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In words, generated by independent geometrically distributed random variables, we study the lth descent, which is,

roughly speaking, the lth occurrence of a neighbouring pair ab with a > b. The value a is called the initial height, and

b the end height. We study these two random variables (and some similar ones) by combinatorial and probabilistic

tools.

We find in all instances a generating function Ψ(v, u), where the coefficient of vjui refers to the jth descent (ascent),

and i to the initial (end) height. From this, various conclusions can be drawn, in particular expected values.

In the probabilistic part, a Markov chain model is used, which allows to get explicit expressions for the heights of the

second descent. In principle, one could go further, but the complexity of the results forbids it.

This is extended to permutations of a large number of elements.

Methods from q-analysis are used to simplify the expressions. This is the reason that we confine ourselves to the

geometric distribution only. For general discrete distributions, no such tools are available.

1 Introduction

Let X be a random variable (RV), distributed according to the geometric distribution with parameter p
(geom(p)): P(X = k) = pqk−1, with q = 1 − p. We consider a sequence X1X2 . . . Xn of independent

RVs. We also speak about words a1 . . . an; there is some interest in combinatorial parameters of such

words, generated by independent geometric random variables.

The two most prominent examples are Skip lists and Probabilistic counting (8; 5; 4).

In this paper we continue the study of descents.
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In a word w1abw2 we say that ab is the lth descent, if a > b (strict model) or a ≥ b (weak model), and

the initial word w1a has l− 1 descents. Furthermore, we refer to a as the initial height and to b as the end

height. Equivalently, we use the notions initial value and end value.

In (6), these random variables were studied, but only for l = 1, i.e., the first descent. Here, we are able

to deal with the general case.

This paper uses a generating functions approach and a probabilistic approach. The results complement

each other, but are not disjoint. Of course, both are very useful and interesting.

The generating function approach is as follows: First, we construct a generating function F (z, v, u) in

3 variables, z, v, u, where z marks the length of the word, v the number of descents, and u the last letter

of the word. In other words,

F (z, v, u) =
∑

n,j≥1, l≥0

P[a word of length n has l descents and last letter j]znvluj .

Occasionally, it is clearer to write F (u) only.

Once this is achieved, we construct a new generating function (G for initial height, H for end height),

by attaching a descent (which is a simple substitution, since the variable u “remembers” the last letter)

and an arbitrary rest. In this way, we have a generating function, where the variable u no longer codes the

last letter, but the initial height (resp. end height) of the lth descent.

The quantities that we get for l = 1 coincide (of course!) with the older paper; however, they come out

in different forms. To show formally that they are the same, one uses identities from q-analysis, such as

Heine’s transformation formula. This was demonstrated extensively in (6).

We also consider the analogous questions for ascents; the motivation is that, in (7), the last descent was

studied. In the reversed word, the last descent becomes the first ascent, and now we have developed the

machinery to deal in general with the lth ascent.

The probabilistic approach works as follows. We start from an infinite sequence of geometric random

variables, with parameter p (geom(p)). First, we consider the successive descents as a Markov chain,

related to initial and end values of each descent. Next, we use this Markov chain to obtain the distribution

of initial and end values of first and second descents. Then, the first moments of the first and second

descents initial values are analyzed by intensive use of some combinatorial identities. Next, we obtain the

asymptotic distribution of the number of descents initial values in some interval. Finally, starting from n
geom(p) RV, as q → 1, we can derive the asymptotic properties of first and second descents, in a large

permutation.

In this part, only the strict model and the descents will be considered.

The explicit forms of the distribution of the descents become very complicated when going from first

to second etc. descent. However, a stationary distribution, which is very simple, is rapidly approached. It

is given by
1 + q

q
pqi−1(1 − qi−1)

for the initial height, and by
1 + q

q
pq2i−1
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for the end height. There is an intuitive explanation of them: The first one is the conditional probability

that we have a pair ij, given that it is a descent, and the second one that we have a pair ji, again given that

it is a descent.

Several useful combinatorial identities, derived from Heine’s formula, are given in the Appendix.

We will need notation from q-analysis; the most important ones are (x)n := (1 − x)(1 − qx) . . . (1 −

xqn−1), and
[

n
k

]

= (q)n

(q)k(q)n−k
(Gaussian coefficients). The relevant formulæ can be found in (1).

Although one could think about performing the present analysis for general discrete distributions,we

refrain from doing so. The reason is this: Methods from q-analysis are used to simplify the expressions,

and this is very special to the geometric distribution. In general, no such tools are available.

Part I

Combinatorial Analysis

2 Descents: the weak model

Let fi(u) be the generating function with [znuj ]fi(u) is the probability that a word of length n ≥ 1 has i
descents, and that the last letter is j. (Only the dependency on the variable u has been made explicit.)

Here is the recursion for i ≥ 1.

fi(u) =
puz

1 − qu
fi−1(1) −

puz

1 − qu
fi−1(uq) +

puz

1 − qu
fi(uq).

This is a typical application of the adding-a-new slice technique: The variable u keeps track of the last

letter in the word. So, if we replace um by

∑

1≤j≤m

pqj−1uj = pu
1 − (qu)m

1 − qu
,

it means that we gain one descent, and if we replace it by

∑

j>m

pqj−1uj = pu
(qu)m

1 − qu
,

we stay with the same number of descents. Translating this principle to the generating functions fi(u),
gives the indicated recursion. We will use this principle in various places again.

Now let

F (u) = F (z, v, u) =
∑

i≥0

fi(u)v
i.

Then we get, by summing up,

F (u) − f0(u) =
puvz

1 − qu
F (1) −

puvz

1 − qu
F (uq) +

puz

1 − qu
F (uq) −

puz

1 − qu
f0(uq).
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But

f0(u) =
puz

1 − qu
+

puz

1 − qu
f0(uq)

and so

F (u) =
puz

1 − qu
+

puvz

1 − qu
F (1) +

puz(1 − v)

1 − qu
F (uq).

This functional equation can be solved by iterating it: (Technically, this iteration leads to an equation

involving F (u) and F (1); after plugging in u = 1, the quantity F (1) can be found, and thus in the next

step F (u).)(i)

F (z, v, u) =

∑

k≥1
(puz)k(1−v)kq(

k
2)

(qu)k

1 − v
∑

k≥0
(pz)k(1−v)kq(

k
2)

(q)k

. (2.1)

Now we turn to the end heights. We want to obtain the generating function

H(z, v, u) =
∑

n,j,i≥1

P[in a word of length n, the jth descent has end height i]znvjui.

As indicated already, it can be obtained from F (z, v, u) by substitution: we make one down step, record

its height with the u-variable, (uj → pu+ pqu2 + · · · + pqj−1uj) and then attach anything (1/(1 − z)).
This gives the generating function

H(z, v, u) =
puvz

1 − qu
[F (z, v, 1) − F (z, v, uq)]

1

1 − z
+

pzu

1 − qu
.

The next step is to look at the behaviour for n→ ∞. Intuitively, it is quite clear, there should be a limit,

since what happens at the lth descent must become independent of letters very far to the right. Indeed, we

see that there is a simple pole at z = 1, and the generating function

Ψ(v, u) =
puv

1 − qu
[F (1, v, 1) − F (1, v, uq)], (2.2)

is obtained fromH(z, v, u) by dropping the factor 1/(1−z), and the irrelevant additive term and replacing

z = 1. Thus, considering u and v as parameters, there is a dominant simple pole, and its residue (that

we call Ψ(v, u)) corresponds to the the limit n → ∞, or, what amounts to the same, to an infinite word.

One could perhaps avoid dealing with n and z and deal with an infinite word directly, as we will do in

the second part of this paper, but we would lose information in that way that we can have for free. – The

coefficient of vl in Ψ(v, u) is a probability generating function in the variable u alone. Indeed, it is easy

to check that Ψ(v, 1) = v
1−v . Explicit expressions become very messy, but at least the instance l = 1

(which was studied in (6)) is manageable:

[v1]Ψ(v, u) =
pu

1 − qu
[F (1, 0, 1) − F (1, 0, uq)]

=
pu

1 − qu

[

∑

k≥1

pkq(
k

2)

(q)k
−

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

]

.

(i) As a referee has pointed out, such functional equations are not always as “smooth” as this one.
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From a probability generating function, all moments (of the underlying random variable) can be derived

by differentiations, followed by u = 1. Let us just do this for the average (first moment):

E[first descent] ∼
1

p
−

∂

∂u

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

∣

∣

∣

∣

u=1

∼
1

p
−

∑

k≥1

k(pq)kq(
k

2)

(q2)k
−

∑

k≥1

(pq)kq(
k

2)

(q2)k

k+1
∑

i=2

qi

1 − qi

∼
1

p
−

∑

k≥2

(k − 1)pkq(
k

2)

(q)k
−

∑

k≥2

pkq(
k

2)

(q)k

k
∑

i=2

qi

1 − qi
. (2.3)

Note that this average was given as

1

p
−

∑

h≥0

(h+ 1)pq2h+1(−p)h (2.4)

in (6).

For the limiting behaviour of this, as q → 1, we should consider limq→1(1− q)E[first descent]. It turns

out that this tends to a constant, and thus the expectation of the end height of the first descent goes to

infinity as constant
1−q :

1 −
∑

k≥1

1

k!

k
∑

i=2

1

i
= 1 −

∑

k≥1

Hk

k!
+

∑

k≥1

1

k!
= e−

∑

k≥1

Hk

k!
.

A similar computation can be done for general l:

∂

∂u
Ψ(v, u)

∣

∣

u=1
=
v

p
[F (1, v, 1) − F (1, v, q)] − v

∂

∂u
F (1, v, uq)

∣

∣

u=1

=
v

p

1

1 − v
∑

k≥0
pk(1−v)kq(

k
2)

(q)k

[

∑

k≥1

pk(1 − v)kq(
k

2)

(q)k
−

∑

k≥1

(pq)k(1 − v)kq(
k

2)

(q2)k

]

− v
1

1 − v
∑

k≥0
pk(1−v)kq(

k
2)

(q)k

[

∑

k≥1

k(pq)k(1 − v)kq(
k

2)

(q2)k
−

∑

k≥1

(pq)k(1 − v)kq(
k

2)

(q2)k

k+1
∑

j=2

qj

1 − qj

]

.

And now

lim
q→1

(1 − q)
∂

∂u
Ψ(v, u)

∣

∣

u=1
=

v

1 − ve1−v

[

e1−v − 1 −
1

1 − v

(

e1−v − 1 − (1 − v)

)

]

+
v

1 − ve1−v

∑

k≥1

(1 − v)k(Hk+1 − 1)

(k + 1)!
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= −1 +
1

1 − ve1−v
−

v

1 − ve1−v

∑

k≥1

Hk(1 − v)k−1

k!
.

(The coefficient of v1 is the previous expression).

Now we turn to the initial heights. The same approach applies, but the substitution is even simpler. We

get

G(z, u, v) = vz[F (z, v, u) − F (z, v, uq)]
1

1 − z
+

pzu

1 − qu
.

The limit for n→ ∞ leads then to the generating function

Φ(v, u) = v[F (1, v, u) − F (1, v, uq)]. (2.5)

Let us compute again the instance l = 1; the coefficient of v1 is particularly simple:

[v1]Φ(v, u) = F (1, 0, u) − F (1, 0, uq).

From this, we find that the average is asymptotic to

∂

∂u

[

∑

k≥1

(pu)kq(
k

2)

(qu)k
−

∑

k≥1

(pqu)kq(
k

2)

(q2u)k

]∣

∣

∣

∣

u=1

. (2.6)

This checks with the expression

∑

h≥0

(h+ 1)pqh+1(−p)h −
∑

h≥0

(2h+ 1)pqh+1(−p)h, (2.7)

given in (6).

For the limit limq→1(1 − q)E we get the generating function

1

v(1 − ve1−v)
−

1

v(1 − v)
−

v

1 − ve1−v

∑

k≥1

Hk(1 − v)k−1

k!
.

The coefficient of v in this is

e− 1 −
∑

k≥1

Hk

k!
.

3 Descents: the strict model

Computations are similar; we only give the key steps. The functional equation is

F (u) =
puz

1 − qu
+

puvz

1 − qu
F (1) +

pz(1 − v)

q(1 − qu)
F (uq).

Thus

F (z, v, u) = u
∑

k≥1

(pz)k(1 − v)k−1

(uq)k

(

1 + vF (z, v, 1)
)

=
u

∑

k≥1
(pz)k(1−v)k

(uq)k

1 − v
∑

k≥0
(pz)k(1−v)k

(q)k

. (3.1)
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Also,

H(z, v, u) =

[

puvz

1 − qu
F (z, v, 1) −

pvz

q(1 − qu)
F (z, v, uq)

]

1

1 − z
+

pzu

1 − qu
.

Hence

Ψ(v, u) =
puv

1 − qu
F (1, v, 1) −

pv

q(1 − qu)
F (1, v, uq). (3.2)

And

[v1]Ψ(v, u) =
pu

1 − qu
F (1, 0, 1) −

p

q(1 − qu)
F (1, 0, uq)

=
pu

1 − qu

∑

k≥1

pk

(q)k
−

pu

1 − qu

∑

k≥1

pk

(uq2)k
.

The expectation can be obtained by differentiation, followed by u = 1:

1

p
−

∑

k≥1

pk

(q)k

k
∑

i=2

qi

1 − qi
. (3.3)

The formula given in (6) is

1

p
−

∑

h≥1

hq2h−1

(pq)h
. (3.4)

Now, let us compute the limit of (1 − q)E, q → 1:

1 −
∑

k≥1

Hk − 1

k!
= e−

∑

k≥1

Hk

k!
.

And in general:

1

1 − ve1−v
−

1

1 − v
−

v

1 − ve1−v

∑

k≥2

Hk(1 − v)k−1

k!
.

Now, for the initial heights, we must consider

G(z, v, u) = vz[F (z, v, u) −
1

q
F (z, v, qu)]

1

1 − z
+

pz

1 − qu
,

and

Φ(v, u) = v[F (1, v, u) − 1
qF (1, v, qu)]. (3.5)

Furthermore, to look at the first descent,

[v1]Φ(v, u) = F (1, 0, u) − 1
qF (1, 0, qu) = u

∑

k≥1

pk

(qu)k
− u

∑

k≥1

pk

(q2u)k
.
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From this, the average, obtained by differentiation, is

1+
∑

k≥1

pk

(q)k

k
∑

i=1

qi

1 − qi
−

∑

k≥1

pk

(q2)k

k+1
∑

i=2

qi

1 − qi

= 1 +
∑

k≥1

pk

(q)k

k
∑

i=1

qi

1 − qi
−

∑

k≥2

pk

(q)k

k
∑

i=2

qi

1 − qi

= 1 +
q

p

∑

k≥1

pk

(q)k

= 1 +
q

p

(

− 1 +
1

(p)∞

)

. (3.6)

The last simplification was by (A.6). The version given in (6) is

1 +
∑

h≥1

hpqh−1

(pq)h
−

∑

h≥1

hpq2h−1

(pq)h
. (3.7)

The limiting function limq→1(1 − q)E is

v

1 − ve1−v

[

∑

k≥1

(1 − v)kHk

k!
−

∑

k≥1

(1 − v)k(Hk+1 − 1)

(k + 1)!

]

.

4 Ascents: the strict model

First, we consider the case where only a < b is an ascent.

Again, the treatment is very similar to before, so we only give the key steps.

Let fi(u) be the generating function with [znuj ]fi(u) is the probability that a word of length n ≥ 1 has

i ascents, and that the last letter is j.
Here is the recursion for i ≥ 1:

fi(u) =
puz

1 − qu
fi(1) −

puz

1 − qu
fi(uq) +

puz

1 − qu
fi−1(uq).

The explanation is similar to before: The variable u keeps track of the last letter, and thus, if we replace

um by
∑

1≤j≤m

pqj−1um = pu
1 − (qu)m

1 − qu
,

we stay with the same number of ascents, but if we replace um by

∑

j>m

pqj−1um = pu
(qu)m

1 − qu
,

we gain one descent.
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Now let

F (u) = F (z, v, u) =
∑

i≥0

fi(u)v
i.

Then we get

F (u) =
puz

1 − qu
+

puz

1 − qu
F (1) +

puz(v − 1)

1 − qu
F (uq).

This functional equation can be solved by iterating it:

F (z, v, u) =

∑

k≥1
(puz)k(v−1)k−1q(

k
2)

(qu)k

1 −
∑

k≥1
(pz)k(v−1)k−1q(

k
2)

(q)k

. (4.1)

Further,

H(z, v, u) =
puzv

1 − qu
F (z, v, uq)

1

1 − z
+

puz

1 − qu
,

and

Ψ(v, u) =
puv

1 − qu
F (1, v, uq). (4.2)

The case of the first accent, i.e., the coefficient of v1, is thus

[v1]Ψ(v, u) =
pu

1 − qu
F (1, 0, uq) =

pu

1 − qu

∑

k≥1
(pqu)k(−1)k−1q(

k
2)

(q2u)k

1 −
∑

k≥1
pk(−1)k−1q(

k
2)

(q)k

=

∑

k≥2
(pu)k(−1)kq(

k
2)

(qu)k

∑

k≥0
pk(−1)kq(

k
2)

(q)k

.

Notice that
∑

k≥0

pk(−1)kq(
k

2)

(q)k
= (p)∞.

And therefore the average of the end height of the first ascent tends to

1

(p)∞

∑

k≥2

kpk(−1)kq(
k

2)

(q)k
+

1

(p)∞

∑

k≥2

pk(−1)kq(
k

2)

(q)k

k
∑

i=1

qi

1 − qi
. (4.3)

This quantity appears in (7) in the form

q

p
+

1

(p)∞

∑

h≥0

(h+ 2)pq2h+1(p)h. (4.4)

Furthermore,

G(z, v, u) = vzF (z, v, uq)
1

1 − z
+

puz

1 − qu
,

and

Φ(v, u) = vF (1, v, uq). (4.5)
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Also,

[v1]Φ(v, u) = F (1, 0, uq) =
1

(p)∞

∑

k≥1

(pqu)k(−1)k−1q(
k

2)

(q2u)k
.

And therefore the average of the initial height of the first ascent tends to

1

(p)∞

∑

k≥2

(k − 1)pk(−1)kq(
k

2)

(q)k
+

1

(p)∞

∑

k≥2

pk(−1)kq(
k

2)

(q)k

k
∑

i=2

qi

1 − qi
. (4.6)

The version given in the paper (6) is

1

(p)∞

∑

h≥0

(h+ 1)pq2h+1(p)h. (4.7)

5 Ascents: the weak model

For completeness, we only collect the relevant formulæ here. This brief section is for reference only, and

can be skipped, as the methods are the same as before.

F (u) =
puz

1 − qu
+

puz

1 − qu
F (1) +

pz(v − 1)

q(1 − qu)
F (uq),

F (z, v, u) =
u

∑

k≥1
(pz)k(v−1)k−1

(qu)k

1 −
∑

k≥1
(pz)k(v−1)k−1

(q)k

.

H(z, v, u) =
pzv

q(1 − qu)
F (z, v, uq)

1

1 − z
+

pz

1 − qu
,

Ψ(v, u) =
pv

q(1 − qu)
F (1, v, uq), (5.1)

G(z, v, u) =
zv

q
F (z, v, uq)

1

1 − z
+

pz

1 − qu
,

Φ(v, u) =
v

q
F (1, v, uq). (5.2)
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6 Summary of results from combinatorial analysis

For the reader’s convenience, we list where the generating function Ψ(v, u), that we consider to be the

most important finding, as it contains all the information, can be found: (Recall that the coefficient of

vjui refers to the jth descent (ascent), and the probability that the end height (initial height) is i, in an

infinitely long string.)

Descents (weak) Descents (strict) Ascents (strict) Ascents (weak)

End height (2.2) (3.2) (4.2) (5.1)

Initial height (2.5) (3.5) (4.5) (5.2)

The auxiliary functions and the averages can be found in the text.

Part II

Probabilistic Analysis

We will analyze the descents in the strict model with probabilistic tools. We start from an infinite sequence

of geom(p) RVs.

7 Markov chains

In this section, we consider the successive descents as a Markov chain, related to initial and end values of

each descent.

Let

π(i) := pqi−1,

P (i) :=
∑

j≥i

π(j) = qi−1,

Ik := beginning of the kth descent (initial height),

Jk := end of the kth descent (end height),

Ik > Jk, Ik+1 ≥ Jk, Ik ≥ 2.

By convention, J0 is the first geom(p) RV. We have

P[I2 = i2, J2 = j2|I1 = i1, J1 = j1] =
∑

l≥0

∑

j1≤k2≤···≤kl≤i2

π(k2) . . . π(kl)π(i2)π(j2),

with the conventions

l = 0 : i2 ≡ j1,
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l = 1 : i2 ≥ j1.

This is independent of i1. Set

A(a, b, t) :=
∑

a≤k1≤···≤kt≤b

qk1+···+kt ,

and

B(a, b) :=
∑

t≥0

(

p

q

)t

A(a, b, t).

Then

P[I2 = i2, J2 = j2|J1 = j1] = [[i2 = j1]]π(j2) +B(j1, i2)π(i2)π(j2).

But we know that

∑

0≤k1≤···≤kt≤n

qk1+···+kt =
1

(q)t

t
∑

j=0

(−1)j

[

t

j

]

qjn+(j+1

2 ) =

[

n+ t

t

]

.

Recall that
[

n
m

]

denotes the q-binomial (Gaussian) coefficients.

Therefore

A(a, b, t) :=
∑

a≤k1≤···≤kt≤b

qk1+···+kt

= qat
∑

0≤k1≤···≤kt≤b−a

qk1+···+kt

= qat

[

b− a+ t

b− a

]

.

We will use
∑

t≥0

αt

[

m+ t

m

]

=
1

(α)m+1
.

Then

B(a, b) :=
∑

t≥0

(

p

q

)t

A(a, b, t) =
(p)a−1

(p)b
,

and

P[I2 = i2, J2 = j2|J1 = j1] = [[i2 = j1]]π(j2) +
(p)j1−1

(p)i2

π(i2)π(j2), (7.1)

P[I2 = i2|J1 = j1] = [[i2 = j1]](1 − qi2−1) +
(p)j1−1

(p)i2

π(i2)(1 − qi2−1). (7.2)

The transition matrix between I1 and I2 is given by

P[I2 = i2|I1 = i1] =
∑

j1<i1

π(j1)

1 − P (i1)
P[I2 = i2|J1 = j1]
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= [[i2 < i1]]
π(i2)

1 − P (i1)
(1 − qi2−1) +

∑

j1<i1,j1≤i2

π(j1)

1 − P (i1)

(p)j1−1

(p)i2

π(i2)(1 − qi2−1). (7.3)

Let us first check that
∑

i2≥2 P[I2 = i2|I1 = i1] = 1. We have, using (A.8)

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
(1 − qi2−1) +

∑

i2≥2

∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

=

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
−

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
qi2−1 +

∑

i2≥2

p

1 − qi1−1

1

(p)i2

pqi2−1(1 − qi2−1)

+

i1−1
∑

j1=2

∑

i2≥j1

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

=
1

1 − qi1−1
[1 − p− qi1−1] −

i1−1
∑

i2=2

pqi2−1

1 − qi1−1
qi2−1 +

p

1 − qi1−1
+

1

1 − qi1−1

i1−1
∑

j1=2

pqj1−1qj1−1

= 1.

Now we compute the stationary measure ϕ(i) of this matrix. (see, for instance, Chung (3)). We must have

∑

i1

ϕ(i1)P[I2 = i2|I1 = i1] = ϕ(i2),

which leads to

∑

i1>i2

ϕ(i1)
pqi2−1

1 − qi1−1
(1 − qi2−1) +

∑

i1≥2

ϕ(i1)
∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1) = ϕ(i2),

or, setting

ψ(i) =
ϕ(i)

pqi−1(1 − qi−1)
,

we have
∑

i1>i2

pqi1−1ψ(i1) +
∑

i1≥2

pqi1−1ψ(i1)
∑

j1<i1,j1≤i2

pqj1−1 (p)j1−1

(p)i2

= ψ(i2).

After some algebra, we will find that ψ(i) = constant is a solution of this equation. But it is probabilis-

tically obvious: the stationary distribution is proportional to pqi−1(1 − qi−1). We have, setting ψ ≡ 1,

∑

i1>i2

pqi1−1+
∑

i1≥2

pqi1−1
∑

j1<i1,j1≤i2

pqj1−1 (p)j1−1

(p)i2

= qi2 +
1

(p)i2

i2
∑

j1=1

pqj1−1(p)j1−1q
j1

= qi2 +
1

(p)i2

pq
∑

m≥0

q2m(p)m −
1

(p)i2

pqq2i2(p)i2

∑

v≥0

q2v(pqi2)v



150 Guy Louchard and Helmut Prodinger

= qi2 + (pqi2)∞ + 1 − qi2 − (pqi2)∞ = 1,

as expected. (We used (A.5) twice.)

The stationary distribution is given by

fstationary(i) =
1 + q

q
pqi−1(1 − qi−1). (7.4)

The stationary distribution generating function is given by

G(z) =
p2(1 + q)z2

(1 − qz)(1 − q2z)
,

from which the stationary moments are easily derived:

E(I) =
2 + q

1 − q2
,

E(I2) =
q3 + 4q2 + 5q + 4

(1 − q2)2
.

The stationary distribution of the end value is given by

1 + q

q

∞
∑

i1=i2+1

pqi1−1(1 − qi1−1)pqi2−1/(1 − qi1−1) = (1 + q)pq2i2−2, i2 ≥ 1,

which sums correctly to 1.

Another transition matrix of interest is given by

P[J2 = j2|J1 = j1] = π(j2)[[j2 < j1]] +
∑

i2≥j1,i2>j2

(p)j1−1

(p)i2

π(i2)π(j2). (7.5)

8 Descent distributions

In this section, we use the Markov chain derived in the previous section to obtain the distribution of initial

and end values of first and second descents. For the first descent initial value I1, for example, with (A.9),

we have

f1(i1) := P[I1 = i1] =

i1
∑

j0=1

pqj0−1
P[I1 = i1|J0 = j0]

= pqi1−1(1 − qi1−1) +

i1
∑

j0=1

pqj0−1 (p)j0−1

(p)i1

pqi1−1(1 − qi1−1)

= pqi1−1(1 − qi1−1)
1

(p)i1

. (8.1)

A graph of f1(i), q = 0.7 is given in Figure 1. It is easily checked that
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Fig. 1: f1(i), q = 0.7

∞
∑

i=2

f1(i) = 1.

Indeed
∑

i≥2

pqi−1(1 − qi−1)
1

(p)i
= 1, by (A.4).

A comparison between f1(i) and the stationary distribution fstationary(i), q = 0.7 is given in Figure 2.

For the end height of the first descent, we have, with (A.9) and (A.10),

γ1(j1) := P[J1 = j1] =
∑

j0>j1

pqj0−1pqj1−1 +
∑

i1>j1

i1
∑

j0=1

pqj0−1 (p)j0−1

(p)i1

pqi1−1pqj1−1

= pqj1−1

[

1

(p)∞
−

1

(p)j1

]

. (8.2)

Of course
∑

j≥1 γ1(j) = 1, by (A.10).

Note that we also have, with (A.10),

γ1(j1) =

∞
∑

i1=j1+1

f1(i1)
π(j1)

1 − P (i1)
=

∞
∑

i1=j1+1

pqi1−1(1−qi1−1)
1

(p)i1

pqj1−1

1 − qi1−1
= pqj1−1

[

1

(p)∞
−

1

(p)j1

]

.

The distribution of the second descent (I2, J2) is given by the square of the Markov matrix, i.e.

γ2(i2, j2) =
∑

j0≥1

pqj0−1
∑

j1≥1

P[J1 = j1|J0 = j0]P[I2 = i2, J2 = j2|J1 = j1].
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Fig. 2: Comparison between f1(i) and fstationary(i), q = 0.7

The distribution of the next descents is related to successive powers of the transition matrix.

A compact form for γ2(i2, j2) is given below.

Now, the distribution of the initial value of the second descent I2 is given by (we use (A.3), (A.9), (7.3))

f2(i2) := P[I2 = i2] =

∞
∑

i1=2

f1(i1)P[I2 = i2|I1 = i1] =

∞
∑

i1=2

pqi1−1(1 − qi1−1)
1

(p)i1

P[I2 = i2|I1 = i1]

=
∑

i1>i2

pqi1−1(1 − qi1−1)
1

(p)i1

pqi2−1

1 − qi1−1
(1 − qi2−1)

+
∑

i1≥2

pqi1−1(1 − qi1−1)
1

(p)i1

∑

j1<i1,j1≤i2

pqj1−1

1 − qi1−1

(p)j1−1

(p)i2

pqi2−1(1 − qi2−1)

= pqi2−1(1 − qi2−1)
1

(p)i2−1(1 − pqi2−1)

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1(p)j1−1

∑

i1>j1

pqi1−1 1

(p)i1

= pqi2−1(1 − qi2−1)
1

(p)i2−1(1 − pqi2−1)

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1 1

1 − pqj1−1

[

1

(pqj1)∞
− 1

]
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= pqi2−1(1 − qi2−1)
1

(p)i2

[

1

(pqi2)∞
− 1

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

i2
∑

j1=1

pqj1−1

[

1

(pqj1−1)∞
−

1

1 − pqj1−1

]

= pqi2−1(1 − qi2−1)

[

1

(p)∞
−

1

(p)i2

]

+ p2qi2−1(1 − qi2−1)
1

(p)i2

1

(p)∞

i2−1
∑

j1=0

qj1(p)j1 − p2qi2−1(1 − qi2−1)
1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1

= pqi2−1(1 − qi2−1)

[

1

(p)∞
−

1

(p)i2

]

+ pqi2−1(1 − qi2−1)
1

(p)i2

1

(p)∞
[1 − (p)i2 ] − p2qi2−1(1 − qi2−1)

1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1

= pqi2−1(1 − qi2−1)
1

(p)i2

[

1

(p)∞
− 1

]

− p2qi2−1(1 − qi2−1)
1

(p)i2

i2−1
∑

j1=0

qj1

1 − pqj1
.

Note that this gives an explicit expression for γ2(i2, j2):

γ2(i2, j2) = f2(i2)
π(j2)

1 − P (i2)
.

A comparison between f2(i) and fstationary(i), q = 0.7 is given in Figure 3. The convergence to the

stationary distribution is quite fast.

Let us check that
∑∞

i=2 f2(i) = 1. We have, using (A.8) and (A.1)

∞
∑

i=2



pqi−1(1 − qi−1)
1

(p)i

[

1

(p)∞
− 1

]

− p2qi−1(1 − qi−1)
1

(p)i

i−1
∑

j1=0

qj1

1 − pqj1





=
1

(p)∞
− 1 −

∑

j1≥1

p2 qj1

1 − pqj1

∑

i≥j1+1

qi−1(1 − qi−1)
1

(p)i
− p2 1

1 − p

∑

i≥2

qi−1(1 − qi−1)
1

(p)i

=
1

(p)∞
− 1 −

∑

j1≥1

p2 qj1

1 − pqj1

qj1

p(p)j1

− p2 1

1 − p

1

p
= 1.

9 The moments of descent parameters

The first moments of the first and second descents initial values are analyzed here by intensive use of

some combinatorial identities.

We derive the mean of the initial value of the first descent I1,
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Fig. 3: Comparison between f2(i) and fstationary(i), q = 0.7

E(I1) =

∞
∑

i=2

f1(i)i =
∑

i≥2

pqi−1(1 − qi−1)
1

(p)i
i

= p
∑

i≥1

qi−1i

(pq)i
− p

∑

i≥1

q2i−1i

(pq)i
+ p

∑

i≥1

qi

(p)i+1
(1 − qi)

= p
∑

i≥1

qi−1i

(pq)i
− p

∑

i≥1

q2i−1i

(pq)i
+ 1 by (A.4).

(9.1)

This is Theorem 3 in (6). However, we want to show now independently that this coincides with the closed

form obtained earlier as (3.6). This is done in Appendix (B).

More generally higher moments are given by

E(Ik
1 ) =

∑

h≥1

pqh(1 − qh)(h+ 1)k +

∞
∑

i1=2

i1
∑

j0=1

pqj0−1(p)j0−1
pqi1−1

(p)i1

(1 − qi1−1)ik1 .

Let us look at the modified second moment of I1 (again we use (A.3), (A.1) for simplifications):
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EE(I1) =

∞
∑

i=2

f1(i)i(i+ 1)/2 = p
∑

i≥0

qi

(p)i+1
(1 − qi)(i+ 1)(i+ 2)/2

= p
∑

0≤k≤h

∑

i≥h

qi

(p)i+1
(1 − qi)

=
1

q

∑

0≤k≤h

qh

(pq)h
−
p

q

∑

0≤k≤h

q2h

(pq)h

=
1

q

∑

k≥0

qk

(pq)k

∑

h≥0

qh

(pqk+1)h
−
p

q

∑

k≥0

q2k

(pq)k

∑

h≥0

q2h

(pqk+1)h

=
1

q

∑

k≥0

qk

(pq)k

[

1

pqk(pqk+1)∞
+ 1 −

1

pqk

]

−
p

q

∑

k≥0

q2k

(pq)k

[

1

pq2k

1

(pqk+1)∞
−

1

pq2k
−

1

pqk−1
+ 1

]

=
1

q

∑

k≥0

1

(pq)k

[

1

p(pqk+1)∞
+ qk −

1

p

]

−
1

q

∑

k≥0

1

(pq)k

[

1

(pqk+1)∞
− 1 − qk+1 + pq2k

]

=
1

q

∑

k≥0

1

(pq)k

[

1

p(pqk+1)∞
+ qk −

1

p
−

1

(pqk+1)∞
+ 1 + qk+1 − pq2k

]

=
1

q

∑

k≥0

1

(pq)k

[

q

p(pqk+1)∞
−
q

p
+ qk(1 + q) − pq2k

]

=
1

p

∑

k≥0

1

(pq)k

[

1

(pqk+1)∞
− 1

]

+
1 + q

q

∑

k≥0

qk

(pq)k
−
p

q

∑

k≥0

q2k

(pq)k

=
1

p

∑

k≥0

[

1

(pq)∞
−

1

(pq)k

]

+
1 + q

q

[

1

p(pq)∞
+ 1 −

1

p

]

−
p

q

[

1

p

1

(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

p

∑

k≥0

[

1

(pq)∞
−

1

(pq)k

]

+
2

p(pq)∞
+ 3 −

2

p

=
1

p
lim
t→1

[

1

(pq)∞

1

1 − t
−

∑

k≥0

tk

(pq)k

]

+
2

p(pq)∞
+ 3 −

2

p
.

In Appendix (C), we show that

lim
t→1

[

1

(pq)∞

1

1 − t
−

∑

k≥0

tk

(pq)k

]

=
1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
.

So finally:

EE(I1) =
1

p(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
+

2

p(pq)∞
+ 3 −

2

p
.
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From this, the variance can be stated as:

2EE(I1) − 2E(I1) − E
2(I1).

Now we turn to the second descent. The mean E(I2) of the initial value of the second descent is given

by (we use (3.6) and (9.1)

E(I2) =

∞
∑

i=2

f2(i)i = p

[

1

(p)∞
− 1

]

∑

i≥1

iqi−1(1 − qi−1)
1

(p)i
−

∑

i≥1

ip2qi−1(1 − qi−1)
1

(p)i

i−1
∑

j=0

qj

1 − pqj

= p

[

1

(p)∞
− 1

]

∑

i≥0

(i+ 1)qi(1 − qi)
1

(p)i+1
− p2

∑

j≥0

qj

1 − pqj

∑

i≥j

(i+ 1)qi(1 − qi)
1

(p)i+1

=

[

1

(p)∞
− 1

] [

1 −
q

p
+

q

p(p)∞

]

− p
∑

j≥0

pqj

1 − pqj

∑

i≥j

(i+ 1)qi(1 − qi)
1

(p)i+1

=

[

1

(p)∞
− 1 −

∑

j≥0

pqj

1 − pqj

] [

1 −
q

p
+

q

p(p)∞

]

+ p
∑

j≥0

pqj

1 − pqj

∑

0≤i<j

(i+ 1)qi(1 − qi)
1

(p)i+1
.

The last inner sum is computed in Appendix (D) as S0. This gives a first expression for the mean:

E(I2) =
1

p

[

1

(p)∞
− 1 −

∑

j≥0

pqj

1 − pqj

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

2p− 1 +
q

(p)j+1
−
p(1 + q)qj

q(p)j+1
+
p2q2j

q(p)j
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]

=
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1
+
p2q2j

q(p)j
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]

=
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1
−

pjqj

(p)j+1
+
jp2q2j

(p)j+1

]

+
1

p

∑

j≥0

p3q3j

q(p)j+1
.

The last sum can be simplified, using S3 from Appendix (D).

Hence

E(I2) =
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]
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+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1

]

−
1

p

∑

j≥0

jp2q2j

(p)j+1

+
1

p

[

(q)3q
2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q

]

.

Again, using S4 from Appendix (D), we obtain

E(I2) =
1

p

[

1

(p)∞
− 1

] [

2p− 1 +
q

(p)∞

]

+
1

p

∑

j≥0

pqj

1 − pqj

[

q

(p)j+1
−

q

(p)∞
−
p(1 + q)qj

q(p)j+1

]

−
1

p2q

1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
+

1

p2

[

1

p(pq)∞
+ 1 −

1

p

]

−
1

pq

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

+
1

p

[

(q)3q
2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q

]

.

Although this computation was already quite involved, we could get all cross-moments from (7.3), but

only with considerable effort.

10 Markov Chains and Sojourn times

In this section, we obtain the asymptotic distribution of the number of descents initial values in some

interval.

10.1 General asymptotic distribution

Let Xi, i = 1, . . . ,m be an ergodic Markov chain (MC) and A be a subset of states. Assume that the

MC is stationary and set xi := [[Xi ∈ A]], with M := E(xi). The number D of times the MC is in A on

1, . . . ,m is such that, by standard theory of ergodic Markov chains,

E(D) = mM,

V(D) = E

[ m
∑

i=1

(xi −M)2 + 2

m−1
∑

i=1

m
∑

j=i+1

(xi −M)(xj −M)

]

.

If

E[(xi −M)(xj −M)] = 0, j ≥ i+ 2,

then, setting B := E(xixi+1), we obtain

V(D) = mM(1 −M) + 2(m− 1)(B −M2).

But we have a central limit theorem for MC (again, see Chung,(3)). This gives

D − E(D)
√

V(D)
∼ N (0, 1), m→ ∞.
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10.2 Number of descents values in some interval

Here, the states of the MC are couples YtYt+1 with geometric distribution. Also the MC starts with the

stationary distribution pqi−1pqj−1, hence m = n− 1. And the couples YtYt+1, YuYu+1 are independent

as soon as u > t+ 1.

If we are interested in the asymptotic (gaussian) distribution of the number of descents initial values in

some interval [τ, τ + ∆], we compute

M =

τ+∆
∑

i=τ

pqi−1(1 − qi−1),

B =

τ+∆
∑

i=τ+1

pqi−1
i−1
∑

j=τ

pqj−1(1 − qj−1).

Of course, an explicit formula could be written for M resp. B.

11 Permutations

Starting from n geom(p) RVs, as q → 1, we can derive the asymptotic properties of first and second

descents, in a large permutation. We will consider large size (n → ∞) permutations of {1, . . . , n}, or

n-permutations for short. It is well known that all rank statistics of an n-permutation can be derived from

the corresponding ones of a sequence of n geom(p) RVs as q → 1. But, of course, it is not possible

to directly deduce the moments of the beginning (initial height) of the first descent of a n-permutation

from the corresponding moments of the geometric variables statistic, as q → 1. However, the asymptotic

distribution of this RV can be derived as follows. Let q = 1 − ε. This gives an asymptotic distribution

function for each geom RV K (ε→ 0)

1 − qi ∼ F (i) := 1 − e−iε.

Set U = F (K); U is asymptotically distributed as a uniform[0, 1] RV. Let us consider n geom(p) RVs

K1, . . . ,Kn. If we scale the corresponding U variables with n (i.e. multiply by n), take the integer part,

we have asymptotically a permutation on n, for large n. More precisely the rank of Ui is the value of the

ith element of the permutation. This gives (asymptoticaly, we consider u as a continuous variable)

u = 1 − e−iε, du = ε(1 − u)di, i = − ln(1 − u)/ε.

Set g(u) := f1(i) as given by (8.1). Using n geometric RVs instead of an infinite sequence of ones

introduces only an exponentially small error.

For instance, this leads for the initial height of the first descent in a large permutation, using Euler-

Maclaurin, to

E(I1) ∼ n

∫ 1

0

g(u)u
du

ε(1 − u)
, ε→ 0.

We have by simple algebra,

g(u) ∼ ε(1 − u)u+ euu(1 − e−u)ε(1 − u), ε→ 0
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and the asymptotic density of I1/n is given by (we multiply by di = du/(ε(1 − u)))

h1(u) = u[1 + eu(1 − e−u)] = ueu = u

∞
∑

j=0

uj

j!
.

But this has a clear direct probabilistic interpretation: if Uj+1 = u, the probability

P[U1 ≤ U2 ≤ · · · ≤ Uj ≤ Uj+1 ≥ Uj+2] = u
uj

j!
. (11.1)

Again, as n is large, we can use an infinite summation on j, with exponentially small error terms.

Note that
∫ 1

0

h1(u)du = 1,

as expected, and

E(I1) ∼ n

∫ 1

0

h1(u)udu = n(e− 2) := nE1,0, n→ ∞,

which conforms to Theorem 9 of (6). All moments can be derived. For instance

E(I2
1 ) ∼ n2

∫ 1

0

h1(u)u
2du = n2(6 − 2e) := n2E2,0,

E(I3
1 ) ∼ n3E3,0, with E3,0 = 9e− 24.

A general expression can be derived as follows. We have (we drop the second index)

Ek =

∫ 1

0

h1(u)u
kdu = e− (k + 1)Ek−1, E0 = 1.

This first order recursion can be solved by iteration:

Ek = (k + 1)!(−1)k

[

e

k
∑

i=1

(−1)i

(i+ 1)!
+ 1

]

. (11.2)

By convention, E−1 =
∫ 1

0
eudu = e− 1. Note that Ek is a linear function of e, that we will write as

Ek := Dk,0 +Dk,1e.

We could derive similar expressions for J1.

The errors terms, as n→ ∞ can be derived as follows. The rank R of Uj+1 is such that R− (j + 2) is

Binomial(n − (j + 2), u), if Uj+1 has value u and corresponds to the first descent. Indeed, j values are

already below u (on the left) and one on the right. If d values among the n− (j + 2) remaining ones are

below u, then Uj+1 possesses the rank d+ j + 2. So the (conditioned on u, j) moments of R/n are given

by the characteristic function

F :=
[

1 + u
(

eiθ/n − 1
)]n−(j+2)

eiθ(j+2)/n,
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from which we derive

E(R/n|j) ∼ u+
−u(u− 1)(j + 2)

n
,

E(R2/n2|j) ∼ u2 +
−u(u− 1)(5 + 2j)

n
.

With (11.1), we multiply by uuj

j! , and sum on j, this gives

∞
∑

j=0

u
uj

j!
E(R/n|j) ∼ h1(u)u+

−euu(u− 1)(u+ 2)

n
,

∞
∑

j=0

u
uj

j!
E(R2/n2|j) ∼ h1(u)u

2 +
−euu2(u− 1)(2u+ 5)

n
.

Hence, integrating on u ∈ [0..1], we finally obtain

E(I1/n) ∼ E1,0 +
e− 2

n
,

E(I2
1/n

2) ∼ E2,0 +
20 − 7e

n
.

The first expression fits with Theorem 9 in (6); the second moment wasn’t computed in this paper.

As the first and second descent I1, I2 are not independent, their joint moments are of some interest.

They can be asymptotically computed as follows. First, from (7.3), P[I2 = i2|I1 = i1] leads to

g1(u2, u1) = [[u2 < u1]]ε(1 − u2)
u2

u1
+

∫ min(u1,u2)

0

dv1
ε(1 − v1)

ε
1 − v1
u1

eu2−v1εu2(1 − u2)

= [[u2 < u1]]ε(1 − u2)
u2

u1
+ eu2εu2

1 − u2

u1
(1 − e−min(u1,u2)).

This leads to the Markov kernel

h(u2, u1) =
g1(u2, u1)

ε(1 − u2)
= [[u2 < u1]]

u2

u1
+ eu2u2

1

u1
(1 − e−min(u1,u2)). (11.3)

This can also be derived from the uniform[0, 1] random variables properties.

The joint moment E(Ik
1 I

l
2) is asymptotically given given by n2Ek,l, with

Ek,l =

∫ 1

0

∫ 1

0

h1(u1)h(u2, u1)u
k
1u

l
2du1du2

=

∫ 1

0

u1e
u1

∫ 1

0

uk
1u

l
2

1

u1

[

[[u2 < u1]]u2 + eu2u2(1 − e−min(u1,u2))
]

du1du2.

The first values of Ek,l are given in Table 1.
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lk
❩

❩
❩ 0 1 2

0 1 e2 − e− 4 −2e2 − e+ 18
1 e− 2 −7e/2 + 10 20e− 54
2 6 − 2e e2 + 32e/3 − 36 −2e2 − 235e/3 + 228

Tab. 1: Ek,l

Let us denote by hi(u) the asymptotic density of Ii/n. For instance,

h2(u) =

∫ 1

0

h1(u1)h(u, u1)du1 = u[e1+u − ueu − eu] = ueu[−1 − u+ e],

and similarly for h3(u). This gives eventually

h3(u) =

∫ 1

0

h2(u2)h(u3, u2)du2 = ueu[(u+ u2/2) + e(−u− 2) + e2].

The convergence to the stationary distribution h(u) = 2u is very fast. It would be interesting to have a

precise rate of convergence, but we have not pursued this approach so far. h(u) can be derived from (7.4),

or directly by considering two successive RVs Uk. Figure 4 gives h(u), h1(u), h2(u)

0

0.5

1

1.5

2

2.5

0.2 0.4 0.6 0.8 1

u

◦ : h1(u)
✷ : h2(u)

line : h(u)

Fig. 4: h(u), h1(u), h2(u)

The difference h3(u) − h(u) is given in Figure 5.
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–0.004

–0.002

0

0.002

0.004

0.2 0.4 0.6 0.8 1

u

Fig. 5: h3(u) − h(u)

A general expression for hi(u) can be computed as follows: we observe that hi(u) is of the form

hi(u) = ueu
i−1
∑

k=0

ekPi,k(u),

where

Pi,k(u) =

i−k−1
∑

l=0

Pi,k,lu
l, P1,0(u) = 1.

But, setting El := Dl,0 +Dl,1e, from (11.2) and (11.3),

hi(u) =

∫ 1

0

hi−1(v)h(u, v)dv

=

∫ 1

0

hi−1(v)
1

v

[

[[u < v]]u+ euu(1 − e−min(v,u))
]

dv

=

∫ u

0

hi−1(v)
1

v
euu(1 − e−v)dv +

∫ 1

u

hi−1(v)
1

v
euudv

=

∫ 1

0

hi−1(v)
1

v
euudv −

∫ u

0

hi−1(v)
1

v
euue−vdv

= euu

[

i−2
∑

k=0

ek

∫ 1

0

Pi−1,k(v)evdv −
i−2
∑

k=0

ek

∫ u

0

Pi−1,k(v)dv

]

= euu

[

i−2
∑

k=0

ek
i−k−2
∑

l=0

Pi−1,k,l[Dl−1,0 +Dl−1,1e] −
i−2
∑

k=0

ek
i−k−2
∑

l=0

Pi−1,k,l
ul+1

l + 1

]

.
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This leads to the following recurrence

Pi,i−1(u) = 1,

Pi,0,0 =

i−2
∑

l=0

Pi−1,0,lDl−1,0,

Pi,k,0 =

i−k−2
∑

l=0

Pi−1,k,lDl−1,0 +

i−k−1
∑

l=0

Pi−1,k−1,lDl−1,1, k = 1, . . . , i− 2,

Pi,k,l = −Pi−1,k,l−1/l, k = 0, . . . , i− 2, l = 1, . . . , i− k − 1.

Finally, asymptotically, given Ik, Jk is uniform[1 . . . Ik − 1].
LetD denote the number of descents initial values in some interval [nτ, n(τ+∆)]. D is asymptotically

Gaussian, with

E(D) ∼ mM,

V(D) ∼ n[M(1 −M) + 2(B −M2]),

and

M =

∫ τ+∆

τ

udu,

B =

∫ τ+∆

τ

du1

∫ u1

τ

u2du2.

12 Conclusion

In this paper, we have made a combinatorial and probabilistic study of initial and end heights of first,

second, . . . descents in samples of geometrically distributed random variables and in permutations. Several

other (similar) models can be analyzed with our tools, let us mention: the weak model and/or ascents with

the probabilistic approach, k-descents, size d or more descents, (see (2)), last descents, (see (7)), k-ascents

with a combinatorial approach (see (2)), etc.

We leave these topics to future work (or to the interested reader), in order to keep the length of the paper

within reasonable limits.
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Appendix

A Some combinatorial identities

We will use intensively Heine’s formula:

∑

m≥0

(a)m(b)mt
m

(q)m(c)m
=

(b)∞(at)∞
(c)∞(t)∞

∑

m≥0

(c/b)m(t)mb
m

(q)m(at)m
.

Several q-combinatorial relations are deduced from Heine.

pz
∑

m≥1

q2m

(pzq)m
=

1

z

[

1

(pqz)∞
− 1

]

− q. This is Thm.1 in (6). (A.1)

∑

m≥0

(pz)mq
m =

1

pz
[1 − (pz)∞]. This is (5) in (6). (A.2)

pz
∑

m≥1

qm

(pz)m+1
=

1

1 − pz

[

1

(pqz)∞
− 1

]

. This is implicitly used in (6). (A.3)

Heine with t = q, a = 0, b = q, c = pzq, and (A.2).
∑

m≥1

pqm(1 − qm)

(p)m+1
= 1. Application of (A.3), (A.1). (A.4)

∑

m≥0

(pz)mq
2m =

1

(pz)2

[

1 − (pz)∞ −
1 − pz

q
+

(pz)∞
q

]

. This is (6) in (6). (A.5)

∑

k≥1

pk

(q)k
= −1 +

1

(p)∞
. Heine with t = p, a = 0, b = q, c = q. (A.6)

∑

k≥0

tk

(pq)k
=

(q)∞
(pq)∞(t)∞

∑

m≥1

(p)m(t)mq
m

(q)m
. Heine with a = 0, b = q, c = pq.

(A.7)

(p)j−1

∞
∑

i=j

pqi−1(1 − qi−1)

(p)i
= qj−1. Application of (A.1), (A.3). (A.8)

∑

0≤j<J

pqj(p)j = p
∑

j≥0

qj(p)j − p
∑

j≥J

qj(p)j

= p
1

p

[

1 − (p)∞

]

− pqJ(p)J
1

pqJ

[

1 − (pqJ)∞

]

= 1 − (p)∞ − (p)J

[

1 − (pqJ)∞

]

= 1 − (p)J . By (A.2). (A.9)
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∑

i1>i0

pqi1−1

(p)i1

=
1

(p)i0−1(1 − pqi0−1)

[

1

(pqi0)∞
− 1

]

=
1

(p)i0

[

1

(pqi0)∞
− 1

]

=

[

1

(p)∞
−

1

(p)i0

]

. By (A.3). (A.10)

B Identification of (9.1) and (3.6)

E(I1) = p
∑

i≥0

qi

(p)i+1
(1 − qi)(i+ 1)

= p
∑

i≥0

i
∑

h=0

qi

(p)i+1
(1 − qi)

=
p

q

∑

h≥0

∑

i≥h

qi

(pq)i
−
p

q

∑

h≥0

∑

i≥h

q2i

(pq)i

=
p

q

∑

h≥0

qh

(pq)h

∑

i≥0

qi

(pqh+1)i
−
p

q

∑

h≥0

q2h

(pq)h

∑

i≥0

q2i

(pqh+1)i
.

Now use (A.3):

∑

i≥0

qi

(pqh+1)i
=

1

pqh(pqh+1)∞
+ 1 −

1

pqh
.

We need also this (use(A.1)):

∑

i≥0

q2i

(pqh+1)i
=

1

pq2h

1

(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1.

We now plug these two results in:

E(I1) =
p

q

∑

h≥0

qh

(pq)h

∑

i≥0

qi

(pqh+1)i
−
p

q

∑

h≥0

q2h

(pq)h

∑

i≥0

q2i

(pqh+1)i

=
p

q

∑

h≥0

qh

(pq)h

[

1

pqh(pqh+1)∞
+ 1 −

1

pqh

]

−
p

q

∑

h≥0

q2h

(pq)h

[

1

pq2h

1

(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1

]

=
p

q

∑

h≥0

1

(pq)h

[

1

p(pqh+1)∞
+ qh −

1

p

]

−
p

q

∑

h≥0

1

(pq)h

[

1

p(pqh+1)∞
−

1

p
−
qh+1

p
+ q2h

]

=
p

q

∑

h≥0

1

(pq)h

[

qh +
qh+1

p
− q2h

]
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=
p

q

∑

h≥0

1

(pq)h

[

qh − q2h

]

+
∑

h≥0

qh

(pq)h

=
p

q

∑

h≥0

qh

(pq)h
−
p

q

∑

h≥0

q2h

(pq)h
+

∑

h≥0

qh

(pq)h

=
1

q

∑

h≥0

qh

(pq)h
−
p

q

∑

h≥0

q2h

(pq)h

=
1

q

[

1

p(pq)∞
+ 1 −

1

p

]

−
p

q

[

1

p

1

(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

q

[

q

p(pq)∞
−
q

p
+ 2q

]

=
1

p(pq)∞
−

1

p
+ 2.

Since
1

p(pq)∞
−

1

p
+ 2 = 1 −

q

p
+

q

p(p)∞
,

we established the formula (3.6)

E(I1) = 1 +
q

p

(

− 1 +
1

(p)∞

)

.

C Computation of limt→1

[

1
(pq)∞

1
1−t −

∑

k≥0
tk

(pq)k

]

To compute this limit, we use (A.7):

lim
t→1

[

1

(pq)∞

1

1 − t
−

∑

k≥0

tk

(pq)k

]

= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(t)∞

∑

m≥0

(p)m(t)mq
m

(q)m

]

= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(t)∞

−
(q)∞

(pq)∞(t)∞

∑

m≥1

(p)m(t)mq
m

(q)m

]

= lim
t→1

[

1

(pq)∞

1

1 − t
−

(q)∞
(pq)∞(1 − t)(qt)∞

]

−
(q)∞

(pq)∞(q)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞
lim
t→1

[

1

1 − t
−

(q)∞
(1 − t)(qt)∞

]

−
1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m
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=
1

(pq)∞
lim
t→1

(qt)∞ − (q)∞
(1 − t)(qt)∞

−
1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞
lim
t→1

d
dt (qt)∞

∣

∣

t=1
(t− 1)

(1 − t)(qt)∞
−

1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

= −
1

(pq)∞(q)∞

d

dt
(qt)∞

∣

∣

t=1
−

1

(pq)∞

∑

m≥1

(p)m(q)m−1q
m

(q)m

=
1

(pq)∞

∑

k≥1

qk

1 − qk
−

1

(pq)∞

∑

m≥1

(p)mq
m

1 − qm

=
1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
.

D Computation of S0, S1, S2, S3, S4

S0 :=
∑

0≤i<j

(i+ 1)qi(1 − qi)
1

(p)i+1
=

∑

0≤i<j

∑

0≤h≤i

qi(1 − qi)
1

(p)i+1

=
∑

0≤h≤i<j

qi

(p)i+1
−

∑

0≤h≤i<j

q2i

(p)i+1

=
∑

0≤h<j

∑

0≤i<j−h

qi+h

(p)i+h+1
−

∑

0≤h<j

∑

0≤i<j−h

q2i+2h

(p)i+h+1

=
∑

0≤h<j

qh

(p)h+1

∑

0≤i<j−h

qi

(pqh+1)i
−

∑

0≤h<j

q2h

(p)h+1

∑

0≤i<j−h

q2i

(pqh+1)i
.

We do two auxiliary calculation (with (A.3)):

S1 :=
∑

0≤i<I

qi

(pqh+1)i

=
∑

i≥0

qi

(pqh+1)i
−

∑

i≥I

qi

(pqh+1)i

=
1

pqh(pqh+1)∞
+ 1 −

1

pqh
−

qI

(pqh+1)I

∑

i≥0

qi

(pqh+I+1)i

=
1

pqh(pqh+1)∞
+ 1 −

1

pqh
−

qI

(pqh+1)I

[

1

pqh+I(pqh+I+1)∞
+ 1 −

1

pqh+I

]

= 1 −
1

pqh
−

qI

(pqh+1)I
+

1

pqh(pqh+1)I
,
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and with (A.1):

S2 :=
∑

0≤i<I

q2i

(pqh+1)i

=
∑

i≥0

q2i

(pqh+1)i
−

∑

i≥I

q2i

(pqh+1)i

=
1

pq2h(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1 −

q2I

(pqh+1)I

∑

i≥0

q2i

(pqh+I+1)i

=
1

pq2h(pqh+1)∞
−

1

pq2h
−

1

pqh−1
+ 1 −

q2I

(pqh+1)I

[

1

pq2h+2I(pqh+I+1)∞
−

1

pq2h+2I
−

1

pqh+I−1
+ 1

]

= −
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)I
+

qI

pqh−1(pqh+1)I
−

q2I

(pqh+1)I
.

Therefore

S0 =
∑

0≤h<j

qh

(p)h+1

∑

0≤i<j−h

qi

(pqh+1)i
−

∑

0≤h<j

q2h

(p)h+1

∑

0≤i<j−h

q2i

(pqh+1)i

=
∑

0≤h<j

qh

(p)h+1

[

1 −
1

pqh
−

qj−h

(pqh+1)j−h
+

1

pqh(pqh+1)j−h

]

−
∑

0≤h<j

q2h

(p)h+1

[

−
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)j−h
+

qj−h

pqh−1(pqh+1)j−h
−

q2(j−h)

(pqh+1)j−h

]

=
∑

0≤h<j

[

qh

(p)h+1
−

1

p(p)h+1
−

qj

(p)j+1
+

1

p(p)j+1

]

−
∑

0≤h<j

[

−
1

p(p)h+1
−

qh+1

p(p)h+1
+

q2h

(p)h+1
+

1

p(p)j+1
+

qj+1

p(p)j+1
−

q2j

(p)j+1

]

=
∑

0≤h<j

[

qh

p(p)h+1
−

qj

p(p)j+1
−

q2h

(p)h+1
+

q2j

(p)j+1

]

.

Recalling the expressions for S1 and S2 that we just derived, we get

S0 =
∑

0≤h<j

[

qh

pq(pq)h
−

q2h

q(pq)h

]

−
jqj

p(p)j+1
+

jq2j

(p)j+1

=
1

pq

[

1 −
1

p
−

qj

(pq)j
+

1

p(pq)j

]

−
1

q

[

−
2q

p
+

1

p(pq)j
+

qj+1

p(pq)j
−

q2j

(p)j

]

−
jqj

p(p)j+1
+

jq2j

(p)j+1
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=
1

pq
−

1

p2q
−

qj

pq(pq)j
+

1

p2q(pq)j
+

2

p
−

1

pq(pq)j
−

qj

p(pq)j
+

q2j

q(p)j
−

jqj

p(p)j+1
+

jq2j

(p)j+1

=
2

p
−

1

p2
+

q

p2(p)j+1
−

(1 + q)qj

pq(p)j+1
+

q2j

q(p)j
−

jqj

p(p)j+1
+

jq2j

(p)j+1
.

Next, we want to compute

S3 :=
∑

j≥0

p3q3j

q(p)j+1
.

We will use Heine with t = pqh, a = 0, c = q, b = q:

∑

i≥0

q3i

(pqh+1)i
=

(q)2
(pqh+1)∞

∑

m≥0

(pqh)m(q3)m

(q)m
qm

=
(q)2

(pqh+1)∞

(pqh)∞(q4)∞
(q)∞

∑

m≥0

(q)m

(q)m(q4)m
(pqh)m

=
1 − pqh

1 − q3

∑

m≥0

1

(q4)m
(pqh)m

=
(1 − pqh)(q)3

(pqh)3

∑

m≥3

1

(q)m
(pqh)m

=
(1 − pqh)(q)3

(pqh)3

[

1

(pqh)∞
− 1 − qh −

(pqh)2

(q)2

]

=
(q)3

(pqh)3
1

(pqh+1)∞
−

(1 − pqh)(q)3
p3q3h

−
(1 − pqh)(q)3

p3q2h
−

(1 − pqh)(1 − q3)

pqh
.

From this we derive (set h = −1)

S3 :=
∑

j≥0

p3q3j

q(p)j+1
=
p3

q

[

(q)3
(p/q)3

1

(p)∞
−

(1 − p/q)(q)3
p3q−3

−
(1 − p/q)(q)3

p3q−2
−

(1 − p/q)(1 − q3)

p/q

]

=
p3

q

[

(q)3q
3

p3

1

(p)∞
−
q2(q − p)(q)3

p3
−
q(q − p)(q)3

p3
−

(q − p)(1 − q3)

p

]

=
(q)3q

2

(p)∞
− q(q − p)(q)3 − (q − p)(q)3 −

p2(q − p)(1 − q3)

q
.

Now we compute (we use S2)

S4 :=
∑

j≥0

jq2j

(p)j+1
=

∑

h≥0

∑

j≥h

q2j

(p)j+1
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=
∑

h≥0

q2h

(p)h+1

∑

j≥0

q2j

(pqh+1)j

=
∑

h≥0

q2h

(p)h+1

[

−
1

pq2h
−

1

pqh−1
+ 1 +

1

pq2h(pqh+1)∞

]

= −
1

p

∑

h≥0

1

(p)h+1

[

1 −
1

(pqh+1)∞

]

−
q

p

∑

h≥0

qh

(p)h+1
+

∑

h≥0

q2h

(p)h+1

=
1

pq

∑

h≥0

[

1

(pq)∞
−

1

(pq)h

]

−
1

p

[

1

p(pq)∞
+ 1 −

1

p

]

+
1

q

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

=
1

pq

1

(pq)∞

∑

k≥1

[1 − (p)k]qk

1 − qk
−

1

p

[

1

p(pq)∞
+ 1 −

1

p

]

+
1

q

[

1

p(pq)∞
−

1

p
−
q

p
+ 1

]

,
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