn

ϑ
√
n
≤ x) = 1 − e−x

2/2.

In particular, the average number of catastrophes is given by E(Xn) ∼
1
η

√
πn.

3. If ρ0 does not exist, the limit distribution is a discrete one:

P (Xn = k) =
(kη/λ +C/τ)λk

ηD(ρ)2 +C/τD(ρ)
(1 +O (

1
n
)) ,

where η is defined as in Theorem 4.3, λ = Q(ρ), C =

√

2 P (τ)
P ′′(τ) , and τ > 0 is the unique real

positive root of P ′(τ) = 0. In particular, Xn converges to the random variable given by the
following sum of two negative binomial distributions(v):

ηNegBinom(2, λ) + C
τ

NegBinom(1, λ).

Proof: First, for ρ0 < ρ we see from (13) that we are in the case of a perturbed supercritical
composition scheme from Proposition 4.11. It is supercritical because Q(z) is singular at ρ0 and
limz→ρ0 Q(z) = ∞. The perturbation E(z) is analytic for ∣z∣ < ρ, and the other conditions are also
satisfied. Hence, we get convergence to a normal distribution.
Second, for ρ0 = ρ, we start with the asymptotic expansion of E(z) at z ∼ ρ. Due to Banderier

and Flajolet (2002, Theorem 3) we have

E(z) = E(ρ) (1 − C
τ

√
1 − z/ρ) +O(1 − z/ρ), for z ∼ ρ. (14)

(v) The negative binomial distribution of parameters r and λ is defined by P(X = k) = (k+r−1
k
)λk
(1 − λ)r.
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This implies by (10) the asymptotic expansion

1
C(z, v)

=
1

E(ρ)
((1 − v) + η

√
1 − z/ρ) +O(1 − z/ρ) +O ((1 − v)

√
1 − z/ρ) ,

for z ∼ ρ and v ∼ 1. The shape above is the one necessary for the Drmota–Soria limit scheme in
Drmota and Soria (1997, Theorem 1) which implies a Rayleigh distribution. By a variant of the
implicit function theorem applied to the small roots, the function satisfies the analytic continuation
properties required to apply this theorem.
Third, we know by Theorem 4.3 that D(z) possesses a square-root singularity. Thus, combining

the expansions (10), (12), and (14) we get the asymptotic expansion of C(z, v), which is of the same
type of a square root as the one from Theorem 4.4. Extracting coefficients with the help of singularity
analysis and normalizing by the result of Theorem 4.4 shows the claim.

Let us end this discussion with an application to Dyck paths.
Corollary 4.13. The number of catastrophes of a random Dyck path with catastrophes of length n
is normally distributed. Let µ be the unique real positive root of 31µ3 + 31µ2 + 40µ− 3, and σ be the
unique real positive root of 29791σ6 − 59582σ4 + 60579σ2 − 2927. The standardized version of Xn,

Xn − µn

σ
√
n

, with µ ≈ 0.0708358118 and σ2
≈ 0.05078979113,

converges in law to a Gaussian variable N(0,1).

4.3 Average number of returns to zero
In order to count the number of returns to zero, we decompose F0(z) into a sequence of arches. Let
A(z) be the corresponding generating function. (Caveat: this is not the same generating function as
A(z) in Proposition 3.2.) Then,

A(z) = 1 − 1
F0(z)

.

Let gn,k be the number of excursions with catastrophes of length n and k returns to zero. Then,

G(z, v) ∶= ∑
n,k≥0

gn,kz
nvk =

1
1 − vA(z)

.

From now on, let Xn be the random variable giving the number of returns to zero in excursions
with catastrophes of length n drawn uniformly at random:

P (Xn = k) =
[znvk]G(z, v)

[zn]G(z,1)
.

Applying the same ideas and techniques we used in the proof of Theorem 4.12, we get the following
result.
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Theorem 4.14 (Limit law for the number of returns to zero). The number of returns to zero of a
random excursion with catastrophes of length n admits a limit distribution, with the limit law being
dictated by the relation between the singularities ρ0 and ρ.

1. If ρ0 < ρ, the standardized random variable

Xn − µn

σ
√
n

, with µ =
1

ρ0A′(ρ0)
and σ2

=
ρ0A

′′(ρ0) +A
′(ρ0) − ρ0A

′(ρ0)
2

ρ2
0A

′(ρ0)3 ,

converges in law to a standard Gaussian variable N(0,1).

2. If ρ0 = ρ, the normalized random variable

Xn

ϑ
√
n
, with ϑ =

√
2E(ρ)

η
,

converges in law to a Rayleigh distributed random variable with density xe−x2/2. In particular,
the average number of returns to zero is given by E(Xn) ∼

E(ρ)
η

√
πn.

3. If ρ0 does not exist, the limit distribution is NegBinom(2, λ):

P (Xn = k) =
nλn

F0(ρ)2 (1 +O (
1
n
)) , with λ = A(ρ) = 1 − 1

F0(ρ)
.

Again, we give the concrete statement for Dyck paths with catastrophes.

Corollary 4.15. The number of returns to zero of a random Dyck path with catastrophes of length n
is normally distributed. Let µ be the unique real positive root of 31µ3 − 62µ2 + 35µ− 3, and σ be the
unique real positive root of 29791σ6 + 231σ2 − 79. The standardized version of Xn,

Xn − µn

σ
√
n

, with µ ≈ 0.1038149281 and σ2
≈ 0.1198688826,

converges in law to a Gaussian variable N(0,1).

It is interesting to compare the results of Corollaries 4.13 and 4.15 for Dyck paths: more than 10%
of all steps are returns to zero, and more than 7% are catastrophes. This implies that among all
returns to zero approximately 70% are catastrophes and 30% are −1-jumps. Note that the expected
number of returns to zero of classical Dyck paths converges to the constant 3.
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4.4 Average final altitude
In this section we want to analyse the final altitude of a path after a certain number of steps. The
final altitude of a path is defined as the ordinate of its endpoint. Theorem 2.1 already encodes this
parameter using u:

F (z, u) =D(z)M(z, u), M(z, u) =
∏
c
i=1(u − ui(z))

uc(1 − zP (u))
,

where M(z, u) is the bivariate generating function of meanders.
Let Xn be the random variable giving the final altitude of paths with catastrophes of length n

drawn uniformly at random:

P (Xn = k) =
[znuk]F (z, u)

[zn]F (z,1)
.

This random variable exhibits an interesting periodic behaviour, as can be observed in Figure 5,
and is more formally stated in the following theorem.
Theorem 4.16 (Limit law for the final altitude). The final altitude of a random lattice path with
catastrophes of length n admits a discrete limit distribution:

lim
n→∞

P (Xn = k) = [uk]ω(u), where ω(u) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∏
d
`=1

1−v`(ρ0)
u−v`(ρ0) if ρ0 ≤ ρ,

ηD(ρ)+ C
τ−u

ηD(ρ)+ C
τ−1
∏
d
`=1

1−v`(ρ)
u−v`(ρ) if ρ0 does not exist.

(15)

Proof: Let us distinguish three cases. First, in the case of ρ0 < ρ the function D(z) is responsible
for the singularity of F (z, u). Thus, by Pólya and Szegő (1925, Problem 178) (see also Flajolet and
Sedgewick (2009, Theorem VI.12)) we get the asymptotic expansion

lim
n→∞

[zn]F (z, u)

[zn]F (z,1)
=
M(ρ0, u)

M(ρ0,1)
=

d

∏
`=1

1 − v`(ρ0)

u − v`(ρ0)
.

For the other cases by Lemma 4.2 we require δ < 0. Then we know from Banderier and Flajolet
(2002, Theorem 6) that M(z, u) admits a discrete limit distribution. The function M(z, u) admits
the expansion

M(z, u) =M(ρ, u) (1 + C

u − τ

√
1 − z/ρ) +O (1 − z/ρ) , for z → ρ.

In the second case (ρ0 = ρ) and third case (if ρ0 does not exist) we derive the expansion of F (z, u)

by multiplying this expansion with the one of D(z) from (11) and (12), respectively. Normalizing
with the results of Theorem 4.5 yields the result.



20 Cyril Banderier, Michael Wallner

Corollary 4.17. The final altitude of a random Dyck path with catastrophes of length n admits a
geometric limit distribution with parameter λ = v1(ρ0)

−1 ≈ 0.6823278:
P (Xn = k) ∼ (1 − λ)λk.

The parameter is the unique real positive root of λ3 + λ − 1 and is given by

λ =
1
6
(108 + 12

√
93)

1/3
− 2 (108 + 12

√
93)

−1/3
.

The nature of this result changes to a periodic one for different step polynomials as seen in Figure 5.

Figure 5: The final altitude follows a discrete limit law, which depends on the jump polynomial P (u).
The x-axis is labeled with k and the y-axis gives P(final altitude = k).

The main periodicity observed in these pictures is due to the fact that the limit law is a sum
of “geometric limit laws” of complex parameter (as given in Theorem 4.16). The pictures show a
combination of a “macroscopic” and a “microscopic” behaviour. On the macroscopic level we see a
period of the size of the largest positive jump d. On the microscopic level we see smaller fluctuations
related to the small jumps (with some additional periodic behaviour if the support of these small
jumps is periodic).
We observe that for some values of k, P(Xn = k) is very close to zero, while it is not the case for

nearby values of k. This noteworthy phenomenon has links with the Skolem–Pisot problem (i.e., decid-
ing if a rational function R(u) ∈ Z[[u]] has a zero term in its Taylor expansion, see e.g. Ouaknine and
Worrell (2014) for recent progress). In fact, a partial fraction expansion of ω(u) from Equation (15)
gives a closed-form expression for P(final altitude = k) in terms of powers of the poles of ω(u), which
dictate how close to zero our limit laws can get.
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4.5 Cumulative size of catastrophes
Another interesting parameter is the cumulative size of catastrophes of excursions of length n. Thereby
we understand the sum of sizes of all catastrophes contained in the path. Let an,k be the number
of excursions with catastrophes of length n and cumulative size of catastrophes k. Then its bivariate
generating function Acum(z, u) = ∑n,k≥0 an,kz

nuk is given by

Acum(z, u) =D(z, u)E(z), where

D(z, u) =
1

1 −Q(z, u)
and

Q(z, u) = zq
⎛

⎝
M(z, u) −E(z) − ∑

−j∈J−
ujMj(z)

⎞

⎠
.

The generating function Q(z, u) keeps track of the sizes of used catastrophes. The new parameter u
does not influence the singular expansion of Q(z) analysed in Theorem 4.3. We get for z → ρ− and
0 ≤ u ≤ 1 the expansion

Q(z, u) = Q(ρ, u) − η(u)
√

1 − z/ρ +O(1 − z/ρ), (16)

where η(u) is a non-zero function, and in terms of the previous expansion of Q(z) we have η(1) = η.
Let Xn be the random variable giving the cumulative size of catastrophes in lattice paths with

catastrophes of length n drawn uniformly at random:

P (Xn = k) =
[znuk]Acum(z, u)

[zn]Acum(z,1)
.

Theorem 4.18 (Limit law for the cumulative size of catastrophes). The cumulative size of catastro-
phes of a random excursion with catastrophes of length n admits a limit distribution, with the limit
law being dictated by the relation between the singularities ρ0 and ρ.

1. If ρ0 < ρ, the standardized random variable
Xn − µn

σ
√
n

, with µ =
Qu(ρ0,1)
ρ0Qz(ρ0,1)

and

σ2
= (1 + ρ0Quu(ρ0,1)

Qz(ρ0,1)
)µ2

+ (1 − 2Qzu(ρ0,1)
Qz(ρ0,1)

+
Qzz(ρ0,1)
Qz(ρ0,1)

)µ,

converges for σ2 > 0 in law to a standard Gaussian variable N(0,1).

2. If ρ0 = ρ, the normalized random variable
Xn

ϑ
√
n
, with ϑ =

√
2Qu(ρ,1)

η
,

converges in law to a Rayleigh distributed random variable with density xe−x2/2. In particular,
the average cumulative size of catastrophes is here E[Xn] =

Qu(ρ,1)
η

√
πn.
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3. If ρ0 does not exist, the limit distribution is discrete and given by:

lim
n→∞

P (Xn = k) = [uk]
η(u)D(ρ, u)2 + C

τ
D(ρ, u)

ηD(ρ)2 + C
τ
D(ρ)

.

Proof: In the first case ρ0 < ρ we will use the meromorphic scheme from Flajolet and Sedgewick
(2009, Theorem IX.9), which is a generalization of Hwang’s quasi-power theorem. In order to apply it
we need to check three conditions. First, the meromorphic perturbation condition: We know already
from the proof of Theorem 4.3 that ρ0 is a simple pole. What remains is to show that in a domain
D = {(z, u) ∶ ∣z∣ < r, ∣u − 1∣ < ε} the function admits the following representation

Acum(z, u) =
B(z, u)

C(z, u)
,

where B(z, u) and C(z, u) are analytic for (z, u) ∈ D. There exists a δ > 0 such that r ∶= ρ0 + δ < ρ.
For this value the representation holds, as B(z, u) = uc(1−zP (u))E(z) and C(z, u) = uc(1−zP (u))−

zq∏
c
i=1(1 − ui(z)) are only singular for z = ρ or u = 0.

Next, the non-degeneracy Qu(ρ,1)Qz(ρ,1) ≠ 0 is easily checked. It ensures the existence of a
non-constant ρ(u) analytic at u = 1, such that 1 −Q(ρ(u), u) = 0.
Finally, the variability condition r′′(1) + r′(1) − r′(1)2 ≠ 0 for r(u) = ρ(1)

ρ(u) is also satisfied due to

ρ(1) = ρ0, ρ′(1) = −Qu(ρ,1)
Qz(ρ,1)

,

ρ′′(1) = − 1
Qz(ρ,1)

(Qzz(ρ,1)ρ′(1) + 2Qz,u(ρ,1)ρ′(1) +Quu(ρ,1)) .

This implies the claimed normal distribution.
In the second case ρ0 = ρ we apply again the Drmota–Soria limit theorem Drmota and Soria (1997,

Theorem 1) which leads to a Rayleigh distribution. As Q(ρ0,1) = 1, like in (9), we have a cancellation
of the constant term in the Puiseux expansion (for z ∼ ρ and u ∼ 1). Thus, using the asymptotic
expansions (14) and (16) leads to

1
Acum(z, u)

=
Qu(ρ,1)
E(ρ)

(1 − u) + η

E(ρ)

√
1 − z/ρ+

O (1 − z/ρ) +O ((u − 1)(1 − z/ρ)) +O ((u − 1)2) .

Note that the analyticity and the other technical conditions required to apply this theorem follow
from the respective properties of the generating functions M(z, u),E(z), and Mj(z). This implies
the claimed Rayleigh distribution with the normalizing constant ϑ =

√
2Qu(ρ,1)

η
.

In the third case, if ρ0 does not exist, the singularity arises at z = ρ. In particular, there arises
no zero in the denominator. Thus, after combining the known expansions (14) and (16), singularity
analysis yields the given discrete form. This implies the claimed discrete distribution.
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Corollary 4.19. The cumulative size of catastrophes of a random Dyck path with catastrophes of
length n is normally distributed. Let µ be the unique real positive root of 31µ3 + 62µ2 + 71µ − 27,
and σ be the unique real positive root of 29791σ6 − 59582σ4 + 298411σ2 − 159099. The standardized
version of Xn,

Xn − µn

σ
√
n

, with µ ≈ 0.2938197987 and σ2
≈ 0.5809693987,

converges in law to a Gaussian variable N(0,1).

4.6 Size of an average catastrophe
As one of the last parameters of our lattice paths with catastrophes, we want to determine the law
behind the size of a random catastrophe among all lattice paths of length n. In other words, one draws
uniformly at random a catastrophe among all possible catastrophes of all lattice paths of length n.
Note that this is also the law behind the size of the first (or last) catastrophe, as cyclic shifts of
excursions ending with a catastrophe transform any catastrophe into the first (or last) one.
We can construct it from the generating function counting the number of catastrophes. It is given

in (13) where each catastrophe is marked by a variable v.
Lemma 4.20. The bivariate generating function Aavg(z, u) marking the size of a random catastrophe
among all excursions with catastrophes is given by

Aavg(z, u) = E(z) +Q(z, u)D(z)2E(z).

Proof: A random excursion with catastrophes either contains no catastrophes and is counted by
E(z), or it contains at least one catastrophe. In the latter we choose one of its catastrophes and its
associated excursion ending with this catastrophe. Then we replace it with an excursion ending with
a catastrophe whose size has been marked. This corresponds to

Aavg(z, u) = E(z) +
Q(z, u)

Q(z)

∂

∂v
C(z, v)∣

v=1
.

Computing this expression proves the claim.
As before we define a random variable Xn for our parameter as

P (Xn = k) =
[znuk]Aavg(z, u)

[zn]Aavg(z,1)
.

Due to the factor Q(z, u) the situation is similar to final altitude in Section 4.4.
Theorem 4.21 (Limit law for the size of a random catastrophe). The size of a random catastrophe
of a lattice path of length n admits a discrete limit distribution:

lim
n→∞

P (Xn = k) = [uk]ω(u), where

ω(u) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Q(ρ0, u) if ρ0 ≤ ρ,
C
τ +(

C
τ D(ρ)

2+2ηD(ρ)3)Q(ρ,u)+η(u)D(ρ)2
C
τ +(

C
τ D(ρ)2+2ηD(ρ)3)Q(ρ,1)+ηD(ρ)2 (sic!) if ρ0 does not exist.
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Proof: The proof is similar to the one of Theorem 4.16. First, for ρ0 < ρ it holds that only D(z)2 is
singular at ρ0, where all other terms are analytic. Thus, by Pólya and Szegő (1925, Problem 178) the
claim holds. It is then possible to extract a closed-form expression for the coefficients of an algebraic
function, via the Flajolet–Soria formula which is discussed in Banderier and Drmota (2015), but this
expression of [uk]Q(ρ0, u) in terms of nested sums of binomials is here too big to be useful.
Second, in the case ρ0 = ρ we combine the singular expansions (11), (14), and (16) to get

Aavg(z, u) =
E(ρ)Q(ρ, u)

η2(1 − z/ρ)
+O ((1 − z/ρ)−1/2) .

In other words, the polar singularity of D(z)2 dominates, and the situation is similar to the one before.
In the final case when ρ0 does not exist, we again combine the singular expansions. This time the

expansion of D(z) is given by (12). This implies a contribution of all terms, as all of them are singular
at once and all of them have the same type of singularity.

Corollary 4.22. Let λ be the unique real positive root of λ3 + λ − 1 and given by

λ =
1
6
(108 + 12

√
93)

1/3
− 2 (108 + 12

√
93)

−1/3
.

The size of a random catastrophe among all Dyck paths with catastrophes of length n admits a
(shifted) geometric limit distribution with parameter λ ≈ 0.6823278:

lim
n→∞

P (Xn = k) =

⎧⎪⎪
⎨
⎪⎪⎩

(1 − λ)λk−2, for k ≥ 2,
0, for k = 0,1.

Comparing this result to the one for the final altitude of meanders in Corollary 4.17, we see that
the type of the law is of the same nature (yet shifted for the size of catastrophes), and that the
parameter λ is the same. The following lemma explains this connection.
Lemma 4.23. Let d = 1, i.e., P (u) = p−cu

−c+⋯+p1u
1 be the jump polynomial. Then, the generating

function of excursions of length n (marked by z) ending with a catastrophe of size k (marked by u)
admits the decomposition

Q(z, u) = qp1z
2uc+1M(z, u)Mc(z) + qz ∑

−j∉J−
−c<j<0

u−jMj(z).

Proof: The idea is a last passage decomposition with respect to reaching level c + 1. First, assume
that p−c, . . . , p−1 ≠ 0. Then the smallest catastrophe is of size c + 1. We decompose the excursion
with respect to the last jump from altitude c to altitude c + 1, see Figure 6. Left of it, there is a
meander ending at altitude c, and right of it there is a meander starting at altitude c + 1 and always
staying above altitude c+1. The size of the ending catastrophe is then given by the final altitude plus
c + 1, this gives the factor zuc+1M(z, u). This proves the first part.
For the second part, note that if one of the p−c, . . . , p−1 is equal to 0, then catastrophes of the

respective size are allowed. These are given by meanders ending at this altitude and a jump to 0.
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Mc(z)

+1

M(z, u)

final cat.

Figure 6: Decomposition of an excursion ending with a catastrophe for d = 1 from Lemma 4.23.

This lemma shows that the probability generating function of the final altitude and of the size of
an average catastrophe are connected. In particular, for d = 1 and ρ0 < ρ we have

lim
n→∞

[zn]M(z, u)

[zn]M(z,1)
=

1
uc+1

Q(ρ0, u) − ∑
−j∉J−,−c<j<0

qρ0u
−jMj(ρ0)

1 − ∑
−j∉J−,−c<j<0

qρ0Mj(ρ0)
.

We see the shift by u−c−1 of the probability generating function. It is now obvious how these laws
are related: the parameters are the same, there is just a shift in the parameter and a subtraction of
certain, initial values.
The results of Lemma 4.23 can be generalized to d ≥ 2, but the explicit results are more complicated.

For example, for d = 2 there are 4 different cases in the last passage decomposition: a +1-jump from
c to c+1, a +2-jump from c to c+2, a +2-jump from altitude c−1 to c+1, all followed by a meander,
and a +2-jump from c to c + 2 followed by a path always staying above c + 1.
However, in all cases there is a factor M(z, u) in Q(z, u) if p−c, . . . , p−1 ≠ 0.

4.7 Waiting time for the first catastrophe
We end the discussion on limit laws with a parameter that might be of the biggest interest in ap-
plications: the waiting time for the first catastrophe. Let wn,k be the number of excursions with
catastrophes of length n such that the first catastrophe appears at the k-th steps for k > 0. Let
wn,0 be the number of such paths without a catastrophe. Then its bivariate generating function
W (z, u) = ∑n,k≥0wn,kz

nuk is given by

W (z, u) = E(z) +Q(zu)D(z)E(z).

This is easily derived from Theorem 2.1 as the prefix D(z) is a sequence of excursions with only
one catastrophe at the very end. Thus, marking the length of the first of such excursions marks the
position of the first catastrophe.
As done repeatedly we define a random variable Xn for our parameter as

P (Xn = k) =
[znuk]W (z, u)

[zn]W (z,1)
.
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Theorem 4.24 (Waiting time of the first catastrophe). The waiting time for the first catastrophe in
a lattice path with catastrophes of length n admits a discrete limit distribution:

lim
n→∞

P (Xn = k) = [uk]ω(u), where ω(u) =

⎧⎪⎪
⎨
⎪⎪⎩

Q(ρ0u) if ρ0 ≤ ρ,

1 −Q(ρ) +Q(ρu) if ρ0 does not exist.

Proof: The proof follows again the same lines as the one of Theorem 4.16. In this particular case, we
combine the asymptotic expansion of D(z)E(z) from Theorem 4.4 with the asymptotic expansion of
E(z) from Banderier and Flajolet (2002, Theorem 3).

In the case of Dyck paths we have

Q(z) =
1

2z2
⎛

⎝
z2
− z − 1 − (z2

+ z − 1)
√

1 + 2z
1 − 2z

⎞

⎠
.

The corresponding limit law, which consists of the sum of two discrete distributions for the odd and
even waiting times, is shown in Figure 7. We see a periodic behaviour with a distribution for the
even and odd steps. This arises from the fact that catastrophes are not allowed at altitudes 0 and 1.
Starting from the origin this effects only the odd numbered steps. The probabilities for catastrophes
at an odd step are lower than the ones at the following even step, because we can reach altitude 1
from below and from above, whereas the only restriction for the even steps is at altitude 0 which can
only be reached from above. It was also interesting (and a priori not expected) to discover that the
occurrence of the first catastrophe has a higher probability at step 6 than at step 4.

Figure 7: The red dots represent the discrete limit distribution of the waiting time for the first
catastrophe in the case of Dyck paths. It is the sum of two discrete distributions: one for the odd
waiting times (the top curve in black) and one for the even waiting times (the bottom curve in blue).
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5 Uniform random generation
In order to generate our lattice paths with catastrophes, it is for sure possible to use a dynamic
programming approach; this would require O(n3) bits in memory. Via some key methods from the
last twenty years, our next theorem shows that it is possible to do much better.
Theorem 5.1 (Uniform random generation).

• Dyck paths with catastrophes can be generated uniformly at random in linear time.
• Lattice paths (with any fixed set of jumps) with catastrophes of length n can be generated

– in time O(n lnn) with O(n) memory,
– or in time O(n3/2) with O(1) memory (if output is given as a stream).

Proof: First, via the bijection of Theorem 3.1, the linear-time approach of Bacher, Bodini, and
Jacquot (2013) for Motzkin trees can be applied to Dyck paths with catastrophes. The other cases
can be tackled via two approaches. A first approach is to see that classical Dyck paths (and generalized
Dyck paths) can be generated by pushdown automata, or equivalently, by a context-free grammar.
The same holds trivially for generalized lattice paths with catastrophes. Then, using the recursive
method of Flajolet, Zimmerman, and Van Cutsem (1994) (which can be seen as a wide generalization
to combinatorial structures of what Hickey and Cohen (1983) did for context-free grammars), such
paths of length n can be generated in O(n lnn) average time. Goldwurm (1995) proved that this can
be done with the same time complexity, with only O(n) memory. The Boltzmann method introduced
by Duchon, Flajolet, Louchard, and Schaeffer (2004) is also a way to get a linear average time random
generator for paths of length within [(1 − ε)n, (1 + ε)n].
A second approach relies on a generating tree approach Banderier, Bousquet-Mélou, Denise, Flajo-

let, Gardy, and Gouyou-Beauchamps (2002), where each transition is computed via

P
⎛

⎝

⎧⎪⎪
⎨
⎪⎪⎩

jump j when at altitude k, and length m,
ending at i at length n

⎞

⎠
=
fk+j
n−(m+1),i

fkn−m,i
,

where fkn,i is the number of paths with catastrophes of length n, starting at altitude k and ending
at altitude i. Then, for fixed i and each k, the theory of D-finite functions applied to the algebraic
functions derived similarly to Theorem 2.1 allows us to get the recurrence for the corresponding fn (see
the discussion on this in Banderier and Drmota (2015)). In order to get the n-th term fn of such
recursive sequences, there is a O(

√
n) algorithm due to Chudnovsky and Chudnovsky (1986). It is

possible to win space and bit complexity by computing the fn’s in floating point arithmetic, instead
of rational numbers (although all the fn are integers, it is often the case that the leading term of
such recurrences is not 1, and thus it then implies rational number computations, and time loss in
gcd computations). All of this leads to a cost ∑nm=1O(

√
m) = O(n3/2), moreover, a O(1) memory

is enough to output the n jumps of the lattice path, step after step, as a stream.
Note that this O(n3/2) complexity is hiding a dependency in c+d in its constant. The cost of getting

each D-finite recurrence indeed depends on the largest upward and downward jumps +d and −c. Some
computer algebra methods for getting these recurrences (via the Platypus algorithm from Banderier
and Flajolet (2002), or via integral contour representation) are analysed in Dumont (2016).
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6 Conclusion
In this article, motivated by a natural model in queuing theory where one allows a “reset” of the queue,
we analysed the corresponding combinatorial model: lattice paths with catastrophes. We showed how
to enumerate them, how to get closed forms for their generating functions.
En passant, we gave a bijection (Theorem 3.1) which extends directly to lattice paths with a −1-jump

and an arbitrary set of positive jumps (they are sometimes called Łukasiewiecz paths). Łukasiewiecz
paths with catastrophes could be considered as a kind of Galton–Watson process with catastrophes,
in which some pandemic suddenly kills the full population. Our results quantify the probability of
such a pandemic over long periods.
It is known that the limiting objects associated to classical Dyck paths behave like Brownian

excursions or Brownian meanders (see Marchal (2003)). For our walks, Theorem 4.14 gives some
bounds on the length of the longest arch, which, in return, proves that excursions with catastrophes
(if one divides their length by the length of the longest arch) have a non-trivial continuous limiting
object. Moreover, it was interesting to see what type of behaviour these lattice paths with catastrophes
exhibit. This is illustrated by our results on the asymptotics and on the limit laws of several parameters.
We note that it is unusual to see that this leads to “periodic” limit laws (see Figure 5). In fact, all
these phenomena are well explained by our analytic combinatorics approach, which also gives the
speed of convergence towards these limit laws.
Naturally, it could be also possible to derive some of these results with other tools. One convenient

way would be the following. To any set of jumps, one can associate a probabilistic model with
drift 0; this is done by Cramér’s trick of shifting the mean, see Cramér (1938, p. 11): It is using
R(u) ∶= P (uλ)/P (λ) for a real λ such that R′(1) = 0. A trivial computation shows that this implies
that λ is then exactly equal to τ , the unique real positive saddle point of P (u). This often leads to a
rescaled model which is analysable by the tools of Brownian motion theory. This trick would work for
the first two cases in the trichotomy of behaviours mentioned in our theorems, and would fail for the
third case, as the process is then trivially killed by any Brownian motion renormalization. In this last
case, other approaches are needed to access to the discrete limit laws. Analytic combinatorics seems
the right tool here and it is pleasant to rephrase some of its results in terms of some probabilistic
intuition. Indeed, our analytic quantities have thus a probabilistic interpretation: P ′′(τ) could be seen
as a “variance”, η (from the Puiseux expansion in Theorem 4.3) could be seen as “the multiplicative
constant in the tail estimate of having an arch of length ≥ n” (this tail behaves like ∼ η/√n). However,
if one uses this natural probabilistic approach, the details needed for the proofs are technical, and we
think that analytic combinatorics is here a more suitable way to directly establish rigorous asymptotics.

One advantage of probability theory is to offer more flexibility in the model: the limit laws will
remain the same for small perturbations of the model. So it is natural to ask which type of flexibility
analytic combinatorics can also offer. Like we sketched in Remark 2.2, our results can indeed include
many variations on the model. E.g. if catastrophes are allowed everywhere, except at some given
altitudes belonging to a set A, one has Q(z) = zq (M(z) −∑j∈AMj(z)). A natural combinatorial
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model would be for example lattice paths with catastrophes allowed only at even altitude > 0, or at
even time. They can be analysed with the approach presented in this article. Another interesting
variant would be lattice paths where catastrophes are allowed at any altitude h, with a probability 1/h
to have a catastrophe and a probability (1 − 1/h) to have one of the jumps encoded by P (u). This
leads to functional equations involving a partial derivative, which are, however, possible to solve. Some
other models are walks involving catastrophes and windfalls (a direct jump to some high altitude), as
considered by Hunter, Krinik, Nguyen, Switkes, and Von Bremen (2008), or walks with a direct jump
to their last maximal (or minimal) altitude (see Majumdar, Sabhapandit, and Schehr (2015)). For all
these models, further limit laws like the height, the area, the size of largest arch or the waiting time
for the last catastrophe, are interesting non-trivial parameters which can in fact be tackled via our
approach. Let us know if you intend to have a look on some of these models!
In conclusion, we have here one more application of the motto emerging from Flajolet and Sedgewick

(2009) about problems which can be expressed by a combinatorial specification:
“If you can specify it, you can analyse it!”

Indeed, it is pleasant that the tools of analytic combinatorics and the kernel method allowed us to solve
a variant of lattice path problems, giving their exact enumeration and the corresponding asymptotic
expansions, and, additionally, offered efficient algorithms for uniform random generation.

Remark on this version. This article is the long-extended version of the article with the same
title which appeared in the volume dedicated to the GASCom’2016 conference (see Banderier and
Wallner (2017b)). In this long version, we included more details, we gave the proofs for the asymptotic
results, and we also added the analysis of three new parameters: Subsections 4.5 (cumulative size of
catastrophes), 4.6 (average size of a catastrophe), 4.7 (waiting time for the first catastrophe). We
also added the Section 5 dedicated to uniform random generation issues.
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