
ar
X

iv
:1

60
9.

03
17

2v
2 

 [
m

at
h.

PR
] 

 3
 A

ug
 2

01
7

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 19:1, 2017, #22

Asymptotics of the occupancy scheme

in a random environment and its applications

to tries

Silvia Businger
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Consider m copies of an irreducible, aperiodic Markov chain Y taking values in a finite state space. The asymptotics

as m tends to infinity, of the first time from which on the trajectories of the m copies differ, have been studied by

Szpankowski (1991) in the setting of tries. We use a different approach and model the m trajectories by a variant

of the occupancy scheme, where we consider a nested sequence of boxes. This approach will enable us to extend

the result to the case when the transition probabilities are random. We moreover use the same techniques to study

the asymptotics as m tends to infinity of the time up to which we have observed all the possible trajectories of Y in

random and nonrandom scenery.
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1 Introduction

Let Y = (Yk)k∈N be an irreducible, aperiodic Markov chain taking values in a finite state space, say

Σ = {1, ...,K}, denote its transition probabilities by (pij , i, j ∈ Σ), and consider m independent copies

of Y . We define Hm ∈ N, the first time from which on the trajectories of the m copies differ and

Gm ∈ N, the maximal time up to which we have observed all the possible trajectories of Y . A natural

question which has generated a lot of interest in the literature concerns the asymptotic behavior of Hm

and Gm as m tends to infinity.

Typically in information theory one considers the Markov source model (see for example Ash (2012)),

that is an infinite data string is modeled by the trajectory of a Markov chain taking values in a finite

alphabet Σ. We call the first n letters of the data string a word of length n. If we consider m independent

data strings modeled by a Markov source, then Hm is the minimal length n such that the m words with

length n are all distinct. In the same spirit Gm describes up to which length we observe all the possible

words. More generally we will consider Hm,j the minimal length such that out of the m words with

length n at most j − 1 words are non-distinct, and Gm,j describing up to which length we observe all the

possible words at least j times.

The length Hm can be described in terms of a class of combinatorial trees, the so called K-ary tries

that can be constructed with an iterative procedure. Consider m words with letters in the alphabet Σ. We
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start with the root of a tree. We then look at the first letter of the m words. For each different letter we

add a node to the root, in increasing order. If for a letter there is only one word starting with this letter,

then the corresponding node will be a leaf of the tree and we store the word in that leaf. We then look at

the second letters of the words not yet being stored in a leaf. If there are at least two words starting with

the letter i ∈ Σ, we then look at the second letters of all the words starting with i. For each different letter

we add a node to the node i in the same way as in the first step. We then repeat this procedure until all the

words are stored in a leaf. For more details see for example Drmota (2009). When the data strings have

been generated by a Markov source then the height of this K-ary trie is equal to Hm.

The height of tries have been a subject in research for many years, see Flajolet and Steyaert (1982)

and Devroye (1984). The limit law of the height has finally been derived by Pittel (1985), see also Pittel

(1986). The Markov source model, was studied by Szpankowski (1991). He established that

Hm ∼ 2

−ln(ρ(2))
ln(m), a.s.,

as m tends to infinity, where ρ(2) denotes the maximum modulus eigenvalue of the matrix A(2) =
(p2ik)i,k∈Σ, by analyzing the longest common prefix of each possible pair of two data strings.

This result can be extended to the case when each external node is allowed to store up to j − 1 data

strings. The tree defined by this modification is called a (j − 1)-trie. Szpankowski (see Szpankowski

(1991) and Szpankowski (2011)) studied the asymptotics of the height of a (j−1)-trie, he established that

Hm,j ∼
j

−ln(ρ(j))
ln(m), a.s.,

as m tends to infinity, where ρ(j) denotes the maximum modulus eigenvalue of the matrix given by

A(j) = (pjik)i,k∈Σ.

Our purpose in this work is to investigate a similar problem in random environment. This is a natural

model if for instance one wants to take into account transmission errors in the setting of information

theory.

In order to explain how, in our model, the random environment acts on the trajectories of chains, let us

first recall a simple construction of i.i.d. copies of the Markov chain Y with transition matrix (pik)i,k∈Σ

using the balls-in-bins setting (see, e.g. Devroye (2005)). For a general introduction to balls-in-bins in

deterministic environment and the classical occupancy scheme with finitely many boxes see for example

Kolchin et al. (1978) or Johnson and Kotz (1977). There is a broad literature on the occupancy scheme

in deterministic environment and comparatively few investigations of the occupancy scheme in random

environment. An infinite occupancy scheme in a random environment called the Bernoulli sieve has been

introduced in Gnedin (2004) and then studied in depth, a survey can be found for example in Gnedin et al.

(2010). A scheme of a similar type can also be found in Robert and Simatos (2009).

The set of words with length n in the alphabet Σ is Σn, with the convention that for n = 0, Σ0 = {∅} is

the empty word. For the sake of simplicity, we assume that the initial state of the Markov chain Y is always

1, and construct a nested family of boxes (or bins) indexed by the regular K-ary tree U =
⋃

n∈Z+
Σn as

follows. At generation 0, there is a single box b∅ with unit size and type 1. At the first generation, we divide

the box b∅ into (bi : i ∈ Σ) where bi has type i and size |bi| = p1i. We iterate for the next generations

in an obvious way. For each word u = (i1, . . . , in) ∈ Σn, the box bu has type in and is split at the next

generation into sub-boxes (buk : k ∈ Σ), where buk has type k and size |buk| = |bu|pink. Now imagine
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that we throw a ball into the initial box, distribute it uniformly at random to the next generation of boxes,

and observe the sequence of the types of the sub-boxes it passes through, generation after generation. We

then clearly obtain a version of the Markov chain Y , and more generally, throwingm balls independently

yields the trajectories ofm i.i.d. copies of Y . In this setting, the heightHm,j of a (j− 1)-trie corresponds

to the first generation at which all boxes contain strictly less than j balls. For j ≥ 1 the first generation

when there is a box containing strictly less than j balls when m balls have been thrown corresponds to

Gm,j , and is referred to as saturation level.

The random environment that we shall consider corresponds to splitting boxes randomly rather than de-

terministically, in a Markovian manner. More precisely, we now consider for each word u = (i1, . . . , in) ∈
Σn, an independent copy Au = (pik(u))i,k∈Σ of a random transition matrix A = (pik)i,k∈Σ. The

box bu with type in is split at the next generation into (buk : k ∈ Σ), where buk has type k and size

|buk| = |bu|pink(u). Then throwing m balls uniformly at random yields the m data strings in random

environment that we are interested in. Note that knowing the family of box sizes, the trajectory of a ball

through boxes is not described by a Markov chain. It is thus not possible to reduce the study to applying

the results due to Szpankowski by conditioning on the environment.

In order to investigate the behavior of the heightsHm,j and saturation levelsGm,j asm tends to infinity,

we shall first show how the results by Szpankowski in deterministic environment can be recovered using

an occupancy scheme analysis. Even though the main result has already been established by different

arguments, we shall provide a detailed account as the same approach can then be adapted to the random

environment setting. Specifically, we shall investigate the distribution of the sizes of the boxes at a large

generation n, being especially interested in large deviation type estimates. We will moreover use the

same techniques to study the asymptotics of the height Hm,j when j depends on m, more precisely

j = j(m) = mα for α ∈ (0, 1).
We shall then show that this approach can be adapted in the random environment setting. In this direc-

tion, we shall first observe that taking the logarithm of the sizes of boxes yields a multitype branching ran-

dom walk, which then enables us to apply large deviations estimates due to Biggins and Rahimzadeh Sani

(2005). We will see that different from the nonrandom case there is a phase transition in the asymptotic

behavior of Hm,j as m tends to infinity and that

Hm,j ∼ C(j) · ln(m) a.s.

where C(j) is a constant depending on j for j smaller than a critical parameter and C(j) = ζ∗ is a

constant arising in the limit behavior of the largest box for j larger than the critical parameter.

The study of the limiting behavior of the saturation level is closely related to the coupon collector’s

problem. (See for example Rosen (1970)). We will consider each box of generation n as a coupon, each

of a different sort and suppose that a collector wants to have at least one of each sort. We say that a

collector buys a certain coupon if a ball lands in the corresponding box. Then Gm,j is the first generation

n when the collector fails to have at least j coupons of each sort. We will see that:

Gm,j ∼ ζ∗ · ln(m) a.s.

where ζ∗ is a constant appearing in the limit behavior of the smallest box.

Some of our arguments are inspired by the works by Bertoin (2008) and Joseph (2010), who used

the fundamental results of Biggins (1992) on the asymptotic behaviors of branching random walks to

investigate limits of occupancy scheme in the setting of random multiplicative (monotype) cascades.
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1.1 Large deviation behavior of the box sizes

In this section we give some results on the asymptotic behavior of the box sizes as the generation n tends

to infinity. We will for simplicity assume that we start from a box of type 1.

Recall that (pij , i, j ∈ Σ) denotes the transition probabilities of the irreducible, aperiodic Markov chain

Y . For each θ ∈ R we define the K ×K-matrix A(θ) := (pθij)i,j∈Σ, with the convention that if pij = 0,

then pθij = 0, even for θ ≤ 0. The matrix A(θ) is connected to the box sizes in the following way:

Let (l
(n)
i,k )k denote the sequence of the sizes of boxes with type i at generation n, lexicographically

ordered. Let us further introduce the point measure

Z
(n)
j =

∑

k

δ
−ln
(

l
(n)
j,k

),

and the Laplace transform of Z
(n)
j , that is:

L(n)
j (θ) =

∑

k

(

l
(n)
j,k

)θ

.

A simple iteration argument then shows, that

(L(n)
1 (θ), ...,L(n)

K (θ)) = (1, 0, ..., 0)(A(θ))n. (1)

Recall that we call an eigenvalue ρ of a matrix A a maximum modulus eigenvalue, if it is a simple root

of the characteristic polynomial and its modulus is strictly larger than the modulus of the other roots.

Note that since Yn is aperiodic and irreducible,A(θ) is positive regular (that is its entries are finite and

there exists some positive integer r such that all entries of the matrix A(θ)r are strictly positive.) Recall

that we then have from the Perron-Frobenius theorem:

1. A(θ) possesses a unique maximum modulus eigenvalue ρ(θ) ∈ R,

2. there exists a strictly positive left-eigenvector w(θ) = (w1(θ), ..., wK(θ)) and a strictly positive

right-eigenvector v(θ) = (v1(θ), ..., vK(θ)) with eigenvalue ρ(θ), normalized such that we have

(w(θ))tv(θ) = 1,

3. mini
∑

j A(θ)ij ≤ ρ(θ) ≤ maxi
∑

j A(θ)ij .

We moreover have that:

Lemma 1 ( Biggins and Rahimzadeh Sani (2004)) The maximum modulus eigenvalue ρ(θ) is analytic

in θ.

We deduce:

Lemma 2 For each θ ∈ R we have:

lim
n→∞

L(n)
i (θ)ρ(θ)−n = v1(θ)wi(θ).

We shall also need the following:
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Proposition 1 ( Kingman (1961)) The logarithm of the maximum modulus eigenvalue ln(ρ(θ)) is a con-

vex function of θ.

Remark 1 Note that this also entails the convexity of ρ(θ).

Now, introduce the constants

C∗ := lim
θ→−∞

ρ(θ)

−ρ′(θ) and C∗ := lim
θ→∞

ρ(θ)

−ρ′(θ) ,

that will play a crucial role in the asymptotic behavior of the smallest and largest box.

Lemma 3 We have 0 < C∗ ≤ C∗ <∞.

Proof: First note that the fact that ln(ρ(θ)) is convex entails that
ρ(θ)

−ρ′(θ) is an increasing function. Assume

first θ > 0 and let p∗ := inf(i,j)∈S pij , where S := {(i, j) : pij > 0}. We then have

0 < pθ∗ ≤ min
i

∑

j

pθij ≤ ρ(θ).

Now, let r be such that the matrix Ar has only positive entries and define the supremum of its entries

p∗ := sup(i,j) A
r
i,j . Note that p∗ < 1, that A(θ)r has only positive entries, and that its maximum modulus

eigenvalue is ρ(θ)r . Let (l
(r)
ij,k)k denote the sequence of the sizes of boxes with type j at generation r

when the first box was of type i. Then:

ρ(θ)r ≤ max
i

∑

j

A(θ)rij = max
i

∑

j

∑

k

(

l
(r)
ij,k

)θ

≤ K ·Kr(p∗)θ.

Similarly if θ < 0 we have ρ(θ) ≤ K · pθ∗ and ρ(θ)r ≥ (p∗)θ , and thus:

−∞ < ln(p∗) ≤ lim
θ→±∞

ln(ρ(θ))

θ
≤ ln(p∗)

r
< 0.

We get by l’Hôpitals rule that −∞ < − 1
C∗

< 0 and −∞ < − 1
C∗ < 0. ✷

Now, let us define the size-biased pick of a box of generation n. That is define a random variable Ln by

P(Ln = l
(n)
i,k ) = l

(n)
i,k . (Recall that

∑K

i=1

∑

k l
(n)
i,k = 1.) We then have:

Lemma 4 Let θ ∈ R, zn(θ) := e
n

ρ′(θ)
ρ(θ) and φ(θ) := ln(ρ(θ)) − (θ − 1)ρ

′(θ)
ρ(θ) , then −∞ < φ(θ) ≤ 0 for

all θ ∈ R, and:

lim
ε↓0

lim
n→∞

1

n
ln
(

P
(

Ln ∈
(

zn(θ)e
−nǫ, zn(θ)e

nǫ
)))

= φ(θ).

Proof: First note that φ(1) = 0, and φ′(θ) = (1 − θ)ln(ρ(θ))′′, thus φ(θ) is decreasing for θ > 1
and increasing for θ < 1. We then have φ(θ) ≤ 0, and the fact that −∞ < φ(θ) follows from the

fact that ρ is analytic. Now, let Xn := 1
n

ln(Ln). We want to apply the Gärtner-Ellis theorem (see for
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example Dembo and Zeitouni (2010), Theorem 2.3.6), to the random variable Xn. Let λ ∈ R and define

Λn(λ) := lnE[eλXn ]. We first need to check that the limit

Λ(λ) := lim
n→∞

1

n
Λn(nλ)

exists as an extended real number. Recall that by Lemma 1 we have

K

2
v(λ)(w(λ))tρ(λ)n ≤

K
∑

i=1

L(n)
i (λ) ≤ 2Kv(λ)wt(λ)ρ(λ)n,

for sufficiently large n, and thus

lim
n→∞

1

n
Λn(nλ) = lim

n→∞

1

n
ln

(

K
∑

i=1

∑

k

(l
(n)
i,k )

(λ+1)

)

= lim
n→∞

1

n
ln

(

K
∑

i=1

L(n)
i (λ + 1)

)

= ln(ρ(λ+ 1))

= Λ(λ).

We further need to check that Λ is lower semicontinuous and essentially smooth, that is for

DΛ := {λ ∈ R : Λ(λ) <∞} = R,

the interior Do
Λ is non empty, Λ is differentiable on Do

Λ, and limn→∞ |Λ′(λn)| = ∞ for every sequence in

Do
Λ converging to a boundary point of Do

Λ. The essential smothness and lower semicontinuity then follow

readily from the fact that Λ is differentiable on R. Thus, by the Gärtner-Ellis theorem the large deviation

principle holds with good rate function

Λ∗(z) = sup
µ∈R

(µz − ln(ρ(µ+ 1))).

Note that Λ∗(z) ≥ 0 as ρ(1) = 1. For ε > 0 let Bε(θ) :=
(

ρ′(θ)
ρ(θ) − ε,

ρ′(θ)
ρ(θ) + ε

)

and let Bε(θ) denote its

closure. By the large deviation principle:

lim inf
n→∞

1

n
ln(P(Xn ∈ Bε(θ))) ≥ − inf

x∈Bε(θ)
Λ∗(x)

and

lim sup
n→∞

1

n
ln(P(Xn ∈ Bε(θ))) ≤ − inf

x∈Bε(θ)
Λ∗(x).

Now, note that −Λ∗
(

ρ′(θ)
ρ(θ)

)

= φ(θ) and thus:

φ(θ) ≤ lim inf
ε↓0

lim inf
n→∞

1

n
ln(P(Xn ∈ Bε(θ)))

≤ lim sup
ε↓0

lim sup
n→∞

1

n
ln(P(Xn ∈ Bε(θ))) ≤ φ(θ).
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This proves our claim. ✷

We next provide another approach to the previous lemma. Imagine that we follow the trajectory of a

ball through the nested sequence of boxes and recall that the sequence of types of the boxes the ball passes

through corresponds to a trajectory of the Markov chain Y . Now, let Tn denote the type of the box of the

n-th generation the ball is passed through and note that Ln defined in the previous Lemma corresponds

to its size. Then (Tn) is an irreducible Markov chain with transition probabilities pij and (Tn, Tn+1) is

an irreducible Markov chain with state space {(i, j) ∈ Σ × Σ : pij 6= 0} and transition probabilities

Π((i, j), (j, k)) = pij and Π((i, j), (m, k)) = 0 if m 6= j. Further we have that

Ln =

n−1
∏

k=0

pTk,Tk+1
.

We prove again Lemma 4 now using the large deviation principle for additive functionals of Markov

chains.

Proof: Define the deterministic function

f : Σ× Σ → R, (i, j) 7→ pij ,

and the empirical means

Xn :=
1

n

n−1
∑

k=0

f(Tk, Tk+1) =
1

n

n−1
∑

k=0

ln(pTk,Tk+1
) =

1

n
ln(Ln).

By Theorem 3.1.2 in Dembo and Zeitouni (2010), Xn fulfills the large deviation principle with good rate

function

Λ∗(z) = sup
µ∈R

(µz − ln(ρ(µ+ 1))).

The claim then follows in the same spirit as before. ✷

Let us define a function that will play a crucial role in our analysis:

ψ(θ) := ln(ρ(θ)) − ρ′(θ)

ρ(θ)
θ (2)

We then have:

Corollary 1 Let θ ∈ R and define zn(θ) := e
n

ρ′(θ)
ρ(θ) . We then have:

lim
ǫ↓0

lim
n→∞

1

n
ln

(

K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}

)

= ψ(θ).

Proof: First note that

P
(

Ln ∈
(

zn(θ)e
−nǫ, zn(θ)e

nǫ
))

=

K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}l

(n)
i,k .
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Thus

K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}e−nǫ ≤ zn(θ)

−1 · P
(

Ln ∈
(

zn(θ)e
−nǫ, zn(θ)e

nǫ
))

≤
K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}enǫ.

By Lemma 4 we derive that

lim sup
n→∞

1

n
ln

(

K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}

)

≤ ψ(θ) + ǫ,

and

lim inf
n→∞

1

n
ln

(

K
∑

i=1

∑

k

1{
l
(n)
i,k

∈(zn(θ)e−nǫ,zn(θ)enǫ)
}

)

≥ ψ(θ)− ǫ

and we easily conclude. ✷

We moreover have that:

Lemma 5 We have that ψ(θ) > 0 for all θ ∈ R.

Proof: First note that Corollary 1 implies that ψ(θ) ≥ 0 for all θ ∈ R. Further we have that ψ(0) > 0
since ρ(0) > 1. Moreover ψ′(θ) = −θ · ln(ρ(θ))′′ and thus, by convexity of ln(ρ(θ)), we have that ψ is

increasing on the interval (−∞, 0) and decreasing on the interval (0,∞). Together with the fact that ψ is

analytic and thus cannot be zero on any interval, we arrive at ψ(θ) > 0 for all θ ∈ R. ✷

We can use the previous results to gain information about the asymptotic behavior of the sizes of the

smallest box and the largest box.

Lemma 6 Let l(n) denote the size of the smallest box at generation n. We then have:

lim
n→∞

ln(l(n))

n
= − 1

C∗

Proof: Let θ < 0 . By Lemma 1 there exists a n0, such that for all n ≥ n0:

(l(n))θ ≤ L(n)
i (θ) ≤ 2v1(θ)(wi(θ))

tρ(θ)n.

By some rearrangement we thus get:

lim inf
n→∞

ln(l(n))

n
≥ ln(ρ(θ))

θ
,

and we conclude by letting θ tend to −∞. Now let ε > 0. By Lemma 4 there exists a natural number

n0(ε) such that l(n) ≤ e
n

ρ′(θ)
ρ(θ) eεn for all n ≥ n0(ε), thus

lim sup
n→∞

ln(l(n))

n
≤ ρ′(θ)

ρ(θ)
+ ε,
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and the result follows by letting ε tend to zero.

✷

In the same way one shows for the largest box that:

Lemma 7 Let l
(n)

denote the size of the largest box at generation n. We then have:

lim
n→∞

ln(l
(n)

)

n
= − 1

C∗

2 Height and saturation level of Markovian tries

2.1 Height of Markovian tries

Recall that Hm,j for j ≥ 2, denotes the first generation of boxes at which all the boxes contain strictly

less than j balls when m balls have been thrown independently. We shall show how the large deviation

estimates of the preceding section enable us to recover the following result.

Theorem 1 ( Szpankowski (1991)) For every j ≥ 2 we have

lim
m→∞

1

ln(m)
Hm,j =

j

−ln(ρ(j))
a.s.

Note that we now continue to successively throw balls forever, and that the randomness is coming from

the way we distribute the balls into the boxes.

We will first tackle the upper bound. Let N
(n)
m,j denote the number of boxes at generation n containing

j or more balls when m balls have been thrown. Note that Hm,j < n when N
(n)
m,j = 0. The idea will be

to analyze the asymptotic behavior of N
(n)
m,j as n and m tend to infinity. We will show that

Hm,j ≤
j

−ln(ρ(j))
ln(m) + O (lnln(m)) a.s.,

as m tends to infinity. Let a > 1
j

and define the sequence

xn := ρ(j)−
n
j n−a.

We then have:

Lemma 8 For almost all ω, there exists a natural number n0(ω) s.t for all n ≥ n0(ω), N
(n)
⌊xn⌋,j

= 0.

Proof: Let B(m, p) denote a generic Binomial variable with parameter p ∈ [0, 1] and m ∈ N and note

that

P(B(m, p) ≥ j) ≤
(

m

j

)

pj ≤ mjpj . (3)
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Further note that the number of balls in a box of size l when m balls have been thrown is B(m, l) dis-

tributed. We thus have

E[N
(n)
⌊xn⌋,j

] =

K
∑

i=1

∑

k

P

(

B
(

⌊xn⌋, l(n)i,k

)

≥ j
)

≤
K
∑

i=1

∑

k

(

⌊xn⌋l(n)i,k

)j

≤
K
∑

i=1

xjnLni (j).

By Lemma 2 there exists a natural number n1 such that for all n ≥ n1

L(n)
i (j)ρ(j)−n ≤ 2v1(j)wi(j)

t.

Taking c1(j) := 2v1(j)wi(j)
t we get that

E[N
(n)
⌊xn⌋,j

] ≤
K
∑

i=1

c1(j)x
j
nρ(j)

n ≤
K
∑

i=1

c1(j)n
−aj ,

for all n ≥ n1. We finally arrive at

E





∑

n≥n1

1
{N

(n)

⌊xn⌋,j
≥1}



 ≤ E





∑

n≥n1

N
(n)
⌊xn⌋,j



 ≤
∑

n≥n1

c1(j)n
−aj <∞,

and we conclude by the Borel-Cantelli lemma. ✷

This lemma will be enough to show that:

Proposition 2 For every integer j ≥ 2 we have

1

ln(m)
Hm,j ≤

j

−ln(ρ(j))
+ O

(

lnln(m)

ln(m)

)

a.s.

as m tends to infinity.

Proof: First note that there exists a natural numbern1 such that ∀n ≥ n1 we haven−a ≥ exp(−n−ln(ρ(j))
2j )

and there exists a natural number n2 such that for all n ≥ n2 the sequence xn is increasing. Then using

Lemma 8 choose an ω ∈ Ω for which there exists a natural number n0(ω) such that for all n ≥ n0(ω) we

have N
(n)
⌊xn⌋,j

= 0. Let n3 ≥ max(n0(ω), n1 + 1, n2 + 1) and note that for each m ≥ xn3 there exists

an unique n ≥ n3 such that xn−1 ≤ m < xn. From m ≤ ⌊xn⌋ we have Hm,j ≤ n. Moreover taking

logarithm on both sides of the inequality xn−1 ≤ m, we derive that

n ≤ j

−ln(ρ(j))
ln(m) +

j

−ln(ρ(j))
aln(n− 1) + 1.
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Since n ≥ n1 + 1, we have that

m ≥ xn−1 = exp

(

(n− 1)
−ln(ρ(j))

j

)

(n− 1)−a ≥ exp

(

(n− 1)
−ln(ρ(j))

2j

)

.

Taking logarithm, we derive that

(n− 1) ≤ 2j

−ln(ρ(j))
ln(m)

and finally arrive at:

Hm,j ≤ n ≤ j

−ln(ρ(j))
ln(m) +

j

−ln(ρ(j))
aln

(

2
j

−ln(ρ(j))
ln(m)

)

+ 1,

and we easily conclude. ✷

Remark 2 One could also have derived Proposition 2, by applying Theorem 6.B in Barbour et al. (1992).

We now turn to the proof of the lower bound. Recall that Hm,j ≥ n, if at generation n there is at least

one box containing j or more balls. We thus have that Hm,j > n if N
(n)
m,j ≥ 1. As in the proof of the

upper bound we want to analyze the asymptotic behavior of N
(n)
m,j as n and m tend to infinity. We want

to take n = j
−ln(ρ(j)) ln(m) + o (ln(m)). Recall that ψ(θ) = ln(ρ(θ)) − ρ′(θ)

ρ(θ) θ and that ψ(θ) > 0. Let

ψ(j) > ε′ > 0 and define the sequence:

xn := ρ(j)
−n
j enε

′

.

In this section we make use of the classical Poissonization trick. Instead of throwing xn balls initially

we will throw the random number of balls Poisson(xn). The advantage of this procedure is that if we

consider two different boxes b and b̃ with size l respectively l̃, then the number of balls in b and b̃ are

independent Poisson random variables with parameter xnl respectively xn l̃.

Lemma 9 For almost all ω there exists a natural number n0(ω), such that there exists at least one box at

generation n containing j or more balls when Poisson(xn) balls have been thrown.

Proof: From Corollary 1, we know that for all ε > 0 there exists a natural number n1(ε) such that

1

n
ln







K
∑

i=1

∑

k

1{
l
(n)
i,k

∈

(

e
n

ρ′(j)
ρ(j) e−nε,e

n
ρ′(j)
ρ(j) enε

)}






≥ ψ(j)− ε, (4)

for all n ≥ n1(ε). Now, let ε < j
j+1ε

′ and let Mn denote the set containing all the boxes with size larger

than zn := e
n
(

ρ′(j)
ρ(j)

−ε
)

at generation n. From (4) we deduce that

|Mn| ≥ vn(j) := en(ψ(j)−ε),

for alln ≥ n1(ε). For n large enough we can thus consider the first vn boxes inMn, say b1(n), ..., bvn(j)(n)
and denote their size with l1(n), ..., lvn(j)(n). We then place an imaginary box bi(n) in bi(n) for
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1 ≤ i ≤ vn(j), each of size exactly zn. When a ball falls into the box bi(n) it arrives in the imagi-

nary box bi(n) with probability zn
li

. We want to show that there exists a natural number n0 such that for

all n ≥ n0 at least one of the boxes bi(n), 1 ≤ i ≤ vn(j) contains more than j balls when Poisson(xn)

balls have been thrown.

Let An denote the event that all boxes bi(n), 1 ≤ i ≤ vn(j) contain strictly less then j balls when

Poisson(xn) balls have been thrown. Since the number of balls in each box are independent Poisson

random variables with parameter xnzn, we have:

P(An) ≤ P(Poisson(xnzn) < j)vn(j)

and thus

ln(P(An)) ≤ vn(j) · ln(P(Poisson(xnzn) < j)).

Note that since ψ(j) > 0, the sequence xnzn tends to zero as n tends to infinity and that ln(1 + x) ∼ x

for small x. We get that for n large enough

ln(P(Poisson(xnzn) < j)) ∼ − (xnzn)
j

j!
,

and thus for large enough n there exists a constant c such that:

ln(P(An)) ≤ −cvn(j)xjnzjn = −cen(jε′−(j+1)ε),

and we finally arrive at

P(An) ≤ e−ce
n(jε′−(j+1)ε)

.

Applying the Borel-Cantelli lemma, we get the result. ✷

This lemma will be enough to show the following proposition:

Proposition 3 For every integer j ≥ 2 we have

lim inf
m→∞

1

ln(m)
Hm,j ≥

j

−ln(ρ(j))
a.s.

Proof: Define the sequence yn = ρ(j)−
n
j enε with ε > ε′ and notice that the sequence

yn−1

xn
tends to

infinity. Thus there exists a natural number n1 such that, for all n ≥ n1,
yn−1

xn
> 3. We have:

P(Poisson(xn) ≥ ⌈yn−1⌉) ≤ P(Poisson(xn) ≥ 3xn)

= P(Poisson(xn)− xn ≥ 2xn)

≤ P(|Poisson(xn)− xn| ≥ 2xn) ≤
1

4xn

by Chebyshev’s inequality. By Borel-Cantelli’s lemma we thus derive that for almost all ω there exists a

natural number n2(ω) such that for all n ≥ n2(ω) we have that Poisson(xn) < ⌈yn−1⌉. Now by Lemma

9 we derive that for almost all ω there exists a natural number n3(ω) such that for all n ≥ n3(ω), we have:

N⌈yn−1⌉,j ≥ 1.
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Now fix such an ω. Note that there exists a natural number n4 such that ∀n ≥ n4 the sequence yn is

increasing. Let n5 ≥ max(n3(ω), n4 + 1) and note that for each m ≥ yn4 there exists a unique n ≥ n4

such that yn−1 < m < yn. Now, since ⌈yn−1⌉ ≤ m, we have Hm,j > n. Further since m < yn, taking

logarithm on both sides, we have that:

ln(m) <

(−ln(ρ(j))

j
+ ε

)

n.

We thus have that:
(−ln(ρ(j))

j
+ ε

)−1

ln(m) < n < Hm,j ,

and
1

m
Hm,j ≥

(−ln(ρ(j))

j
+ ε

)

.

We conclude by letting ε tend to zero. ✷

2.2 Power regimes

In this section we study the case when j = j(m) = mα for α ∈ (0, 1). In the setting of K-ary tries this

corresponds to the case when not only the number of words that have to be stored, but also the storage

capacity of the nodes tends to infinity. We aim to show that:

Theorem 2 We have:

lim
m→∞

1

ln(m)
Hm,j = (1− α)C∗ a.s.

We first establish the upper bound. Let θ > 0, a > 1
θ(1−α) , and define the sequence

xn := ρ(θ)−
1

1−α
n
θ n−a.

In the notation of the last section, we then have:

Lemma 10 For almost all ω, there exists a natural number n0(ω) s.t for all n ≥ n0(ω) we have

N
(n)
⌊xn⌋,xα

n−1
= 0.

Proof: Let k ∈ N and let j ≥ 2(k + 1). A straight forward computation shows that then:

P(B(m, p) ≥ j) ≤ 2k ·
(

mp

j

)k

.

Thus for n large enough such that xαn−1 ≥ 2(⌈θ⌉+ 1), we have::

E[N
(n)
⌊xn⌋,xα

n−1
] ≤

K
∑

i=1

∑

k

P

(

B
(

⌊xn⌋, l(n)i,k

)

≥ ⌈θ⌉
)

≤ 2⌈θ⌉
K
∑

i=1

∑

k

(

⌊xn⌋l(n)i,k

xαn−1

)θ

.
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Let c1(θ) = 2⌈θ⌉ ·2v1(θ)(wi(θ))t. By Lemma 2 there exists a natural number n1 such that for all n ≥ n1:

E[N
(n)
⌊xn⌋,xα

n−1
] ≤

K
∑

i=1

c1(θ)

(

xn

xαn−1

)θ

ρ(θ)n ≤
K
∑

i=1

c2(θ)n
−aθ(1−α), (5)

where c2(θ) = c1(θ)ρ(θ)
− α

1−α , and we conclude by Borel-Cantelli’s lemma. ✷

The upper bound then follows in the same way as Proposition 2. We now turn to the proof of the lower

bound. Let ε′ > 0 and define the sequence:

yn := exp

(

n

(

1

C∗

1

(1 − α)
+ ε′

))

.

We then have:

Lemma 11 For almost all ω ∈ Ω there exists a natural number n0(ω), s.t. N⌈yn−1⌉,yαn
≥ 1 for all

n ≥ n0(ω).

Proof: Let ε < (1 − α)ε′. Define An, the event that the largest box at generation n contains strictly less

than yαn balls when ⌈yn−1⌉ balls have been thrown and recall that the largest box at generation n has size

larger or equal to zn := en(−
1

C∗ −ε). We then have:

P(An) ≤ P((B(⌈yn−1⌉, zn) > yαn)

≤ P((B(⌈yn−1⌉, zn) + 1)−1 ≤ y−αn ).

A straight forward computation shows that:

E[(B(m, p) + 1)−1] =
1− (1− p)m+1

(m+ 1)p
≤ 1

mp
,

and by Markov’s inequality we thus get that

P((B(⌈yn−1⌉, zn) + 1)−1 ≤ y−αn ) ≤ yαn · E[(B(⌈yn−1⌉, zn) + 1)−1]

≤ yαn
⌈yn−1⌉ · zn

.

Taking c(α) := yα1 we arrive at:

P(An) ≤ c(α) · e(n−1)(ε+(α−1)ε′).

and we conclude by Borel-Cantelli’s Lemma. ✷

The lower bound follows by the usual computations.
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2.3 Saturation level of Markovian tries

Let j ≥ 1 and recall that Gm,j denotes the first generation at which there exists a box containing strictly

less than j balls, when m balls have been thrown initially. We aim to show that:

Theorem 3 Let j ≥ 1, and recall that C∗ = limθ→−∞
ρ(θ)

−ρ′(θ) . We then have

lim
m→∞

1

ln(m)
Gm,j = C∗ a.s.

We will first study the asymptotic behavior of Gm,1 and then extend this to the asymptotic behavior of

Gm,j . We will shorthand write Gm for Gm,1.

In order to establish an upper and a lower bound for Gm it will be useful to study the asymptotic

behavior of the number of balls Tn, one needs to throw initially to observe at least one ball in each box of

generation n.

As already mentioned in the introduction, this can be interpreted in terms of the coupon collector’s

problem. We will see each box of generation n as a different sort of coupon, Tn then corresponds to the

number of coupons one has to buy to get at least one of each coupon and the probability to buy a sort of

coupon is given by the size of the corresponding box.

It will sometimes be convenient to use a Poissonization technique to model Tn. Suppose that the

collector continues to buy coupons forever (rather than stopping when having a full collection). Moreover

suppose that the coupons are bought at times distributed as the arrival times of a Poisson process with rate

1. The times a coupon of sort i is bought are then the arrival times of independent Poisson processes with

rate pi. Let Tn denote the waiting time until the collector has completed his collection. We then have

Tn = max
k≤Kn

exp(l
(n)
k ),

where exp(l
(n)
k ) denote independent exponential random variables with parameter l

(n)
k , that is to say

E[exp(l
(n)
k )] = 1

l
(n)
k

. The connection between Tn and Tn is then given by

Tn =

Tn
∑

k=1

expk(1),

where expk(1) are i.i.d. exponential random variables with parameter 1, independent of Tn. In the same

spirit, let T jn denote the number of balls one needs to throw initially to observe at least j ball in each box of

generation n. Let Tjn denote the waiting time until the collector has completed j copies of his collection.

We then have

Tjn = max
k≤Kn

Γ(j, l
(n)
k ),

where Γ(j, l
(n)
k ) denote independent Gamma random variables with parameter l

(n)
k and j. As in the case

j = 1 we then have

Tjn =

T j
n
∑

k=1

expk(1),
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where expk(1) are i.i.d. exponential random variables with parameter 1, independent of T jn.

For the lower bound, we want to find an upper bound for the waiting time Tn until the collector has

completed his collection.

Lemma 12 Let θ < 0 and define xn := en
ln((ρ(θ))

−θ nµ , µ > 2. For almost all ω there exists a natural

number n0(ω), such that for all n ≥ n0(ω) :

Tn(ω) < xn.

Proof: We use the Poissonization technique explained in the previous section. We have:

P(Tn ≥ xn) = P( max
k≤Kn

exp(l
(n)
k ) ≥ xn) ≤ P( max

k≤Kn
expk(1) ≥ l(n)xn),

where expk(1) are i.i.d exponential r.v. with parameter 1. Now, for θ < 0 we have:

(

l(n)
)θ

≤
∑

k

(

l
(n)
j,k

)θ

= L(n)
j (θ).

By Lemma 1 there exists a n0, such that for all n ≥ n0:

(l(n))θ ≤ L(n)
j (θ) ≤ 2v1(θ)(wi(θ))

tρ(θ)n.

Let c1(θ) :=
1
θ
2ln(v1(θ)(wi(θ))

t, by taking logarithm on both sides and some rearrangement, we get that

there exists a natural number n1 such that for all n ≥ n1:

nln(ρ(θ))

θ
+ c1(θ) ≤ ln(l(n)),

and thus

en
ln(ρ(θ))

θ
+c1(θ) ≤ l(n),

for all n ≥ n1. Let c2(θ) = ec1(θ), we deduce that for n large enough:

P(Tn ≥ xn) ≤ P( max
k≤Kn

expk(1) ≥ c2(θ)n
µ).

Now, recall that

max
k≤Kn

expk(1)− nln(K)

converges in distribution to the standard Gumbel distribution G(1) as n tends to infinity. Thus for large

enough n, we have:

P(Tn ≥ xn) ≤ 2 · P (G(1) ≥ c2(θ)n
µ − nln(K))

= 2 ·
(

1− exp
(

−e−(c2(θ)n
µ−nln(K))

))

≤ 2 · e−(c2(θ)n
µ−nln(K)).

We then conclude by Borel-Cantelli’s lemma. ✷

Since the times at which a ball is thrown are the arrival times of independent Poisson processes with

rate 1, the number of balls thrown up to time xn is Poisson distributed with parameter xn. Applying

Lemma 12, we thus get, that:
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Corollary 2 For almost all ω it exists an integer number n0(ω) such that ∀n ≥ n0(ω) there exists no box

at generation n containing no balls when Poisson(xn) balls have been thrown.

We then arrive at:

Proposition 4 We have:
1

ln(m)
Gm,j ≥ C∗ + O

(

lnln(m)

ln(m)

)

a.s.

as m tends to infinity.

Note that T jn ≤ T
(1)
n + ... + T

(j)
n a.s., where T

(1)
n , ..., T

(j)
n denote independent copies of Tn. Further

we have G⌊m
j
⌋ ≥ n a.s. which implies that ⌊m

j
⌋ > Tn a.s. and thus T jn ≤ m a.s. But then Gm,j ≥ n a.s.

and we conclude that Gm,j ≥ G⌊m
j
⌋ a.s. It will be thus enough to show the statement for Gm.

Proof of Proposition 4: Define the sequence yn = en
ln((ρ(θ))

−θ nµ
′

with µ′ < µ and note that the sequence
yn
xn

tends to zero. Thus there exists a natural number n0 such that for all n ≥ n0, we have yn
xn

< 1
2 . Thus:

P(Poisson(xn) ≤ ⌊yn⌋) ≤ P(Poisson(xn) ≤
xn

2
)

= P(Poisson(xn)− xn ≤ −xn
2
)

≤ P(|Poisson(xn)− xn| ≥
xn

2
) ≤ 4

xn

by Chebyshev’s inequality. By Borel-Cantelli’s lemma we thus derive that for almost all ω there exists a

natural number n1(ω) such that for all n ≥ n1(ω) we have that Poisson(xn) > ⌈yn−1⌉.

Now, let M
(n)
m denote the number of boxes at generation n containing zero balls when m balls have

been thrown. By Corollary 2 we deduce that for almost all ω there exists a natural number n2(ω), such

that for all n ≥ n2(ω), we have M
(n)
yn−1 = 0. Fix such an ω and note that since the sequence (yn) is

increasing, for each m ≥ yn2(ω) there exists a unique n ≥ n2(ω) such that yn−1 < m ≤ xn. Since

⌈yn−1⌉ ≤ m we have Gm > n − 1. Now, by taking logarithm on both sides of the inequality m ≤ xn
and some rearrangement, we get that:

n ≥ −θ
ln(ρ(θ))

ln(m)− µln(n).

From the inequality m > xn−1 ≥ e(n−1) ln(ρ(θ))
−θ , we get that θ

ln(ρ(θ)) ln(m) ≥ n and thus:

Gm > n− 1 ≥ −θ
ln(ρ(θ))

ln(m)− µln

( −θ
ln(ρ(θ))

ln(m)

)

− 1, (6)

and we are left to show that:

lim
θ→−∞

−θ
ln(ρ(θ))

= C∗.

Indeed by l’Hôpital’s rule, we have that:

lim
θ→−∞

−θ
ln(ρ(θ))

= lim
θ→−∞

ρ(θ)

−ρ′(θ) = C∗,
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and we conclude. ✷

Remark 3 We could have gained the same result by applying Theorem 6.E in Barbour et al. (1992).

For the proof of the upper bound, we want to find an lower bound for the number of balls Tn one needs

to throw initially to observe at least one ball in each box of generation n.

Lemma 13 Let θ < 1 and define xn := e
n
(

−ρ′(θ)
ρ(θ)

−ε′
)

, ε′ > 0. For almost all ω there exists a natural

number n0(ω), such that for all n ≥ n0(ω) :

Tn(ω) > xn.

Proof: We use the Poissonization technique explained in the last section. We have:

P(Tn ≤ xn) = P( max
k≤Kn

exp(l
(n)
k ) ≤ xn) ≤ P(exp(1) ≤ l(n)xn).

Now, by Lemma 4 there exists for each ε > 0 a natural number n0(ε) such that l(n) ≤ e
n
(

ρ′(θ)
ρ(θ)

+ε
)

for all

n ≥ n0(ε). Let ε < ε′. We then have for each n ≥ n0(ε):

P(Tn ≤ xn) ≤ P(exp(1) ≤ 2e−nε) = 1− exp(−e−n(ε′−ε)) ≤ e−n(ε
′−ε).

We conclude by Borel-Cantelli’s lemma. ✷

Since the times at which a ball is thrown are the arrival times of independent Poisson processes with

rate 1, the number of balls thrown up to time xn is Poisson distributed with parameter xn. Applying

Lemma 13, we thus get that:

Corollary 3 For almost all ω it exists a natural number n0(ω) such that ∀n ≥ n0(ω) there is at least one

box at generation n containing zero balls when Poisson(xn) balls have been thrown.

We now tackle the proof of the main result in this section.

Proposition 5 We have:

lim sup
m→∞

1

ln(m)
Gm ≤ C∗ a.s.

Proof: Define the sequence yn = e
n
(

−ρ′(θ)
ρ(θ)

−ε
)

with ε′ > ε and notice that the sequence yn
xn

tends to

infinity. Thus there exists a natural number n1 such that for all n ≥ n1
yn
xn

> 3. We have:

P(Poisson(xn) ≥ ⌊yn⌋) ≤ P(Poisson(xn) ≥ 3xn)

= P(Poisson(xn)− xn ≥ 2xn)

≤ P(|Poisson(xn)− xn| ≥ 2xn) ≤
1

4xn
,

by Chebyshev’s inequality. By Borel-Cantelli we thus derive that for almost all ω there exists a natural

number n2(ω) such that for all n ≥ n2(ω) we have that Poisson(xn) < ⌊yn⌋. Now by Corollary 3 we

derive that for almost all ω there exists a natural number n3(ω) such that for all n ≥ n3(ω), we have:

M⌊yn⌋,j = 0.
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Now fix such an ω. Note that there exists a natural number n4 such that ∀n ≥ n4 the sequence yn is

increasing. Let n5 ≥ max(n3(ω), n4) and note that for each m ≥ yn4 there exists a unique n ≥ n4

such that yn < m < yn+1. Now, since ⌊yn−1⌋ ≤ m, we have Gm < n. Further since yn < m, taking

logarithm on both sides, we have that:

1

(−ρ
′(θ)

ρ(θ) − ε′)
ln(m) ≥ n > Gm.

We thus derive that

lim sup
m→∞

1

ln(m)
Gm ≤ 1

−ρ′(θ)
ρ(θ) − ε

,

and we conclude by letting ε tend to zero and θ tend to −∞. ✷

Now, let j ≥ 2 and note that the first generation when there exists a box containing no ball when m balls

have been thrown is larger then the first generation at which there exists a box containing less than j balls

when m balls have been thrown. That is Gm,j ≤ Gm and we derive that:

Proposition 6 Let j ≥ 1. We have:

lim inf
m→∞

1

ln(m)
Gm,j ≤ C∗ a.s.

3 Occupancy scheme in random environment

3.1 Random probability cascades

Consider a random transition matrix A = (pij). To the box with label u, of type i, we will associate an

independent copy of Au = (pij(u)) of A. The length of the box u = (i1, ..., in) is then given by some

multiplicative cascade, that is:

l(n)u = pi1i2(i1)× ...× pin−1in((i1, i2, ...in−1)). (7)

Let
(

l
(n)
ij,k

)

k
denote the sequence of length of the boxes of type j at generation n, when the first box was

of type i. The process (Zni )n = (Zni1, ..., Z
n
iK), with

Znij =
∑

k

δ
−ln(l

(n)
ij,k

)
,

is then a multitype branching random walk. Let |Zij | :=
∫

R
Zij(dx) denote the total mass. We will

assume that the embedded Galton-Watson process ((|Zni1|, ..., |ZniK |) is positive regular, that is

the matrix (P(|Zij | > 0))ij is positive regular. (8)

Let θ ∈ R and let us introduce the Laplace transform of the intensity measure of Zij :

mij(θ) = E

[∫

e−θxZij(dx)

]

= E
[

pθij
]

.
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Let

L =
⋂

i,j

{θ ∈ R : mij(θ) <∞}

and note that L is an interval since mij is decreasing in θ. Let us introduceM(θ), the matrix with entries

E
[

pθij
]

, where we agree that if pij = 0, then pθij = 0 even if θ ≤ 0. Note that the entries of Mn(θ) are

given by

mn
ij(θ) = E

[∫

e−θxZnij(dx)

]

= E

[

∑

k

(l
(n)
ij,k)

θ

]

.

Condition (8) implies thatM(θ) is positive regular for each θ ∈ L, and thus the Perron-Frobenius theorem

applies andM(θ) possesses a maximum modulus eigenvalue ̺(θ), a strictly positive left-eigenvectorw(θ)
and a strictly positive right-eigenvector v(θ) with eigenvalue ̺(θ), such that we have (w(θ))tv(θ) = 1.

Moreover ln(̺(θ)) is convex (see Kingman (1961)) and analytic on L (see Biggins and Rahimzadeh Sani

(2004)). We will need to assume some even stronger condition on ̺(θ). We will assume that:

ln(̺(θ)) is strictly convex. (9)

Similar to the function ψ(θ) in the last section, the function

f(θ) := ln(̺(θ)) − θ
̺′(θ)

̺(θ)
,

will play a crucial role in our analysis. Note that f ′(θ) = −θ · ln(̺(θ))′′. Thus f is strictly decreasing

on the interval (0,∞) ∩ L and strictly increasing on (−∞, 0) ∩ L. Since f(0) > 0 the function f is thus

positive on some open interval. Let us define

θ∗ = inf{θ ∈ L : f(θ) > 0} and θ∗ = sup{θ ∈ L : f(θ) > 0}.

The function f is then strictly positive on (θ∗, θ
∗).

Let (Fn) denote the natural filtration of the the multitype branching random walk. Following Biggins

and Rahimzadeh Sani (2005) one can define a remarkable martingale for each θ ∈ L, with respect to the

filtration Fn:

Wn
i (θ) :=

K
∑

j=1

vj(θ)

vi(θ)
̺(θ)−n ·

∑

k

(l
(n)
ij,k)

θ,

where vi(θ) denotes the i-th entry of the right-eigenvector v(θ) with eigenvalue ̺(θ). We then have:

Lemma 14 For each θ ∈ (θ∗, θ
∗) the martingale Wn

i (θ) is bounded in Lα(P) for some α > 1. It

converges almost surely and in mean and its terminal value

Wi(θ) := lim
n→∞

Wn
i (θ)

is a.s. strictly positive.
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Proof: We want to apply Theorem 2 in Biggins and Rahimzadeh Sani (2005). We need to check that

for all θ ∈ (θ∗, θ
∗) there is an α > 1 such that we have ̺(αθ) < ̺(θ)α and maxi E[(W

n
i (θ))

α] < ∞.

Consider the function g(θ) = 1
θ

ln(̺(θ)) and note that g′(θ) = − 1
θ2
f(θ). Thus g is decreasing on (θ∗, θ

∗).
For α > 1 small enough we thus have

ln(̺(αθ))

αθ
<

ln(̺(θ))

θ

and thus ̺(αθ) < ̺(θ)α. For the second criterion note that

E[(Wn
i (θ))

α] ≤
K
∑

j=1

(

vj(θ)

vi(θ)
̺(θ)−1

)α

E
[

pαθij
]

<∞ ∀i, j,

by Jensen’s inequality and the fact that αθ ∈ (θ∗, θ
∗) for α > 1 small enough. By Theorem 2 in Biggins

and Rahimzadeh Sani (2005) we thus get the convergence of Wn
i almost surely and in mean. For the a.s.

strictly positivity note that

E[(Wn
i (θ))

α] =
K
∑

j=1

vj(θ)

vi(θ)
̺(θ)−nmn

ij(θ).

By the Perron-Frobenius theorem limn→∞ ̺(θ)−nmn
ij(θ) = vi(θ)wj(θ). Thus limn→∞ E[Wn

i (θ)] =
E[Wi(θ)] = 1 and P(Wi(θ) = 0) = βi < 1. Moreover (β1, ..., βK) is a fixed point of the multivariate

generating function of the embedded Galton-Watson process and thus βi is the extinction probability of

the process started from type i and thus βi = 0 a.s. ✷

The following result (Corollary 2 in Biggins and Rahimzadeh Sani (2005)), will play the role of Corol-

lary 1 in the previous section. It will help us to control the asymptotic behavior of the length of boxes at

generation n, as n tends to infinity.

Lemma 15 For all a > b ∈ R and θ in a compact subset of (θ∗, θ
∗) we have:

√
ne−nf(θ)#

{

k : l
(n)
ij,k ∈

[

e
n

̺′(θ)
̺(θ)

−a
, e
n

̺′(θ)
̺(θ)

−b

]}

→ vi(θ)wj(θ)Wi(θ)
√

2πf ′′(θ)

eaθ − ebθ

θ

almost surely as n tends to infinity.

As in the last section, we will further sometimes need to control the size of the smallest and the largest

box at generation n, when n tends to infinity. Note that ̺(θ) is decreasing in L since the entries mij(θ)
are decreasing and that the strict convexity of ̺(θ) thus entails that ̺′(θ) < 0 on L. Define the constants

ζ∗ := lim
θ→θ∗

θ≤θ∗

̺(θ)

−̺′(θ) , and ζ∗ := lim
θ→θ∗
θ>θ∗

̺(θ)

−̺′(θ) .

The strict convexity of ln(̺(θ)) implies that
̺(θ)

−̺′(θ) is strictly increasing on L. Recall moreover that ρ(θ)

is analytic on L. For θ∗ <∞ we thus have 0 < ζ∗ <∞ since 0 ∈ L and
̺(0)

−̺′(0) > 0. Moreover if

−∞ < θ∗ < 0 and lim
θ→θ∗
θ>θ∗

f(θ) = 0, (10)
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then we have 0 < ζ∗ <∞ since then limθ→θ∗
θ>θ∗

̺(θ)
−̺′(θ) = limθ→θ∗

θ>θ∗

ln(̺(θ))
θ

.

Corollary 4 Suppose that θ∗ < ∞ and let l
(n)

i denote the size of the largest box at generation n, when

the first box was of type i. We then have:

lim
n→∞

n−1 · ln
(

l
(n)

i

)

= − 1

ζ∗
a.s.

Proof: We first show the upper bound. Let θ ∈ (0, θ∗). By Lemma 14 we have for n large enough:

̺(θ)−n
(

l
(n)

i

)θ

≤
K
∑

j=1

vj(θ)

vi(θ)
̺(θ)−n ·

(

l
(n)

i

)θ

≤Wn
i (θ) ≤ 2Wi(θ), a.s.

By some rearrangement we thus get:

lim sup
n→∞

n−1 · ln(l
(n)

i ) ≤ ln(̺(θ))

θ
a.s.

We conclude by letting θ tend to θ∗. For the lower bound note that by Lemma 15 we have e
n

̺′(θ)
̺(θ) ≤ l

(n)

i

a.s., and we conclude by some rearrangement and letting θ tend to θ∗. ✷

For the size of the smallest box one shows in the same way that:

Corollary 5 Let (10) hold and let l
(n)
i denote the smallest box at generation n, when the type of the first

box was of type i. We then have

lim
n→∞

n−1 · ln(l
(n)
i ) = − 1

ζ∗
, a.s.

3.2 Study of the height

Recall that Hm,j denotes the first generation of boxes at which all the boxes contain strictly less than j

balls when m balls have been thrown independently. We will see that there is a phase transition in the

limiting behavior of Hm,j as m tends to infinity, depending on the values of j. We aim to show that:

Theorem 4 Suppose that conditions (8) and (9) hold. We then have:

1. For every j ∈ (θ∗, θ
∗) we have

lim
m→∞

1

ln(m)
Hm,j =

j

−ln(̺(j))
+ O

(

lnln(m)

ln(m)

)

a.s.

2. If θ∗ <∞ we have for every j ≥ θ∗ that

lim
m→∞

1

ln(m)
Hm,j = ζ∗ a.s.

The phase transition in the limiting behavior of the height has first been observed by Joseph (2010).
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Remark 4 As in the previous sections we assume that we start from a box of type 1. We will thus drop the

subscript 1 and shorthand write l
(n)
i,k for l

(n)
1i,k and l(n) for l

(n)
1 and W for W1.

We first show the upper bound. For θ ∈ L with θ > 0 such that ⌈θ⌉ ≤ j and a > 1
θ

, let us define the

sequence

xn = ̺(θ)−
n
θ n−a.

We then have:

Lemma 16 For almost all ω, there exists a natural number n0(ω) s.t for all n ≥ n0(ω), there exists no

box at generation n containing j or more balls when ⌊xn⌋ balls have been thrown.

Proof: Let N
(n)
m,j denote the number of boxes at generation n containing j or more balls when m balls

have been thrown. Conditionally on Fn, the number of balls in a box at generation n of size l when m

balls have been thrown has distribution B(m, l). Similarly to the proof of Lemma 8, we thus have:

E[N
(n)
⌊xn⌋,j

|Fn] =

K
∑

i=1

∑

k

P

(

B
(

⌊xn⌋, l(n)i,k

)

≥ j
)

≤
K
∑

i=1

∑

k

(

⌊xn⌋l(n)i,k

)θ

≤ c1(θ)x
θ
n̺(θ)

n

K
∑

i=1

∑

k

̺(θ)−n
vi(θ)

v1(θ)
(l

(n)
i,k )

θ

= c1(θ)n
−aθW (n)(θ),

where c1(θ) :=
(

max1≤i≤K

(

v1(θ)
vi(θ)

))

. We thus derive that:

E[N
(n)
xn,j

] ≤ c1(θ)n
−aθ

E[W (n)(θ)] = c1(θ)n
−aθ.

We finally arrive at

E

[

∑

1
{N

(n)

⌊xn⌋,j
≥1}

]

≤ E

[

∑

N
(n)
⌊xn⌋,j

]

≤
∑

c1(θ)n
−aθ <∞,

and we conclude by Borel-Cantelli. ✷

In the same way as in the proof of Proposition 2, we derive that:

Proposition 7 For every integer θ ∈ L we have

1

ln(m)
Hm,j ≤

θ

−ln(̺(θ))
+ O

(

lnln(m)

ln(m)

)

a.s.

as m tends to infinity.

Remark 5 The function θ → θ
−ln(̺(θ)) is decreasing on (θ∗, θ

∗).
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For the lower bound let first j ∈ (θ∗, θ
∗) and recall that Hm,j ≥ n, if at generation n there is at least one

box containing j or more balls. Let a > 1
2j and define the sequence

xn = ̺(θ)−
n
j na.

As in the previous section we then have:

Lemma 17 For almost all ω there exists a natural number n0(ω), such that for all n ≥ n0(ω) there is at

least one box containing j or more balls when Poisson(xn) balls have been thrown.

Proof: Let

zn := e
n

̺′(j)
̺(j) .

and let Mn denote the number of boxes at generation n of type 1 with size in the interval [zn, 2zn]. Let

Z(j) =
v1(j)w1(j)W (j)
√

2πf ′′(j)
· 1− 2−j

j
,

and vn(j) =
1
2Z(j)e

nf(j)n− 1
2 . From Lemma 15 we know that a.s. there exists a natural number n0 such

that for all n ≥ n0, we have Mn ≥ vn(j). We can thus a.s. consider the first vn(j) boxes in Mn, say

b1(n), ..., bvn(j)(n) and denote their size with l1(n), ..., lvn(j)(n). We place an imaginary box bi(n) in

bi(n) for 1 ≤ i ≤ vn(j), each of size exactly zn. If a ball falls into the box bi(n) it is placed in the

imaginary box bi(n) with probability zn
li

.

Let An denote the event that the boxes bi(n) for 1 ≤ i ≤ vn(j) contain strictly less then j balls

when Poisson(xn) balls have been thrown. Since conditioned on Fn the number of balls in each box of

generation n are independent Poisson random variables with parameter xnzn, we have:

P(An|F∞) ≤ P(Poisson(xnzn) < j)vn(j).

We then finish the proof in the same way as the proof of Lemma 9. ✷

Performing the same computations as in the proof of Proposition 3, we arrive at:

Proposition 8 Suppose that (8) and (9) hold. For every integer j ∈ (θ∗, θ
∗) we have

1

ln(m)
Hm,j ≥

j

−ln(̺(j))
+ O

(

lnln(m)

ln(m)

)

a.s.

as m tends to infinity.

We now turn to the second case. Suppose that θ∗ < ∞ and j ≥ θ∗. Let 0 < ε′ < ε and define the

sequences

xn := en(
1
ζ∗

+ε) and yn = en(−
1
ζ∗

−ε′).

We then have:

Lemma 18 For almost all ω there exists a natural number n0(ω), s.t. N⌈xn⌉,j ≥ 1 for all n ≥ n0(ω).
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Proof: Let bn denote the largest box at generation n and recall that l
(n)

denotes its size. We place an

imaginary box bn of size l
(n) ∧ yn inside the largest box. When a ball falls into bn it is placed in bn with

probability yn

l
(n) . Now, let

An := {l(n) ≥ yn}
and let Bn denote the event that the box bn contains strictly less than j balls when ⌈xn⌉ balls have been

thrown. As in the proof of Lemma 11, we have:

P(An ∩Bn) ≤ P(Bn|An)
≤ P((B(⌈xn⌉, yn) + 1)−1 ≤ j−1)

≤ j

xn · yn
,

and we arrive at

P(An ∩Bn) ≤ je−n(ε−ε
′).

We conclude by Borel-Canteli’s lemma and the fact that P(An) = 1 by Corollary 4. ✷

Performing the usual computations, we arrive at:

Proposition 9 Suppose that (8), (9) hold, that θ∗ <∞ and j ≥ θ∗. We then have

lim inf
m→∞

1

ln(m)
Hm,j ≥ ζ∗ a.s.

3.3 Study of the saturation level

We aim to show that:

Theorem 5 Suppose that (8), (9) and (10) hold. We then have

lim
m→∞

1

ln(m)
Gm,j = ζ∗ a.s.

We first tackle the proof of the lower bound. Let ε′ > 0 and define the sequence

xn = en(
1
ζ∗

+ε′),

where, ζ∗ is the constant appearing in the limit behavior of the smallest box. In the same notation as in

the previous sections we then have:

Lemma 19 For almost all ω there exists a natural number n0(ω), such that for all n ≥ n0(ω) :

Tn(ω) < xn.

Proof: Let 0 < ε < ε′. Define An, the event that the smallest box l(n) of generation n is larger than

en(−
1
ζ∗

−ε)
and Bn, the event that Tn ≥ xn. Let expk(1) for k ≤ Kn denote independent exponential
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random variables with parameter 1. We then have:

P(Bn ∩ An) ≤ P(Bn|An)
≤ P( max

k≤Kn
expk(1) ≥ en(−

1
ζ∗

−ε)xn)

≤ 2 · P(G(1) ≥ en(−
1
ζ∗

−ε)xn − nln(K))

≤ 2 · exp(−(en(ε
′−ε) − nln(K)),

and we conclude by the fact that P(An) = 1 by Corollary 5 and Borel-Cantelli’s lemma. ✷

Performing the same calculations and generalizations as in the previous section, we arrive at:

Proposition 10 Suppose that (8), (9) and (10) hold. We have:

lim inf
m→∞

1

ln(m)
Gm,j ≥ ζ∗ a.s.

For the upper bound let ε′ > 0 and define the sequence

yn = en(
1
ζ∗

−ε′).

We then have:

Lemma 20 For almost all ω there exists a natural number n0(ω), such that for all n ≥ n0(ω) :

Tn(ω) > yn.

Proof: Let 0 < ε′ < ε. Define An, the event that the smallest box l(n) of generation n is smaller than

en(−
1
ζ∗

+ε)
and Bn, the event that Tn ≤ yn. We then have:

P(Bn ∩ An) ≤ P(Bn|An)
≤ P(expk(1) ≤ en(

1
ζ∗

+ε)yn)

≤ 1− exp(−e−n(ε−ε′))
≤ e−n(ε−ε

′),

and we conclude by the fact that P(An) = 1 by Corollary 5 and Borel-Cantelli’s lemma. ✷

The upper bound then easily follows.
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