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The study of patterns in permutations associated with forests of binary shrubs was initiated by Bevan, Levin, Nu-
gent, Pantone, Pudwell, Riehl, and Tlachac. In this paper, we study five different types of rise statistics that can be
associated with such permutations and find the generating functions for the distribution of such rise statistics.
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1 Introduction

In/Bevan et al.| (2016)), the study of patterns in forests of binary shrubs was introduced. A k-ary heap H is
a k-ary tree labeled with {1,...,n} such that every child has a larger label than its parent. Given a k-ary
heap H, we associate a permutation oy with I by recording the vertex labels as they are encountered in
the breadth-first search of the tree. For example, in Figure[I] we picture a 3-ary heap H whose associated
permutationisog =1623710895 4.
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Fig. 1: A 3-ary Heap.

A shrub is a heap whose leaves are all at most distance 1 from the root. A binary shrub is a heap
whose underlying tree is a shrub with three vertices. A binary shrub forest is an ordered sequence of
binary shrubs and we let 72 denote the set of all forests F' = (Fy,..., F,) of n binary shrubs whose
set of labels is {1,...,3n}. For example, in Figure [2| we picture an element of F2. Given a forest
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F = (Fy,...,F,) € F2, welet o denote the permutation that results by concatenating the permutations
OF, -..0F,. For example, the permutation o for the F' € F2 pictured in Figureis

cr=51296131514107118214 3.
Forany n > 1, we let SF, i denote the set of all o such that ' € ]-',%.

12 9 13 15 4 10 11 8 14 3
5 6 1 7 2
Fig. 2: An element of F2.

The goal of this paper is to study generating functions for various types of rises in SF i For example,
given a permutation 0 = o1 - - - 0, in the symmetric group S,,, we let

Rise(o) ={i:0; < 041} andris(o) = |Rise(o)].

For any sequence @ = ay - - - a,, of pairwise distinct positive integers, we let the reduction of @, red (),

be the permutation of S,, that arises from @ by replacing i*"-smallest element of {a,...,a,} by i. For
example, red(794210) =34215.
Now suppose that we are given F' = (Fy,...,F,) € F2, then we let ris(F) = ris(ocr). However,

given the structure of F', there are many other natural notions of rises in a forest of binary shrubs. That is,
suppose that o, = abc and oF,,, = def as pictured in Figure (3| Then we shall consider the following
four types of rises.

1. F; <t F;;1 if every element of {a, b, c} is less than every element of {d, e, f}. We will refer to
this type of rise as fotal rise.

2. F; <p Fi41 if a < d. We will refer to this type of rise as base rise.
3. F;<p Fip1ifa <d,b<e, and c < f. We will refer to this type of rise as lexicographic rise.

4. F; <4 Fiyq if ¢ < e. We refer to this type of rise as an adjacent rise because when we look at the
pictures of I and F}; 1, the rightmost element of Fj is less then the leftmost element of F} ;.

Then we define

RiseT(F)={i: F; <p Fi41} risT(F) = |RiseT(F)|,
RiseB(F)={i: F; <p Fi;1} risB(F') = |RiseB(F)],
RiseL(F)={i: F; <p Fit1} risL(F') = |RiseL(F')|, and
RiseA(F)={i: F; <a Fi;1} risA(F) = |RiseA(F)|.

The goal of this paper is to study the following generating functions.
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Fig. 3: Two consecutive binary shrubs.

t3n ris(o
R(x,t) = 1—}—2(3”‘) Z ris(9)
n>1 Y oeSF?
t3n .
RT(z,t) = 14 g > ™10,
n>1 (3n1) FeF2
t3n
RB(x,t) = D) > @B,
n!) FeF?
t3n
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n>1 (n FeF?
t3n .
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For example, we shall prove that
1—2x

R(x,t) =

- )
.L x 3\n
L—z43 51 (573'” [Tii (2 + 3k —2)

To compute the remaining generating functions, we will need find explicit formulas for the number of
increasing binary shrub forests relative to the orderings <7, <p, <p, and <4. For Z € {T, B, L, A}, we
let

IZF2 = {(F,...,F))€F2 - Fi <y Fp<z--- <z F,},
IZF2 = |IZF?|, and
IZSF? = {op:FecIZF2}.

Then for Z € {T, B, L, A}, we shall show that

t3n

RZ(x,t) = 1+ Z Z ris2(F)

FeF?

1
= — . 2
1-% o, A (z—1)"—1ZF? @

n>1 (Bn)l
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Thus to find the generating functions R7 (z,t), RB(x,t), RL(x,t), and RA(x, t), we need only compute
ITF2, IBF2, ILF2, and IAF?2. We shall show that

ITF? = 27,
3n)!
IBF2 = (?)ni)' and
n.
—— 47(3n)!

(n+1)!(2n+ 1)

Of these three formulas, the most interesting is the formula for ILFTQL which equals the number of paths
of length n in the plane that start and end at the origin and which stay in the first quadrant that consists
only of steps of the form (1,1), (0, —1) and (—1,0). This number was first computed by Kreweras, see
Kreweras| (1965). We shall prove our formula by providing a bijection between ZLJF’ i and the collection
of such paths. We have not been able to find an explicit formula for IAFi, but we shall show that we can
develop a system of recurrences that will allow us to compute IAF?L.

The main tool that we will use to compute these generating functions is the homomorphism method
as described in Mendes and Remmel (2015). The homomorphism method derives generating functions
for various permutation statistics by applying a ring homomorphism defined on the ring of symmetric
functions A in infinitely many variables x1, zo, . . . to simple symmetric function identities such as

H(t) = 1/E(~) 3)

where H (t) and E(t) are the generating functions for the homogeneous and elementary symmetric func-
tions, respectively:

H(t)=> hat"=]] %m E(t)=> ent"=]]1+ait @)

n>0 i>1 n>0 i>1

The outline of the this paper is as follows. First in Section 2, we shall briefly review the background
on symmetric functions that we need. In Section 3, we shall prove (I). In Section 4, we shall prove (2).
In Section 5, we will compute ITF2, IBF2, ILF2, and IAF? which, when combined with the results of

Section 4, will allow us to compute the generating functions R7 (x, t), RB(x,t), RL(z,t), and RA(z, t).

2 Symmetric functions

In this section, we give the necessary background on symmetric functions that will be used in our proofs.

A partition of n is a sequence of positive integers A = (A1, ..., A\x) suchthat 0 < Ay < --- < A and
n = A1 + -+ + A\. We shall write A I n to denote that A is partition of n and we let £(\) denote the
number of parts of A. When a partition of n involves repeated parts, we shall often use exponents in the
partition notation to indicate these repeated parts. For example, we will write (12,4°) for the partition

(1,1,4,4,4,4,4).
Let A denote the ring of symmetric functions in infinitely many variables z1,2s,.... The n'® el-
ementary symmetric function e, = e, (71, 22,...) and n*® homogeneous symmetric function h,, =

hn (21,22, .. .) are defined by the generating functions given in (@). For any partition A = (X1,..., A¢),
letey = ey, ---ex, and hy = hy, - - hy,. Itis well known that eg, €1, . . . is an algebraically independent
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set of generators for A, and hence, a ring homomorphism 6 on A can be defined by simply specifying
6(ey,) for all n.

If A = (Aq,..., \g) is a partition of n, then a A-brick tabloid of shape (n) is a filling of a rectangle
consisting of n cells with bricks of sizes A1, . .., Ax in such a way that no two bricks overlap. For example,
FigureE] shows the six (12,22)-brick tabloids of shape (6).

00O 00 ocadoo
oo oo oo

Fig. 4: The six (12, 2?)-brick tabloids of shape (6).

Let B} 5, denote the set of A-brick tabloids of shape (n) and let B, ,, be the number of A-brick tabloids
of shape (n). If B € By ,, we will write B = (b1, ..., b)) if the lengths of the bricks in B, reading

from left to right, are by, . . ., by(»). For example, the brick tabloid in the top right position in Figure E] is
denoted as (1,2,2,1). In[Egecioglu and Remmel| (1991) it has been proved that
hn =Y (=1)" "M By, en. (5)
AFn

3 The generating function R(z, ).

It this section, we shall prove the following theorem.
Theorem 1.

tSn

i 11—z
Rz, t) =1+ = Y o™= e . (6)
n>1 (3n)! esr? 1—z+ Zn21 % " (z+3k—2)

Proof: Let Q[z] denote the polynomial ring over the rational numbers Q.
Let 6 : A — Q[z] be the ring homomorphism defined on the ring of symmetric functions A in infinitely
many variables determined by setting 6(eg) = 1, 0(esn4+1) = 0(esn+2) = 0 for all n > 0, and

(_1)37171

6esn) = (3n)!

2w — 1" [z + 3k - 2)
k=1
for all n > 1. We claim that for n > 0, 8(hgn41) = 0(hsn42) = 0 and that for n > 1,

(Bn)l0(hsn) = > 2", (7)

cESF?

First it is easy to see that our definitions ensure that f(ey) = 0 if A has a part which is equivalent to
either 1 or 2 mod 3. Since
ha = (=1)""" N By nen, ®)
AFn
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it follows that 8(h,,) = 0 if n is equivalent to 1 or 2 mod 3 since every partition of A of n must contain
a part which is equivalent to 1 or 2 mod 3. If A = (Ay,..., \x) is a partition of n, we let 3\ denote the
partition (3Aq,...,3\g). It follows that in the expansion 6(hs,,), we need only consider partitions A of
3n of the form 3 where p is a partition of n. Thus

(3n)!0(h3n) = (3n)! Y (=1)*" " By, 3,0(es,,) =

pukEn
£(p) — b;
(3n)12(_1)3n—€(u) Z H ﬂx bi—1 (z + 3k; — 2)
, (30;)!
pukEn (3b1,... SbZ(M)eBgﬂ 3n i=1 ki=1

b;
2 2 <3b1,..  3by() ) Hfﬂ I @+ 3k —2). ©)

pEn (3b1,...,3b,)€B3p,3n i=1 k=1

Next our goal is to give a combinatorial interpretation for the right-hand side of (9). Our combinatorial
interpretation will use a certain subset of permutations which are increasing in a relevant way for our
problem. In particular, we let ZSF2 equal the set of all permutations ¢ = o - - - 03, € SF2 such that
03; < 03i41 fort = 1,...,n — 1. One way to think of this set is that it is the set of permutations that
arise from a forest F' = (I}, ..., F,,) € F2 such that the label of the right-most element in F; is less than
the label of the root of F; ;. For example, if n = 5, then we are asking for labellings of the poset whose
Hasse diagram is pictured at the top Figure[5] We want to find the set of all labellings of the nodes of this
poset such that when there is an arrow from a node x to a node y, then the label of node x is less than
label of node y. This is equivalent to finding the set of all linear extensions of the poset. We have given
an example of such a labeling on the second line of Flgureland its correspondlng permutation in SFp Zin
the third line of Flgure Given an elementof 0 = 01 -+ - 03, € ZS .7-' we let

risyo(0) = |{i:0; < oi41 &i=1,2 mod 3}|.

That is, risq 2 (o) keeps track of the number of rises between pairs of the form 03410342 and 03420354 3.

AVARVANVAN VANV

7 2 4 5 13 8 10 11 15 14
F= WWW
1 3 6 9 12
GF = 17234561389 10111215 14

Fig. 5: The poset for ZSF2.

We claim that

m"ﬁ x+3k—2)= Z zrs1.2(0)
k=1

c€ISF?2
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This is easy to prove by induction. First, it easy to check that there are exactly two permutations in ZSF2,
namely 123 and 132, so that >__ ;¢ 7> #1:2(?) = (1 + z) as claimed. Now suppose that our formula
holds for k¥ < n. Then consider FigureE]where we have redrawn the poset so that the positions correspond
to the elements in o . It is easy to see that the label of the left-most element must be one since there is a
directed path from that element to any other element in the poset. There must be a rise from o, to o2 so
we add a label = below that position. Next consider node which has label 2. If 2 is the label of the second
element, then the label of the third element must be 3 since there is a directed path from that element to
any of the other unlabeled elements in the poset at this point. In this case 2 = 05 < 03 = 3 so we add a
label x below that position. If the label of the second element is a where a > 2, then the label of the third
element must be 2 since there is a directed path from that element to any of the other unlabeled elements
in the poset at this point. We have 3n — 2 ways to choose a. In this case the pair o203 is not a rise so
that that we do not add a label x below that position. Thus our choices of labels for the binary shrub F}
gives rise to a factor of z(z + 3n — 2) in our sum. Note that once we have placed the labels on F}, the
remaining labels are completely free. Thus it follows that

Z g2 = (4 3n - 2) Z Lris1.2(0)

c€ISF? cETSF2_,
n
= 2" H(a:—|—3k: —2).
k=1
x-1 x-1 x—1 x—1 1
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Fig. 6: The recursive construction of elements of ZSF?2.

To complete our combinatorial interpretation for the right-hand side of (9), we interpret the extra factor
of (z — 1)" ! in f(e3,) as adding a label (x — 1) on every third element except the last one. In Figure|6]
we indicate this by putting such labels at the top of the diagram.

We are now in a position to give a combinatorial interpretation to the right-hand side of (9). That is, we
first choose a brick tabloid B = (3b4, .. ., 3by( ,)) consisting of bricks whose size is a multiple of 3. Then
we use the multinomial coefficient (31)17“3‘,7;%(“)) to pick an ordered sequence of sets S1, ..., Sy, such

that | S;| = 3b; and Sy, .. ., Sy, partition the elements {1,...,3n}. For each brick 3b;, we interpret the

factor 2% szl(x + 3k — 2) as all ways ’V%i) e :,()2 of arranging the elements of S; in the cells of the

brick 3b; such that red(’yii) - 7§Z)l) € ISF Z where we place a label = below the cell containing 'yj(i) if
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j=1,2 mod 3 and VJ@ < 7;21. Finally, we interpret the factor (x — 1)%~ as all ways of labeling the

cells containing the elements véi), e 775‘»273 with either x or —1. We shall also label the last cell of a
brick 3b; with 1. Let Os,, denote the set of all objects created in this way. Then Os,, consists of all triples
(B,o, L) such that B = (3by, ..., 3by) is a brick tabloid all of whose bricks have length a multiple of 3,

o is a permutation in Ss,,, and L is labeling of the cells of B such that the following four conditions hold.

1. Foreach¢ = 1,...,k, the reduction of the sequence of elements obtained by reading the elements
in the brick 3b; from left to right is an element of ZSF i

2. The cell containing a o; such that i = 1,2 mod 3 is labeled with an z if and only if : € Rise(o).
3. The label of a cell at the end of any brick is 1.

4. The cells containing elements of the form o3; which are not at the end of a brick are labeled with
either —1 or x.

For each such (B, o, L) € O3, we let the weight of (B, o, L), w(B, o, L), be the product of all its x
labels and we let the sign of (B, o, L), sgn(B, o, L), be the product of all its —1 labels. For example, at the
top of Figure we picture an element (B, o, L) € O3 such that w(B, o, L) = 2! and sgn(B, o, L) =
—1. It follows that

(3n)10(hsn) = Z sgn(B,o, L)w(B, o, L). (10)
(B,o,L)EO3,

Next we will define a sign-reversing involution J : O3z, — Os, which we will use to simplify the
right-hand side of . Given a triple (B, o, L) € O3, where B = (3by,...,3b;) and 0 = 01 - - - o3,
scan the cells from left to right looking for the first cell ¢ such that either

Case 1: ¢ = 3sforsome 1 < s <n — 1 and the label on cell cis —1 or
Case 2: cis that last cell of brick 3b; for some ¢ < k and 0. < 0¢y1.

In Case 1, suppose that ¢ is in brick 3b;. Then J(B, o, L) is obtained from (B, o, L) by splitting brick
3b; into two bricks 3b and 3b;*, where 3b] contains the cells of 3b; up to and including cell ¢ and 3b;*
contains the remaining cells of 3b;, and changing the label on cell ¢ from —1 to 1. In Case 2, J(B, 0, L) is
obtained from (B, o, L) by combining bricks 3b; and 3b;1 into a single brick 3b and changing the label
on cell ¢ from 1 to —1. If neither Case 1 or Case 2 applies, then we define J(B, o, L) = (B, o, L).

For example, if (B, o, L) is the element of O pictured at the top of Figure[7] then B = (3b1, 3b, 3b3)
where by = 2, bo = 1 and b3 = 3. Note that we cannot combine bricks 3b; and 3bs since 18 = og > o7 =
2 and we cannot combine bricks 3by and 3b3 since 17 = g9 > 019 = 1. Thus the first cell ¢ where either
Case 1 or Case 2 applies is cell ¢ = 12. Thus we are in Case 1 and J(B, o, L) is obtained from (B, o, L)
by splitting brick 3b3 into two bricks, the first one of size 3 and second one of size 6, and changing the
label on cell 12 from —1 to 1. Thus J(B, o, L) is pictured at the bottom of Figure [7}

It is easy to see that .J is an involution. That is, if we are in Case I using cell ¢ to define J(B, o, L),
then we will be in Case II using cell ¢ when we apply J to J(B, o, L) so that J(J(B,o,L)) = (B, o, L).
Similarly, if we are in Case II using cell ¢ to define J(B, o, L), then we will be in Case I using cell ¢
when we apply J to J(B, o, L) so that J(J(B,o,L)) = (B,o,L). Moreover it is easy to see that if
J(B,o,L) # (B,o, L), then

sgn(B,o, L)w(B, o, L) = —sgn(J(B, o, L))w(J(B,o,L)).
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Fig. 7: An example of the involution J.

It follows that

(3n)10(han) =

Thus we must examine the fixed points of J on Os,. It is easy to see that if (B, o, L), where B =
(3by1,...,3b;) and 0 = 0y - - - 03, is a fixed point of J, then there can be no cells labeled —1 and for
1 < ¢ < k — 1, the element in the last cell of brick 3b; must be greater than the element in the first cell
of 3b;11. It follows that if ¢ = 3¢ for some 1 < ¢ < n — 1, then cell c is labeled with an z if and only if
0. < 0cy1. Thus for a fixed point (B, o, L) of J, wt(B, o, L) = 2"5(°) and sgn(B, o, L) = 1. On the
other hand, given any o € SF i, we can create a fixed point (B, o, L) of J by having the bricks of B end
at the cells ¢ = 3i such that 37 € Rise(o) and labeling all the cells j such that j € Rise(o) with an z.

For example, if

Z sgn(B,o, L)w(B, o, L)

(B,0,L)EO3,

>

sgn(B, o, L)w(B, o, L).
(B,o,L)EO3,,,J(B,0,L)=(B,o,L)

c=41658121827171369131011 15 14,

then the fixed point corresponding to o is pictured in Figure[8]
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Hence, we have proved that

as desired.

Fig. 8: A fixed point of J.

(3n)!0(han) =

Z xris(a)

cESF?
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It follows that
t3’r7, X
Q(H(t)) = 14+ (3n)' Z JCms(a)
n>1 cESF?2
_ 1 _ 1
0(E(-1)) 1+ Zn21(—t)”9(en)
_ 1
1+ En21(—t)3”%az"(x — )T (= + 3k — 2)

1—=x
L=z + Y,y CE LTI (o + 3k — 2)

O
We have used this generating function to compute the initial terms of R(x, t).
3 46
1+ (x (1+x))3' z? (16 + 39z + 242 +:c)6'+
(1036 + 4183z + 550622 + 25362 + 178z + = ) fj
(174664 + 9920942 + 20541312% + 18969372 + 7266222* + 677682° + 138325 + z ) 1122'

z° (60849880 + 446105914z + 12729185692 + 18001886092° + 13076639492+
15

t
4426732652° + 492446512° + 172021127 + 109512% + 27) = 5t

We note that if o = o - -- 03, € SF2, then we are forced to have {3k +1: k =0,...,n — 1} C
Rise(o) by our definition of the permutation associated with a forest of binary shrubs. It follows that

Z rlb(o)—n

cESF?
1—=x

(z—1)t3)" ’
1_$+Zn>1 3n)tr) [T (2 + 3k —2)

t?m

t
R(x, 71/3) = 1+Z

We can then set z = 0 in this expression to get the generating function of 0 € SF, i such that ris(o) = n
which is the minimal number of rises that an element ' € SF i can have. That is,

1

_3 n
1+Zn21 : ) [T (3k —2)
1

n t3n

1+Zn>1 (3n)| Hk 1(3k — 2)

1—|—Z \{ € SF2 :ris(o) =n}| =
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4 The generating functions RZ(z,t) for Z € {T, B, L, A}

In this section, we shall give a general method for computing the generating functions R7 (x, t), RB(z, t),
RL(z,t), and RA(x,t). Recall that for Z € {T, B, L, A}

IZF?2 = {(F\,...,.F)€F2:Fi<z Fy<gz---<zF,},
IZF2 = |IZZF?2|, and
IZSF2 = {op:FcIZF2}.

Then we have the following theorem.
Theorem 2. For Z € {T,B, A, L},

1
RZ =1+ risZ(F) _ _ )
Z Z 1= o1 thos (x — 1) 11ZF,

=i FEJT2 n21 (3n)!

t3n

12)

Proof: The proof of this theorem is similar to the proof of Theorem [I] The main difference between the
two proofs is that in Theorem [T} we needed to keep track of the rises that occur within each binary shrub
in a forest while in the current situation, we need only keep track of the “rises” between adjacent binary
shrubs in a forest.

Let Z € {T,B,L,A} and let ; : A — Q[z] be the ring homomorphism determined by setting
0z(e0) =1,07(esnt1) = 0z(e3n12) = 0 foralln > 0, and

(_1)371—1

Gl 1ZF2(z — 1)"!

0z(esn) =
for all n > 1. We claim that for n > 0, 0z (h3nt1) = 07 (hant2) = 0 and that forn > 1,

(3n)10z (hsn) = Y a0, (13)

FeF?

We can use that same argument as in Theoremto conclude that 6z (h,,) = 0 if n is equivalent to 1 or
2 mod 3 and that in the expansion 6(hs,, ), we need only consider partitions A of 3n of the form 3y where
1 1s a partition of n. Thus

(3n)10z(h3n) = (3n)!Y (1> "W By, 5,07 (es,)
pEn
‘f(#) 1)3bi=1
= (Bn)) (-1)w > H IZng(x—l)bi_l
pEn (3b1,...,3bg()) EB3p 3n 1=1

£(p)
SO SR )H P e

pbn (3b1,...,3b, ) EBay 3

As in the proof of Theorem [I| we must give a combinatorial interpretation to the right-hand side of
. We first choose a brick tabloid B = (3by, .. ., 3by(,)) whose bricks have size a multiple of 3. Then
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3n
..... 3b2(u)
that |S;| = 3b; and Sy, ..., S, partition the elements {1,...,3n}. For each brick 3b;, we interpret

the factor IZF? as all ways VY) - Véf,)

that red(fyy) - fyéz)) € ZZSF; . Finally, we interpret the factor (z — 1)®~! as all ways of labeling the

cells containing the elements wéz), R ?()2,_3 with either x or —1. We also label the last cell of a brick
with 1. Let ©OZ3, denote the set of all objects created in this way. Then ©Zs, consists of all triples
(B, o, L) such that B = (3by, ..., 3by) is a brick tabloid all of whose bricks have length a multiple of 3,
0 = 0103y 1S @ permutation in Ss,, and L is labeling of the cells of B such that the following three

conditions hold.

we use the multinomial coefficient (31;1 ) to pick an ordered sequence of sets Si, ..., Sy, such

of arranging the elements of .S; in the cells of the brick 3b; such

i

1. Foreachi = 1,... k, the reduction of the sequence of elements obtained by reading the elements
in the brick 3b; from left to right is an element is in ZZSF 5

2. The label of a cell at the end of any brick is 1.

3. The cells containing elements of the form o3; which are not at the end of a brick are labeled with
either —1 or x.

For each such (B, 0, L) € OZ3,, we let the weight of (B, o, L), w(B, o, L), be the product of all its
x labels and we let the sign of (B, o, L), sgn(B, o, L), be the product of all its —1 labels. For example,
suppose that Z = B. Then at the top of Figure @ we picture an element (B, o, L) € OB;g such that
w(B, o, L) = 2% and sgn(B, o, L) = —1.
It follows that
(Bn)l0z(hsn) = Y. sgn(B,o,L)w(B, o, L). (15)
(B,0,L)EOZ 3,

Next we will define a sign-reversing involution Jz : OZ3,, — OZ3,, which we will use to simplify the
right-hand side of (15). Given a triple (B, o, L) € OZ3,,, where B = (3by,...,3b;) and 0 = 01 - - - 03,
scan the cells from left to right looking for the first cell ¢ such that either

Case 1: ¢ = 3sforsome 1 < s <n — 1 and the label on cell cis —1 or

Case 2: c is that last cell of brick 3b; for some ¢ < k and the binary shrub F' corresponding to the cells
3b; — 2,3b; — 1, 3b; is <z the binary shrub G corresponding to the cells 3b; + 1, 3b; + 2, 3b; + 3.

In Case 1, suppose that ¢ is in brick 3b;. Then Jz(B, o, L) is obtained from (B, o, L) by splitting brick
3b; into two bricks 3b] and 307", where 3b; contains the cells of 3b; up to and including cell ¢ and 3b;*
contains the remaining cells of 3b;, and changing the label on cell ¢ from —1 to 1. In Case 2, Jz(B, o, L)
is obtained from (B, o, L) by combining bricks 3b; and 3b;; into a single brick 3b and changing the label
on cell ¢ from 1 to —1. If neither Case 1 or Case 2 applies, then we define Jz (B, 0, L) = (B, o, L).

For example, if (B, o, L) is the element of OB pictured at the top of Figure[9] then B = (3b, 3b2, 3b3)
where b1 = 2, by = 1 and b3 = 3. Note that we cannot combine bricks 3b; and 3b, since 9 = g4 > g7 = 2
and we cannot combine bricks 3bs and 3b3 since 2 = o7 > o019 = 1. Thus the first cell ¢ where either
Case 1 or Case 2 applies is cell ¢ = 12. Thus we are in Case 1 and Jg (B, o, L) is obtained from (B, ¢, L)
by splitting brick 3bs3 into two bricks, the first one of size 3 and second one of size 6, and changing the
label on cell 12 from —1 to 1. Thus Jp(B, 0, L) is pictured at the bottom of Figure@
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Fig. 9: An example of the involution Jz when Z = B.

We can use the same reasoning as in Theorem to show that J is an involution. Moreover it is easy
to see that if Jz (B, 0, L) # (B, o, L), then

Sg?’l(B, g, L)UJ(B, g, L) = _Sgn(']Z(Bv g, L))UJ(JZ(B7 g, L))
It follows that

(3n)107(hs,) = > sgn(B,o,Lyw(B,o, L)
(B,o,L)YEOZ3,

= > sgn(B, o, L)w(B, o, L). (16)
(B,o,L)eOZ3,,Jz(B,0,L)=(B,o,L)

Thus we must examine the fixed points of Jz on OZ3,. It is easy to see that if (B, o, L), where
B = (3by,...,3b;) and 0 = 01 - - - 03y, is a fixed point of J, then there can be no cells labeled —1 and
for 1 <i < k — 1, the binary shrub F' determined by the last three cells of 3b; is not <z the binary shrub
determined by the first three cells of 3b;,1. It follows that if ¢ = 3¢ for some 1 < ¢ < n — 1, then cell
c is labeled with an z if and only if the binary shrub F' corresponding to the cells 3b; — 2,3b; — 1, 3b;
is <z the binary shrub G corresponding to the cells 3b; + 1,3b; 4+ 2,3b; + 3. Thus for a fixed point
(B,o, L) of Jz, wt(B, o, L) = 2"%(°) and sgn(B, o, L) = 1. On the other hand, given any ¢ where
F = (F1,...,F,) € F2, we can create a fixed point (B, o, L) of Jz by having the bricks of B end at
the cells ¢ = 3i such that i ¢ RiseZ(F) and labeling all the cells 3j such that j € RiseZ(F') with an z.
For example, if Z = B and

c=41658121827171369 13101115 14,

then the fixed point corresponding to ¢ is pictured in Figure
Hence, we have proved that

B0z (hsn) = D a4

FeF?

as desired.
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7 17| 1 3 6 9 |13 |10 | 11|15 | 14

8
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16| 5
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12 |18

Fig. 10: A fixed point of Jp.

Thus, forall Z € {T, B, L, A},

tdn I'lS
07(H(t) = Z Z A
n>1 Fe]—‘z

_ 1 1

GZ(E(it)) 1+ Z?LZl(it)nez(en)
_ 1
- - 3n—1

L 3 sy ()3 S 1ZF (¢ — 1)

1—2z

l—z+305, %IZFQ

5 Computing I1ZF2 for Z € {T, B, L, A}

Based on our results from the last section, all we need to do in order to compute the generating functions
RZ(x,t) for Z € {T, B, L, A} is to compute IZF? for Z € {T, B, L, A}.

51 ITF?
It is easy to see that if F' = (Fy,...,F),) is such that F} <p Fy <p --- <p F,, then the labels on F;
must be 37 — 2, 3¢ — 1 and 3¢ for s = 1, ..., n. We have exactly 2 ways to arrange these labels to make a

binary shrub which are pictured in Figure It follows that ITFEL = 2" for all n > 1. Thus by Theorem

3n

RT(JJ,t) = 14 Z Z risT(F)
n>1 FeF2
1
I R TP
1-—2z

r—1)t3)n °
1—$+Zn>1 (Sn;'t)
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3i+2 3i+3 3i+3 3i+2

NN

3i+1 3i+1

Fig. 11: The two ways to label F; for F € T F2.

Using this formula for R7 (x, t), we computed the following initial terms of R7 (x, t).

t3 t6 t9
1+25 + (76 + 43:)a + (12104 + 1328 + 8x2)§ +

12

t
5048368 + 843440z + 217762% + 1623) — +
12!
15

t
(4354721312 + 977383552z + 489217922 + 34931223 + 32x4)1—5' o

52 IBF?

The set ZBF ,2L is the set of permutations that arise from a forest F' = (Fi,..., F,) € F2 such that the
root elements are increasing from left to right. For example, if n = 5, then we are asking for labellings of
the poset whose Hasse diagram is pictured at the top Figure[I2| where, when there is an arrow from a node
x to a node y, then the label of node z is less than label of node y. We have given an example of such
a labeling on the second line of Figure and its corresponding permutation in SF g in the third line of
Figure Thus we can think of ZBF fl as the set of linear extensions of the poset whose Hasse diagram
is of the form pictured in Figure

AVARVAAVARAVAV/

7 2 4 3 10 6 15 11 12 14
F= \ i : i ; i : i : /
1 3 5 8 9
GF = 1723413510681511912 14

Fig. 12: The poset for ZBFZ.

We claim that

w11 2<3k2_ 1) B 3(3&)!!)'

k=1
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This is straightforward to prove by induction. First, it easy to see from Figure [TT] that

|
IBF? =2 = 3
3

Thus the base case of our induction holds.
Now suppose that our formula holds for k < n. Let F' = (F}, ..., F,) € ZBF2. Then consider Figure
[I2] The label of the left-most root element must be 1 since there is a directed path from that element to
any other element in the poset. Then we can choose the remaining two elements in Fj in (3”; 1) ways
and we have two ways to order the leaves of Fj. Thus we have (3n — 1)(3n — 2) ways to pick F. Once

we have picked the labels of F1, the remaining labels for F' are completely free. It follows that
IBF2 = (3n—1)(3n — 2)IBF?

n—1
n

= [[Gk-1)@Bk-2) =

k=1

Hence, by Theorem 2]

tSn ris
n>1 " FeF?
1

t3n  (3n)!

=30 Gl By (& — D
11—z

1_$+Zn21(é(w—n7})t3)"

1—2x

—x + e3@=D

Using this formula for RB(z, t), we computed the following initial terms of RB(x,t).

t3 t6 t9
L 257 + (40(1 + 2)) o + (2240 (14 4z +x2))@ +
t12
(246400 (1 + 11z + 112* + 373))ﬁ +
t15
(44844800 (1 + 262 + 662> + 262° + 334))1—5' +
' t18
(12197785600 (1 + 57z + 3022 + 3022° + 572" + x5))178' +...

We note that the generating function for rises in permutations is given by

1 e ris(o) __ -z
+Zﬁzx __$_~_et(w71)'

n>1  o€S,
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By comparing the form of the generating function RB(z,t), one can see that

Z xrisB(F) _ (3n)' xris(a) ) 17)
nml

FeF2 3n! gES,

In fact this is easy to prove directly. Suppose that we are given a permutation 7 = 77 - - - 7, € Sp,. Then
we claim that there are (;TL",B,' ways to create an F' = (Fy,..., F,) € }"ﬁ such thatif op = 01 - - - 035, then
red(c104 - - - 03n—2) = 7. That s, suppose that 7;, = kfork =1,...,n. Welet 1 be the label of the root
of F;, and then we have (3n—1)(3n —2) ways to pick the right and left leaves of F};, . Once we have fixed
F;,, welet ¢y be the smallest element cin {1, . .., 3n} such that cis not a label in F;, . We label the root of
F}, with co and then we have (3n —4)(3n —5) ways to pick the right and left leaves of F};,. Once we have
fixed F;, and Fj,, we let c3 be the smallest element cin {1, ..., 3n} such that cis not a label in F};, or F},.

We label the root of F);, with ¢z and then we have (3n — 7)(3n — 8) ways to pick the right and left leaves

of F};,. Continuing on in this way, we see that there are H?;ol Bn—Bk+1)3n— 3k+2)) = g‘ﬁ;),'
ways to create an F' = (F,..., F,) € F2 such thatif o = 07 - 03, then red(0104 - - - 03,_2) = 7.
Observe that for any F created in this way, risB(F') = ris(7). Thus easily follows.

53 ILF?

The set IE]-'Z is the set of forests F' = (F,..., F,) € }'ﬁ such that Fy <j Fy <p<p --- <p F,. Such
a forest can be considered to a be labeling of a poset LLs,, of the type whose Hasse diagram is pictured
in Figure For example, at the bottom of Figure we have redrawn the poset in a nicer form. Here
when we draw an arrow from node z to node y, then we want the label of node x to be less than label of
node y in L3,. Thus the Hasse diagram of Lg,, consists of 3 rows of n nodes such that there are arrows
connecting the nodes in each row which go from left to right and, in each column, there are arrows going
from the node in the middle row to the nodes at the top and bottom of that column. Let L3,, denote the set
of all linear extensions of L, that is, the set of all labellings of L3, with the numbers {1,...,3n} such
that if there is an arrow from node «x to y, then the label on node x is less than the label on node y. Thus

ILF2 = |Ls,|.

Fig. 13: The poset for ZLF 2.

We then have the following theorem.

2 4"(3n)!
Theorem 3. ILF2 = 4.0t

Proof: InKreweras|(1965) it has been proved that % is the number of paths P = (p1, ..., D3n)

in the plane which start at (0,0) and end at (0,0), stay entirely in the first quadrant, and use only northeast
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steps (1, 1), west steps (—1,0), and south steps (0, —1). See also Bousquet-Mélou| (2005) and |Gessel
(1986). The fact that P starts and ends at (0, 0) means that P has n northeast steps, n west steps, and n
south steps. For any 1 < i < 3n, let NE;(P) equal the number of northeast steps in (p1, ..., p;), W;(P)
equal the number of west steps in (p1, . .., p;), and S;(P) equal the number of south steps in (p1, . .., p;).
The fact that P stays in the first quadrant is equivalent to the conditions that N E;(P) > W;(P) and
NE;(P)> S;(P)fori=1,...,3n. Let Ps, denote the set of all such paths P of length 3n.

To prove our theorem, we shall define a bijection from I' : L3,, — P3,. The map I is quite simple,
given a labeling L € L3, welet T'(L) = (p1,. .., p3n) be the path which starts at (0,0) and where p; is a
northeast step if the label ¢ is in the middle row of L, p; is west step if the label ¢ is in the top row of L,
and p; is a south step if the label ¢ is in the bottom row L. An example of this map is given in Figure [T4]
where we have put a label i on the i*"-step of the T'(L).

——————————————————————————————————

| I
————————————————

Fig. 14: The bijection I'.

First we must check that if L € L3, then I'(L) = (p1,...,psn) is an element of Ps,. It is easy
to see that T'(L) starts and ends at (0,0) since I'(L) has n northeast steps, n west steps, and n south
steps. Let LT;, LM;, and LB; denote the label in L of the it" element of the top row, middle row,
and bottom row, reading from left to right, respectively. Suppose for a contradiction that there is an ¢
such that i = W;(P) > NE,(P) = j. This is impossible since this would imply that LT; < ¢ and
LM, > t which violates that fact that there is an arrow from the element in the middle row of the i‘"-
column to the element in the top row of i*”-column in Ls,. Similarly, suppose that there is an ¢ such
that ¢ = S;(P) > NE:(P) = j. This is impossible since this would imply that LB; < ¢t and LM; > t
which violates that fact that there is an arrow from the element in the middle row of the i*"-column
to the element in the bottom row of i*"-column in L3,,. Thus for all ¢, NE;(I'(L)) > W;(T'(L)) and
NE(T(L)) > S¢(T'(L)) which means that I'(L) stays in the first quadrant.

It is easy to see that I is one-to-one. That is, if L and L’ are two different labellings in L3,,, then let i be
the least j such that j is not in the same position in the labellings L and L’. Then clearly, I'(L) # T'(L’)
since the i*" step of I'(L) will not be the same as the i*" step of I'(L’). To see that I' maps onto Ps,,,
suppose that we are given P = (p1,...,Dsy,) in Ps,. Let L be the labeling of L3,, which is increasing in
the rows of LLs,, such that ¢ is label in the top row of Lg,, if p; is a west step, ¢ is label in the middle row of
L3, if p; is a northeast step, and ¢ is label in the bottom row of Ls,, if p; is a south step. It is easy to see
from our definitions that I'(L) = P. Hence the only thing that we have to do is to check that L € L3,,.
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Since L is increasing in rows, we need only check that the for each column ¢, the label x of the element
in the middle row of column ¢ is less than the label y of the element in the top row of column ¢ and and
less than the label z of the element of the bottom row of column ¢. But this follows from the fact that P
stays in the first quadrant. That is, if y < w, then in (p1,...,p,), we would have more west steps than
northeast steps which would mean that the 3" step of P is not in the first quadrant. Similarly if z < x,
then in (py, ..., p.), we would have more south steps than northeast steps which would mean that the z*"
step of P is not in the first quadrant. Thus I is a bijection from L3,, onto Ps,,.

O

Hence, by Theorem 2]

RL(w,t) = 1+

3n_ 4n((3n)! n—
1= 0 (gn)! (n+1§1((2;)+)1)! (z — 1)t

l1—=z

(4(z—1)t3)n -~
l—z+3,5 4(71451)!(2)77.—‘21)!

Using this formula for RL(z, t), we computed the following initial terms of RL(x, ).

t3 6 9

t N
1+2§+16(4+1‘)a+192(43+26:1:+x )§+
12

g
2816 (983 + 9752 + 1412° + %) ot

15

. t
46592 (41141 + 57086 + 165062 + 766z° + ) "t

18

. t
835584 (2848169 + 5084786z + 23112472? + 261973z” + 43242” + 2°) TR

54 I1AF:.

As with our other examples, we can think of IAFEL as the number of linear extensions of a poset of the
type whose Hasse diagram is pictured at the top of Figure[I5] That is, the Hasse diagram of A,, consists
of n binary shrubs where there is an arrow from the right-most element of each shrub to the left-most
element of the next shrub. We shall also need to consider three related posets, E,,, S,, and B,. E, is
the poset whose Hasse diagram starts with the Hasse diagram of A,, and adds one extra node which is
connected to the Hasse diagram of A,, by an arrow that goes from the right-most node of the right-most
binary shrub to the new node. S,, is the poset whose Hasse diagram starts with Hasse diagram of A,, and
adds one extra node which is connected to the Hasse diagram of A,, by an arrow that goes from the new
node to the left-most node of the left-most binary shrub. B, is the poset whose Hasse diagram starts with
the Hasse diagram of A,, and adds two extra nodes, one which is connected as in F,, and one which is
connected as in S,,. Thus the Hasse diagram of F,, starts with Hasse diagram of A,, and adds an extra
node at the end, the Hasse diagram of S,, starts with the Hasse diagram of A,, and adds an extra node at
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;

Fig. 15: The posets As, E5, S5, and Bs.

the start, and the Hasse diagram of B,, starts with the Hasse diagram of A,, and adds both an extra node
at the end and an extra node at the start. For example, Figure@]pictures As, E5, S5, and Bs.

For W € {A, E, S, B}, we let LW,, denote the set of linear extensions of W,, and LW,, = [LW,,].
We shall show that LA,,, LE,,, LS,,, and LB,, satisfy simple recurrence relations. First in Figures @] and
we have listed all the elements of LA;, LE, LS1, and LB;. Thus

LA1 = 2, LEl = 37 LSl = 5, and LBl =9.

2 3 3 2
1 1
2 3 P 3 2 4 < 2 3
1 1 1
1 3 < 1 < 3
2 2
2 Ed 4 2 4 3 3 4 2
1 1 1

Fig. 16: The elements of LA, LE1, and LS.

1 3 4 5 1 P 3 5 1 5 3 P
2 2 2

=2 3 4 5 2 4 Ed 5 2 5 3 P
1 1 1

4 5 =2 3 3 5 =2 4 3 4 =2 5

Fig. 17: The elements of L£5;.

We start with the recursion for LB,,. Suppose that n > 1. Then consider where the label 1 can be in
an element of £B,,. There are four cases to consider. First, 1 could be the label of the left-most element



Rises in forests of binary shrubs 21

in which case the remaining labels must correspond to a linear extension of E,,. Otherwise 1 is the label
of the root of the k" binary shrub for some k = 1,...,n. If 1 < k < n, then there is no relation that
is forced between the labels to left of 1 which correspond to a linear extension of Bj,_; and the labels to
the right of 1 which correspond to a linear extension of B,,_. In the special case where & = 1, the Hasse
diagram of the poset to the left of the node labeled 1 is just a 2 element chain which we call By. Similarly,
in special case where & = n, the Hasse diagram of the poset to the right of the node labeled 1 is just By.
Clearly, LBy = 1. These four cases are pictured in Figure Foreachk =1,...,n, we have (3(,§EJ1’)1+2)
ways to choose the labels of the elements to the left of 1. It follows that

n

3n+1
LB, = LE, LB;_1LB,,_j. 18
+k2_1<3(k_1)+2) k-1 K (18)

Fig. 18: The recursion for LB,,.

Next consider the recursion for LS,,. Suppose that n > 1. Then consider where the label 1 can be in an
element of £LS,,. Again there are four cases to consider. First, 1 could be the label of the left-most element
in which case the remaining labels must correspond to a linear extension of A,,. Otherwise 1 is the label
of the root of the k** binary shrub for some k = 1,...,n. If 1 < k < n, then there is no relation that
is forced between the labels to left of 1 which correspond to a linear extension of Bj,_; and the labels to
the right of 1 which correspond to a linear extension of .S,,_. In the special case where k = 1, the Hasse
diagram of the poset to the left of the node labeled 1 is just By. Similarly, in special case where k = n,
the Hasse diagram of the poset to the right of the node labeled 1 is a one element poset which we call .Sy.
Clearly, LSy = 1. These four cases are pictured in Figure Foreachk =1,...,n, we have (3(,63’1‘)”)
ways to choose the labels of the elements to the left of 1. It follows that got n > 2,

- 3n
LS, =LA, + LB 1LS, . 19
+k_1<3(k_1)+2> k-1 k (19)

Next consider the recursion for LE,,. Suppose that n > 1. Then consider where the label 1 can be in an
element of LS,,. In this case, there are three cases to consider. That is, 1 must be the label of the root of
the k" binary shrub for some k = 1,...,n. If 1 < k < n, then there is no relation that is forced between
the labels to left of 1 which correspond to a linear extension of Ej_1 and the labels to the right of 1 which
correspond to a linear extension of B,,_. In the special case where k£ = 1, the Hasse diagram of the poset
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Fig. 19: The recursion for LS,,.

to the left of the node labeled 1 is just a one element poset which we will also call Ey. Clearly, LEg = 1.
Similarly, in special case where k£ = n, the Hasse diagram of the poset to the right of the node labeled 1

is just By. These three cases are pictured in Figure|20, For each k = 1,...,n, we have (3(k§71l)+1) ways
to choose the labels of the elements to the left of 1. It follows that
- 3n
LE, = LE;_1LB,_k. 20
’;<3(kz—1)+1> k—1 k (20

Fig. 20: The recursion for LE,,.

Finally consider the recursion for LA,,. Now suppose that n > 1. Then consider where the label 1 can
be in an element of LS,,. In this case, there are three cases to consider. That is, 1 must be the label of the
root of the k' binary shrub for some k = 1,...,n. If 1 < k < n, then there is no relation that is forced
between the labels to left of 1 which correspond to a linear extension of Ej,_; and the labels to the right
of 1 which correspond to a linear extension of .S,,_j. In the special case where k£ = 1, the Hasse diagram
of the poset to the left of the node labeled 1 is Fjy. Similarly, in special case where k& = n, the Hasse
diagram of the poset to the right of the node labeled 1 is just So. These three cases are pictured in Figure

Foreach k = 1,...,n, we have (3 (IL:T—L;)IH) ways to choose the labels of the elements to the left of 1.
It follows that for n > 2,
" 3n—1
LA, = LEg_1LS, . 21
;(3@:—1)—&—1) k-1 k 2D

One can check directly that (T8)), (TI9), (20), and also hold for n = 1. By iterating these recursions,
we can compute the first few terms of the sequences (LA,,),>0, (LBn)n>0, (LEn)n>0, and (LS, )n>0.
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Fig. 21: The recursion for LA,,.

For example, the first few terms of (LA,,),>¢ are

1,2,40,3194, 666160, 287316122, 222237912664, 280180369563194,
537546603651987424, 1490424231594917313242, 5735930050702709579598280, . . .

The first few terms of (LB,,),,>0 are

1,9,477,74601, 25740261, 16591655817, 17929265150637, 30098784753112329,
74180579084559895221, 256937013876000351610089, 1208025937371403268201735037, . . .

The first few terms of (LE,,),,>¢ are

1,3,99, 11259, 3052323, 1620265923, 1488257158851, 2172534146099019,
4736552519729393091, 14708695606607601165843, 62671742039942099631403299, . ..

The first few terms of (LS, ), >0 are

1,5, 169, 19241, 5216485, 2769073949, 2543467934449, 3712914075133121,
8094884285992309261, 25137521105896509819605, 107107542395866078895709049 . . .

None of these sequences appear in the OEIS, see [Sloane| (2017)).
One can also study the generating functions

LAntBn
A(t) = 1+ Z W,
n>1 ’

LEnt3n+1
gty = Y

= (3n+ 1)’
( ) Z LS t3n+1
St) = L and
= (3n+1)!
LBnt3n+2
5O = > Garar

n>0
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It is straightforward to show that the recursions (I8)), (20), (I9), and 1)) imply that the following differ-
ential equations hold:

A'(t) = E@)S(t),

E't) = 1+EMB(),

S'(t) = A(t)+ B(t)S(t), and
B'(t) t+E(t) + (B(t))*.

Note that it follows from the last differential equation that
B(1) — t - (B(t))* = (1),
which can be plugged into the second differential equation to show that
B'(t) =2+ 3B'(t)B(t) — tB(t) — (B(t))>. (22)

Thus in principle, we can obtain a recursion for the LB,, in terms of LBy, ...,LB,,_; which in turn can
lead to more direct recursions for LE,,, LS,,, and LA,,. However, all such recursions are more complicated
than the family of recursions described above.

We used the initial terms of the sequence (LA, ),,>( to compute the following initial terms of R.A(z, t).

3 6 ¢
L+ 25 +40(1 + 2) o + (3194 + 70522 + 3194a” )@

12

t
880 (757 + 2603z + 26032 + 7572°) 77 +

15

t
2 (143658061 + 6710121562 + 106134756622 + 6710121562° + 1436580612 ) i +

136 (1634102299 + 9646627503 + 2100752619822 + 2100752619823+

18

t
9646627503z" + 1634102299 ) T

6 Conclusions

In this paper, we computed the generating function of 5 different kinds of rises in forests of binary shrubs.
Our work can be viewed as the first step in studying consecutive patterns in forests of binary shrubs. We
will study such patterns in a subsequent paper.

In addition, we can also study the analogues of up-down permutations relative to <, <p, <r, and <4.
For example, we say that an F' = (Fy, ..., F,) € F2 is an up-down forest of binary shrubs with respect
to the <7 if RiseT (F') equals the set of odd numbers less than n. We also will study such analogues of
up-down permutations in a subsequent paper.
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