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This work is concerned with the perimeter enumeration of column-convex polyominoes. We consider both the rect-

angular lattice and the hexagonal lattice. For the rectangular lattice, two formulae for the generating function already

exist, and neither of them seems to admit further simplification. We first rederive those two formulae (so as to

make the paper self-contained), and then we enrich the rectangular lattice generating function with some additional

variables. Subsequently, we make a change of variables, which (nearly) produces the hexagonal lattice generating

function. This latter generating function was first found by Lin and Wu in 1990. However, our present formula, in

addition to having a simpler form, also allows a substantially easier Taylor series expansion. As to the methods, our

approach is inspired by algebraic languages, whereas Lin and Wu used the Temperley methodology.

Keywords: Column-convex polyomino, Rectangular lattice, Hexagonal lattice, Perimeter generating function, Se-

quence of tailed polyominoes, Wall polyomino

1 Introduction

The enumeration of polyominoes (by perimeter and/or area) is a topic of great interest to physicists,

chemists and combinatorialists alike. So far nobody has succeeded to count the set of all polyominoes.

That set could easily remain beyond reach for a very long time. In view of this, it is easy to understand

that those subsets of polyominoes which are reasonably numerous, but amenable to counting, enjoy con-

siderable popularity. At present, not a wide variety of such subsets is known. In fact, each of today’s

numerous-yet-tractable sets of polyominoes is in some way derived either from column-convex polyomi-

noes or from directed animals (or from both) (i). Column-convex polyominoes were first presented in

Temperley’s 1956 paper [15], and directed animals were first presented in Dhar, Phani and Barma’s 1982

paper [5]. (It is plausible that directed animals appeared comparatively late because they do not submit to

column-by-column approaches.)

On some lattices (such as e.g. the square lattice), directed animals have an algebraic area generating

function, which satisfies a quadratic equation [1, 12, 14]. Moreover, stacked directed animals and multi-

directed animals (two recent models due to Bousquet-Mélou and Rechnitzer [2]) substantially generalize

square-lattice directed animals and still have nice-looking area generating functions. On the other hand,

the perimeter generating function for directed animals is not known, and is probably very complicated.

(i) In this paper, we somewhat imprecisely use the term “directed animal” for a directed site animal.
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Column-convex polyominoes have a rational area generating function and an algebraic perimeter gen-

erating function; the latter generating function satisfies a quartic equation. In detail, the cells of a column-

convex polyomino can be either squares or hexagons (other shapes are not so popular), but in both cases

the generating functions have the nature just described.

Temperley [15] dealt with column-convex polyominoes with square cells. He computed the area gener-

ating function and started computing the perimeter generating function (which we denote Gsq), but he had

to stop because the formulae became too bulky. Later on, Temperley’s computations were completed by

use of computer algebra systems. That was done in Brak, Guttmann and Enting [3], and in Lin [10]. Nev-

ertheless, it was in Delest [4] that a formula for Gsq was given for the first time; the papers [3, 10] appeared

after [4]. Delest did not follow Temperley’s approach. Instead, she used the Dyck-Schützenberger-Viennot

method, a method in which polyominoes are encoded by words of algebraic languages. However, Delest’s

formula for Gsq was very complicated. This is similar for the formulae of [3, 10]. (Our understanding is

granted. Erdős has stated that no one blames a mathematician if his or her first solution of a problem is

messy [13, p. 289].) Later on, Feretić and Svrtan [8] recomputed Gsq by the algebraic-language method,

then upgraded the Temperley method, and then applied the upgraded method to derive Gsq once again. As

a result, in [8] there are two formulae for Gsq (equivalent to one another), each of which is considerably

simpler than the formulae of [3, 4, 10]. In the end, Feretić [6, 7] remarked that column-convex polyomi-

noes are closely related to wall polyominoes of odd width. This remark allowed an easy rederivation of

Gsq , and also accounted for the form which Gsq has.

As to column-convex polyominoes with hexagonal cells, their area generating function was first found

by Klarner [9], and their perimeter generating function (which we denote Ghex) was first found by Lin

and Wu [11]. Subsequently, Feretić and Svrtan [8] recomputed Ghex by two methods, just as they did

with Gsq . So, in [8] there are two formulae for Ghex, too. Each of these two formulae is shorter than Lin

and Wu’s formula for Ghex. But, unfortunately, each of Feretić and Svrtan’s [8] two formulae for Ghex is

seriously wrong. (The moral is that every new formula needs a careful check.) Since [8] was published,

no attempt has been made to derive Ghex once again. For a fairly long time, Lin and Wu’s formula has

remained the only—and hence the nicest—correct formula for Ghex. In this paper, however, we shall

express Ghex more simply and “Taylor-expandably” than Lin and Wu did. As to a check, we engaged

Maple to expand our new expression for Ghex, and then also Lin and Wu’s expression for Ghex, in a

Taylor series through thirtieth-order terms. The two expansions agreed, and therefore we are convinced

that our new formula is correct.

This paper continues as follows. In Section 2, we state the necessary definitions. In Sections 3 to 5, we

repeat Feretić’s [6] derivation of Gsq . (The repeated derivation appears in the present one as an essential

part.) In particular, in Section 4 we find K, the perimeter generating function for wall polyominoes. In

Section 6, we enrich K with an extra variable, which keeps track of repeats. In Section 7, we digress to

state the other formula for Gsq . In Section 8, we prove that the two formulae for Gsq are equivalent. In

Sections 9 to 12, we study the properties of wall polyominoes of odd width. Each section is entitled after

one or two properties therein considered. In Section 13, wall polyominoes of odd width are already under

our control, and we recast their generating function as a generating function for general column-convex

polyominoes. In Section 14, a change of variables, together with a bit of gluing, gives us the series Ghex.

Finally, in Section 15, we outline a proof that the formula for Ghex found in Section 14 is equivalent to

Lin and Wu’s formula for Ghex.
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Fig. 1: (a) Square lattice and (b) hexagonal lattice.

2 Annotated definitions

A plane has three regular tilings: one with squares, one with hexagons, and one with triangles. The

square, hexagonal and triangular tiles give rise to the square, hexagonal and triangular lattices, respec-

tively. The hexagonal lattice is also known as the honeycomb lattice. In this paper, we confine our attention

to the square and hexagonal lattices. We draw these two lattices so that every tile has two horizontal edges.

See Fig. 1.

In a regularly tiled plane, a tile is often referred to as a cell. A polyomino is a finite union of cells which

possesses a connected interior. A polyomino P is column-convex if on the boundary of P there are not

more than two horizontal edges having the same horizontal projection. See Fig. 2.

The cells of a column-convex polyomino P fall into classes according to their horizontal projection.

Each of those classes is called a column of P .

We denote the perimeter generating functions for column-convex polyominoes by Gsq = Gsq(x, y)
and Ghex = Ghex(x, y, z). The series Gsq refers to the square lattice. It is defined as follows:

Gsq(x, y) =
∑

P a
column−convex

polyomino

xNo. of horizontal edges of P · yNo. of vertical edges of P . (1)

The series Ghex refers to the hexagonal lattice, and is defined by

Ghex(x, y, z)

=
∑

P a
column−convex

polyomino

xNo. of horizontal edges of P · yNo. of edges of P with a +60◦ slope · zNo. of edges of P with a −60◦ slope.
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Fig. 2: Column-convex polyominoes on (a) the square lattice and (b) the hexagonal lattice.
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Fig. 3: A tapo.

In the rest of this section, as well as in the next ten sections, we concentrate on the square lattice.

For certain prominent points of a column-convex polyomino, we use the name poles and we write

SW, NW, NE and SE. For example, the SW pole is the lower end of the left border of the leftmost

column. Similarly for the other poles. See Fig. 2 again.

Imagine a column-convex polyomino P with a “tail” t of nonnegative integer length, going straight

down from the SW pole of P . We call the union P ∪ t a tailed polyomino or, briefly, a tapo. See Fig. 3.

The figure also shows the poles of a tapo: the SW pole is the lower end of the tapo’s tail, while the other

three poles are inherited from the underlying column-convex polyomino.

For n ∈ N, let T1 be a column-convex polyomino, and let T2, T3, . . . , Tn be tapoes. Suppose that, for

every i ∈ {2, 3, . . . , n}, the SW pole of Ti coincides with the NE pole of Ti−1. Then we call the union
⋃n

i=1 Ti a stapo. (The name “stapo” is an abbreviation for a sequence of tailed polyominoes (ii).) Note

that the stapoes with n = 1 are simply column-convex polyominoes. See Fig. 4.

We denote the perimeter generating functions for tapoes and stapoes by H and I , respectively. Both

H and I have two variables, x and y. In the series H , the exponent of x means the number of horizontal

edges, and the exponent of y in principle means the number of vertical edges. For computational conve-

nience, however, we adopt the following agreement: if a tapo T has a tail of length k, and the rest of T is

a column-convex polyomino with 2i horizontal edges and 2j vertical edges, then the contribution of T to

the series H is x2iy2j+2k (and not x2iy2j+k). The series I is defined likewise. That is, if a stapo S has 2i
horizontal edges, 2j vertical edges not belonging to tails, and k vertical edges belonging to tails, then the

contribution of S to the series I is again x2iy2j+2k.

(ii) In the area of polyominoes there also exist stack polyominoes, close relatives of Ferrers diagrams. Hence, it should be stressed

that “stapo” could be, but is not an abbreviation for “stack polyomino”.
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Fig. 4: A stapo.
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By virtue of the above definitions, we have

H = Gsq(1 + y2 + y4 + y6 + . . .) =
Gsq

1 − y2
(2)

and

I = Gsq(1 + H + H2 + H3 + . . .) =
Gsq

1 − H
. (3)

Let J = I
1−y2 . We can think of J as the perimeter generating function for objects which are very

similar to stapoes, the only difference being that the leftmost column-convex polyomino, too, is allowed

to have a tail. From (2) and (3) it follows that

J =
H

1 − H
. (4)

Hence

H = 1 − 1

1 + J
. (5)

A column-convex polyomino P is a wall polyomino if the bottom sides of the columns of P all lie on

the same horizontal line. Wall polyominoes are also known as bargraph polygons.

We denote the perimeter generating function for wall polyominoes by K = K(x, y). The definition of

K is

K(x, y) =
∑

P a wall polyomino

xNo. of columns of P · yNo. of vertical edges of P .

Thus, the roles of x in Gsq and in K are somewhat different.

3 A bijection between stapoes and

wall polyominoes of odd width

Stapoes are interesting because of a simple bijection which maps them onto the wall polyominoes of

odd width. Let S be a stapo with n columns. Let Yi(S) and yi(S) be the maximal ordinate and the

minimal ordinate of the ith column of S. With S we associate ϕ(S), a wall polyomino having 2n − 1
columns. From left to right, the heights of those columns are

Y1(S) − y1(S), Y2(S) − y1(S), Y2(S) − y2(S), Y3(S) − y2(S),

. . . , Yn−1(S) − yn−1(S), Yn(S) − yn−1(S), and Yn(S) − yn(S).

Thus, the 1st, 3rd, 5th, . . . columns of the wall polyomino ϕ(S) are copies of the 1st, 2nd, 3rd, . . . columns

of the stapo S. The 2nd, 4th, 6th, . . . columns of ϕ(S) tell us how the 2nd, 3rd, 4th, . . . columns of S are

placed with respect to their left neighbour columns. For example, if the 6th column of ϕ(S) is of height 5,

then the top of the 4th column of S lies 5 lattice units higher than the bottom of the 3rd column of S. See

Fig. 5.

With the above-stated agreement that a tail of length k has 2k vertical edges, the vertical perimeters of S
and ϕ(S) relate in the simplest way. Namely, they are equal. On the other hand, the horizontal perimeter
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Fig. 5: Under the bijection ϕ, the stapo of Fig. 4 is mapped into this wall polyomino.

of S is by one greater than the number of columns of ϕ(S). So, the perimeter generating function for

stapoes is x times the perimeter generating function for wall polyominoes of odd width. That is,

I =
x

2
· [K(x, y) − K(−x, y)]. (6)

Now we shall compute K, and then it will be no problem to obtain I , J , H and Gsq one after another.

4 The perimeter generating function for wall polyominoes

Let W denote the set of all wall polyominoes. Let Wα denote the set of wall polyominoes that have no

one-celled columns. For P ∈ W \ Wα, we define leone(P ) to be the leftmost one-celled column of P .

We partition the set W \ Wα into four subsets: Wβ , Wγ , Wδ and Wǫ. The definitions are:

• Wβ := {P ∈ W \ Wα : leone(P ) is both the leftmost and the rightmost column of P},

• Wγ := {P ∈ W \ Wα : leone(P ) is the leftmost, but not the rightmost column of P},

• Wδ := {P ∈ W \ Wα : leone(P ) is the rightmost, but not the leftmost column of P},

• Wǫ := {P ∈ W \ Wα : leone(P ) is neither the leftmost nor the rightmost column of P}.

We write Kα, Kβ , Kγ , Kδ and Kǫ to denote the parts of the series K that come from the sets Wα, Wβ ,

Wγ , Wδ and Wǫ, respectively. With one eye on Fig. 6, we observe the following.

Between the sets W and Wα there is an obvious bijection: Below a polyomino P ∈ W , we put a “pad”

of height one. (The pad is as wide as P is.) In this way, the vertical perimeter increases by two. Therefore,

we have Kα = y2K.

The set Wβ has only one element, namely the one-celled polyomino. So, Kβ = xy2.

There also exists an obvious bijection between the sets W and Wγ : Just to the left of a polyomino

P ∈ W , we place an extra column of height one. Under this bijection, the number of columns increases

by one and the vertical perimeter remains the same. So, Kγ = xK.
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Fig. 6: The bijections used in establishing equation (7).
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There is yet another obvious bijection: Given P ∈ Wα, we map it into Wδ by placing an extra column

of height one just to the right of P . Under this bijection, too, the number of columns increases by one,

while the vertical perimeter remains the same. So, Kδ = xKα = xy2K.

Finally, let P ∈ Wǫ. We decompose P into two wall polyominoes, say Q1 and Q2. The polyomino Q1

is a left factor; it begins with the first column of P and ends with the column which is the left neighbour

of leone(P ). Thus, Q2 begins with leone(P ) and ends with the last column of P .

We see that Q1 lies in Wα and that Q2 lies in Wγ . The number of columns of P is just the sum of the

numbers of columns of Q1 and Q2. The vertical perimeter of P is equal to vertical perimeter of Q1 plus

vertical perimeter of Q2 minus two. Moreover, the decomposition P 7→ (Q1, Q2) is a bijection from Wǫ

to the Cartesian product Wα × Wγ . Altogether, we have Kǫ = y−2KαKγ = xK2.

Since K = Kα + Kβ + Kγ + Kδ + Kǫ, it follows that the generating function K satisfies a quadratic

equation:

K = y2K + xy2 + xK + xy2K + xK2,

which can be written as

xK2 + [−(1 − y2) + x(1 + y2)]K + xy2 = 0. (7)

Solving equation (7), we obtain the following proposition.

Proposition 1 The perimeter generating function for wall polyominoes is given by

K =
1 − y2 − x(1 + y2) −

√

(1 − x)2(1 − y2)2 − 4xy2(1 − y2)

2x
. (8)

5 A formula for Gsq

By substituting (8) into (6), we get

I =
1

4

[

2(1 − y2) −
√

(1 − x)2(1 − y2)2 − 4xy2(1 − y2) −
√

(1 + x)2(1 − y2)2 + 4xy2(1 − y2)
]

.

We defined J to be I
1−y2 . Hence, we find

J =
2 −

√

(1 − x)2 − 4xy2

1−y2 −
√

(1 + x)2 + 4xy2

1−y2

4
. (9)

By (2) and (5), Gsq = (1 − y2)H = (1 − y2)
(

1 − 4
4+4J

)

. Here we insert (9), and the result reads as

follows.

Theorem 1 The perimeter generating function for column-convex polyominoes on the rectangular lat-

tice is given by

Gsq = (1 − y2)



1 − 4

6 −
√

(1 − x)2 − 4xy2

1−y2 −
√

(1 + x)2 + 4xy2

1−y2



 . (10)

Formula (10) first appeared in Feretić and Svrtan [8].
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6 Repeats

Now that we know Gsq , we want to find Ghex as well. To achieve this goal, we are going to carry

out a more detailed exploration of wall polyominoes. We shall take into account several new properties,

the first of which will be repeats; by a repeat we mean the event that two neighbouring columns have the

same height.

Let L = L(x, y) be the part of K that comes from wall polyominoes having no repeats. Let M =
M(x, e, y) be defined by the formula

M(x, e, y) =
∑

P a wall polyomino

xNo. of columns of P · eNo. of repeats of P · yNo. of vertical edges of P .

To see how the generating functions K, L and M relate to one another, it is useful to write down a

procedure.

Procedure 1 Choose a wall polyomino P without repeats. For every column c of P , make either 0, or

1, or 2, or 3, . . . duplicates of c; then insert those duplicates just to the right of c.

The output of Procedure 1 is just W , the set of all wall polyominoes. Moreover, every wall polyomino

is produced in a unique way. Thus, we have M(x, e, y) = L( x
1−xe

, y) and L( x
1−x

, y) = K(x, y). So,

M(x, e, y) = L

(

x

1 − xe + x − x
, y

)

= L

(

x
1−xe+x

1 − x
1−xe+x

, y

)

= K

(

x

1 − xe + x
, y

)

.

Therefore we substitute x
1−xe+x

for x in (8), and the result is

M =
{

(1 − xe)(1 − y2) − 2xy2 −
√

(1 − xe)2(1 − y2)2 − 4xy2[1 − x(e − 1)](1 − y2)
}

/(2x).

(11)

To summarize, we changed a variable in a known generating function, and we obtained a generating

function enriched with an extra variable. Later in this paper, this change-of-variable method will give

us some results that seem hard to obtain in another way. In the case of formula (11), however, a simple

alternative exists. It is quite possible to refine the proof of Proposition 1 so that repeats are taken into

account, too. The reader may do this alternative proof by herself/himself.

Let

M1 =
M(x, e, y) − M(−x, e, y)

2
.

That is to say, M1 is the portion of M coming from wall polyominoes which have an odd number of

columns. Using formula (11) and the notations

∆− = (1 − xe)2(1 − y2)2 − 4xy2[1 − x(e − 1)](1 − y2)

and

∆+ = (1 + xe)2(1 − y2)2 + 4xy2[1 + x(e − 1)](1 − y2),

we readily obtain

M1 =
2(1 − y2) −

√

∆− −
√

∆+

4x
. (12)
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Next we would like to have an algebraic equation for M1. For this purpose, we first rewrite (12) as
√

∆+ = 2(1 − y2 − 2xM1) −
√

∆−.

By squaring and then rearranging, we get

4
√

∆−(1 − y2 − 2xM1) = 4(1 − y2 − 2xM1)
2 + ∆− − ∆+.

Then we square again, rearrange again, recall the definitions of ∆− and ∆+, and eventually divide the

equation by 16(1 − y2)4. The result is

(

1 − 2xM1

1 − y2

)4

−
(

1 + x2e2 + 4x2y2 e − 1

1 − y2

)(

1 − 2xM1

1 − y2

)2

+ x2

(

e +
2y2

1 − y2

)2

= 0. (13)

7 One more formula for Gsq

The case e = 1 of (13) is also interesting. Let us turn to that case for a moment.

For e = 1, xM1 is x[K(x, y) − K(−x, y)]/2, which is, by (6), equal to I . We defined J to be I
1−y2 .

Hence xM1

1−y2 is equal to J , and J is, by (4), equal to H
1−H

. So, from (13) we obtain

(

1 − 2H

1 − H

)4

− (1 + x2)

(

1 − 2H

1 − H

)2

+ x2

(

1 + y2

1 − y2

)2

= 0. (14)

The solution of (14) is

1 − 2H

1 − H
=

√

1 + x2 +
√

(1 − x2)2 − 16x2y2

(1−y2)2

√
2

.

Since

H = 1 − 2

3 −
(

1 − 2H
1−H

) ,

it follows that

H = 1 − 2
√

2

3
√

2 −
√

1 + x2 +
√

(1 − x2)2 − 16x2y2

(1−y2)2

.

Multiplying by 1 − y2, we obtain the following theorem.

Theorem 2 The perimeter generating function for column-convex polyominoes on the rectangular lat-

tice is given by

Gsq = (1 − y2)









1 − 2
√

2

3
√

2 −
√

1 + x2 +
√

(1 − x2)2 − 16x2y2

(1−y2)2









. (15)

Now we have two formulae for Gsq , viz. (10) and (15). These formulae look rather different from one

another, but they are of course equivalent. Both (10) and (15) were first obtained in [8].
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8 Proof that formulae (10) and (15) are equivalent

Under the inner square root in (15), we do a series of rewritings:

(1 − x2)2 − 16x2y2

(1 − y2)2
= (1 + x2)2 − 4x2(1 + y2)2

(1 − y2)2

=

[

1 + x2 − 2x(1 + y2)

1 − y2

] [

1 + x2 +
2x(1 + y2)

1 − y2

]

=

[

(1 − x)2 − 4xy2

1 − y2

] [

(1 + x)2 +
4xy2

1 − y2

]

.

Using this, we rewrite the contents of the outer square root as follows:

1 + x2 +

√

(1 − x2)2 − 16x2y2

(1 − y2)2
=

1

2

[

(1 − x)2 − 4xy2

1 − y2
+ 2

√

(1 − x)2 − 4xy2

1 − y2

√

(1 + x)2 +
4xy2

1 − y2

+ (1 + x)2 +
4xy2

1 − y2

]

=
1

2

[
√

(1 − x)2 − 4xy2

1 − y2
+

√

(1 + x)2 +
4xy2

1 − y2

]2

.

Thus, the big fraction in (15) is equal to

2
√

2

3
√

2 − 1
√

2

[√

(1 − x)2 − 4xy2

1−y2 +
√

(1 + x)2 + 4xy2

1−y2

] =
4

6 −
√

(1 − x)2 − 4xy2

1−y2 −
√

(1 + x)2 + 4xy2

1−y2

,

which is identical to the big fraction in (10). Therefore, (15) can be rearranged into (10) and vice versa.

9 OEO repeats and single repeats

The digression finished, the variable e is around again.

By substituting
√

x for x in the series xM1, we obtain a new series, say N . We have

N(x, e, y) =
∑

P a wall polyomino

of odd width

xNo. of odd columns of P · eNo. of repeats of P · yvertical perimeter of P .

Here, it is understood that the odd columns of a wall polyomino are its first, third, fifth, . . . columns, while

the even columns are those columns which are not odd.

From (13) it follows that N satisfies the equation

(

1 − 2N

1 − y2

)4

−
(

1 + xe2 + 4xy2 e − 1

1 − y2

)(

1 − 2N

1 − y2

)2

+ x

(

e +
2y2

1 − y2

)2

= 0. (16)
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The next property of interest are the OEO repeats (iii). By definition, an OEO repeat is the event that

three successive columns have the same height, and the first of those three columns is an odd column. We

also define single repeats: A single repeat is a repeat not forming part of any OEO repeat.

Let

O(x, d, e, y) =
∑

P a wall polyomino

of odd width

xNo. of odd columns of P · dNo. of OEO repeats of P

·eNo. of single repeats of P · yvertical perimeter of P .

Then O(x, 0, e, y) is the part of N that comes from wall polyominoes of odd width having no OEO

repeats. To see how the generating functions N , O(x, 0, e, y) and O(x, d, e, y) relate to one another, it is

useful to write down a procedure.

Procedure 2 Choose a wall polyomino of odd width having no OEO repeats. In the chosen polyomino,

focus on the odd columns. For every such column c, make either 0, or 2, or 4, or 6, . . . duplicates of c;

then insert those duplicates just to the right of c.

The output of Procedure 2 is just the set of all wall polyominoes of odd width. Moreover, every wall

polyomino of odd width is produced in a unique way. Thus, we have O(x, d, e, y) = O( x
1−xd

, 0, e, y) and

O( x
1−xe2 , 0, e, y) = N(x, e, y). Hence,

O(x, d, e, y) = O

(

x

1 + x(e2 − d) − xe2
, 0, e, y

)

= O

(

x
1+x(e2

−d)

1 − x
1+x(e2

−d)e
2
, 0, e, y

)

= N

(

x

1 + x(e2 − d)
, e, y

)

. (17)

10 Low and high single repeats

Now that we drew a distinction between OEO repeats and single repeats, we wish to draw a further

distinction between two kinds of single repeats. The definitions follow.

Every single repeat involves one even column, which is equally high as one (but not both) of its neigh-

bour columns. If the even column is lower than its unlike neighbour column, we speak of a low single

repeat. Otherwise we speak of a high single repeat.

Given a low single repeat, we can of course heighten the even column involved so as to produce a high

single repeat. The point is that this low-to-high conversion does not affect the vertical perimeter. See

Fig. 7. Naturally, under the similar conversion from a high single repeat into a low single repeat, the

vertical perimeter is again unaffected.

For P a wall polyomino of odd width, we define a companion of P to be a wall polyomino which can be

obtained from P by means of low-to-high and high-to-low conversions. We also define LSR polyominoes:

An LSR polyomino is a wall polyomino of odd width which has no high single repeats. Every wall

polyomino of odd width is a companion to one and only one LSR polyomino.

(iii) OEO is an abbreviation for odd-even-odd.
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Fig. 7: The low-to-high conversion.

Let

P (x, a0, b0, d, y) =
∑

W a wall
polyomino

of odd width

xNo. of odd columns of W · aNo. of high single repeats of W
0

·bNo. of low single repeats of W
0 · dNo. of OEO repeats of W · yvertical perimeter of W .

Then P (x, 0, b0, d, y) is a generating function for LSR polyominoes. An LSR polyomino has the same

vertical perimeter as any of its companions. Hence P (x, 0, a0 + b0, d, y) is a generating function for

LSR polyominoes and all of their companions or, in other words, a generating function for all wall

polyominoes of odd width. Thus, P (x, a0, b0, d, y) = P (x, 0, a0 + b0, d, y). Since P (x, e, e, d, y) =
O(x, d, e, y), it follows that P (x, a0, b0, d, y) = P (x, 0, a0 + b0, d, y) = P (x, 0, a0+b0

2 + a0+b0
2 , d, y)

= P (x, a0+b0
2 , a0+b0

2 , d, y) = O(x, d, a0+b0
2 , y).

Now we use relation (17) to obtain

P (x, a0, b0, d, y) = N





x

1 + x
[

(a0+b0)2

4 − d
] ,

a0 + b0

2
, y



 . (18)

11 Chimneys

Having beaten the even columns which play a role in repeats, we now turn to the even columns which

play no role in repeats.

We define a chimney to be an even column which is higher than both of its neighbour columns.

Mutatis mutandi, we handle chimneys as we handled repeats and OEO repeats. That is, first we define

a generating function and then we write down a procedure.

Let

Q(x, a0, a, b0, d, y) =
∑

P a wall
polyomino

of odd width

xNo. of odd columns of P · aNo. of high single repeats of P
0

·aNo. of chimneys of P · bNo. of low single repeats of P
0

·dNo. of OEO repeats of P yvertical perimeter of P .

Then Q(x, a0, 0, b0, d, y) is the part of the generating function P that comes from wall polyominoes of

odd width having no chimneys.
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Fig. 8: Making of chimneys.

Procedure 3

• Choose a wall polyomino of odd width having no chimneys.

• In the chosen wall polyomino, choose some (or none) of the even columns living in high single

repeats. Also choose some (or none) of the even columns living in OEO repeats.

• Visit the chosen columns one by one, each time placing either 1, or 2, or 3, . . . additional cells on

the top of the column being visited.

This procedure is illustrated in Fig. 8.

The output of Procedure 3 is just the set of all wall polyominoes of odd width. Moreover, every wall

polyomino of odd width is produced in a unique way. Thus, we have Q(x, a0, a, b0, d, y) = Q(x, a0 +
ay2

1−y2 , 0, b0, d + ay2

1−y2 , y) and Q(x, a0 + y2

1−y2 , 0, b0, d + y2

1−y2 , y) = P (x, a0, b0, d, y). Therefore

Q(x, a0, a, b0, d, y) = Q

(

x, a0 +
(a − 1)y2

1 − y2
+

y2

1 − y2
, 0, b0, d +

(a − 1)y2

1 − y2
+

y2

1 − y2
, y

)

= P

(

x, a0 +
(a − 1)y2

1 − y2
, b0, d +

(a − 1)y2

1 − y2
, y

)

.
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With this relation in hand, we use (18) to obtain

Q(x, a0, a, b0, d, y) = N



















x

1 + x







[

a0+
(a−1)y2

1−y2 +b0

]2

4 − d − (a−1)y2

1−y2







,
a0 + (a−1)y2

1−y2 + b0

2
, y



















. (19)

12 Wells

We are now ready for the next (and last) property.

A well is an even column which is lower than both of its neighbour columns.

Wells are somewhat trickier than chimneys. To conquer wells, it is not enough to make a change of

variables. So to speak, it is also necessary to make a change of the generating function. Anyway, the job

begins in the usual way: first we define a generating function and then we write down a procedure.

Let

R(x, a0, a, b0, b, d, y) =
∑

P a wall
polyomino

of odd width

xNo. of odd columns of P

·aNo. of high single repeats of P
0 · aNo. of chimneys of P

·bNo. of low single repeats of P
0 · bNo. of wells of P

·dNo. of OEO repeats of P · yvertical perimeter of P .

Then R(x, a0, a, b0, 0, d, y) is the part of Q that comes from wall polyominoes of odd width having no

wells.

Procedure 4

• Choose a wall polyomino of odd width having no wells.

• In the chosen wall polyomino, choose some (or none) of the even columns living in low single

repeats. Also choose some (or none) of the even columns living in OEO repeats.

• Visit the chosen columns one by one, each time lowering the column being visited either by 1, or by

2, or by 3, . . . .

This procedure is illustrated in Fig. 9.

Notice that Procedure 4 generates polyominoes and non-polyominoes alike. That happens because

when we lower a column, we are free to overdraw. For example, from a column of height 3, we get an

(ex-)column whose height may be any of the numbers 2, 1, 0, −1, −2, −3, . . . . Thus, the output of

Procedure 4 is a relatively large set: it contains every object whose form is either ⊓ or ⊓⊔⊓ or ⊓⊔⊓⊔⊓
or . . . . Here, every ⊓ is a wall polyomino of odd width, and every ⊔ is an ex-column of nonpositive height.

These facts observed, what can we say about generating functions? After a little thought, we realize

that
R(x, a0, a, b0, b, d, y)

1 − bR(x,a0,a,b0,b,d,y)
1−y2

= R

(

x, a0, a, b0 +
by2

1 − y2
, 0, d +

by2

1 − y2
, y

)
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Fig. 9: Making of wells, with the freedom to overdraw.

and that

R

(

x, a0, a, b0 +
y2

1 − y2
, 0, d +

y2

1 − y2
, y

)

=
Q(x, a0, a, b0, d, y)

1 − Q(x,a0,a,b0,d,y)
1−y2

.

Hence,

R(x, a0, a, b0, b, d, y)

1 − bR(x,a0,a,b0,b,d,y)
1−y2

= R

(

x, a0, a, b0 +
(b − 1)y2

1 − y2
+

y2

1 − y2
, 0, d +

(b − 1)y2

1 − y2
+

y2

1 − y2
, y

)

=
Q
(

x, a0, a, b0 + (b−1)y2

1−y2 , d + (b−1)y2

1−y2 , y
)

1 −
Q

(

x,a0,a,b0+
(b−1)y2

1−y2 ,d+
(b−1)y2

1−y2 ,y

)

1−y2

,

which means that

(1 − y2)R

1 − y2 − (b − 1)R
= Q

(

x, a0, a, b0 +
(b − 1)y2

1 − y2
, d +

(b − 1)y2

1 − y2
, y

)

. (20)

Combining (20) with (19), we get the following result:

(1 − y2)R

1 − y2 − (b − 1)R
= N



















x

1 + x







[

a0+b0+
(a+b−2)y2

1−y2

]2

4 − d − (a+b−2)y2

1−y2







,
a0 + b0 + (a+b−2)y2

1−y2

2
, y



















.

(21)
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13 The twilight of wall polyominoes

Our additional variables a0, a, b0, b and d have done us very good service. At this stage, however, it is

possible to reduce the set of variables without incurring a serious loss of information.

From R(x, a0, a, b0, b, d, y), a generating function with seven variables, we pass to a generating func-

tion with four variables. Let

S(x, a, b0, y) =
∑

P a wall
polyomino

of odd width

xNo. of columns plus one of P · aNo. of chimneys of P

· btotal No. of low single repeats, wells and OEO repeats of P
0 · yvertical perimeter of P .

Noticing that S = R(x2, 1, a, b0, b0, b0, y), from (21) we get

(1 − y2)S

1 − y2 − (b0 − 1)S
= N

(

x2

1 + x2λ2
−

, 1 + λ−, y

)

, (22)

where

λ− =
(a − 1)y2 + b0 − 1

2(1 − y2)
. (23)

Recall that in Section 3 we defined a bijection ϕ, which took us from stapoes to wall polyominoes of

odd width. Now is the time to go back to stapoes. As a means of transportation, we shall use the bijection

ϕ−1. So, which kind of generating function for stapoes is the series S? Before answering this question, it

is useful to give names to some properties of a stapo.

When we speak about a column of a stapo, and no ambiguity need be feared, we denote the maximum

ordinate and the minimum ordinate of that column by Y and y, respectively.

Let a rise be the event that, in a pair of adjacent columns of a stapo, Y of the right column is greater

than Y of the left column, and y of the right column is greater than y of the left column. Let a weak fall

be the event that, in a pair of adjacent columns of a stapo, Y of the right column is less than or equal to Y
of the left column, and y of the right column is less than or equal to y of the left column.

Now, the alter ego of the series S is

S =
∑

P a stapo

xhorizontal perimeter of P · aNo. of rises of P

·bNo. of weak falls of P
0 · yvertical perimeter of P .

Next we define a generating function for tapoes and a generating function for column-convex polyomi-

noes. The names of these generating functions are T = T (x, a, b0, y) and Gsq+ = Gsq+(x, a, b0, y),
respectively. In each of the generating functions T and Gsq+, each of the variables has the same meaning

as in S.

We have

S = Gsq+(1 + aT + aTaT + aTaTaT + . . .) =
Gsq+

1 − aT
.
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Also, T = Gsq+(1 + y2 + y4 + y6 + . . .) =
Gsq+

1−y2 , so that (1 − y2)T = Gsq+. Therefore

(1 − y2)S

1 − y2 − (b0 − 1)S
=

(1 − y2)
Gsq+

1−aT

1 − y2 − (b0 − 1)
Gsq+

1−aT

=
(1 − y2)Gsq+

(1 − y2)(1 − aT ) − (b0 − 1)Gsq+

=
(1 − y2)Gsq+

1 − y2 − (a + b0 − 1)Gsq+
.

Substitution of this into (22) yields

(1 − y2)Gsq+

1 − y2 − (a + b0 − 1)Gsq+
= N

(

x2

1 + x2λ2
−

, 1 + λ−, y

)

, (24)

with λ− still given by (23).

14 Coping with the honeycomb lattice

Next, since our business is expanding again, we employ a new variable z. That is to say, we pass to

the generating function Gsq+(x, a, b0, yz), where we think of y and z as the variables counting the first

halves and second halves of vertical edges, respectively. Here, “the first half” actually means the half that

would be first if the boundary of a column-convex polyomino had anticlockwise orientation.

Then we subject every column-convex polyomino P to a series of half-a-unit downward shifts. First we

shift all of P except for the leftmost column of P . Second we shift all of the first-shifted object, except for

the leftmost column of that object. Third we shift all of the second-shifted object, except for the leftmost

column of that object. And so on. In the last shift, the shifted object has only one column.

Through this series of shifts, a column-convex polyomino becomes similar to a piece of a brick wall.

See Fig. 10.

To count those (so to speak) pieces of brick walls, we introduce a generating function U = U(x, y, z).
The definition is

U(x, y, z) =
∑

P a piece

of a brick wall

xhorizontal perimeter of P

·yNo. of first halves of vertical edges of P · zNo. of second halves of vertical edges of P .

(The meaning of “the first half” and “the second half” is illustrated in Fig. 11.) Of course, our aim is to

express U by means of Gsq+. So, how do the shifts influence the vertical perimeter? By taking a closer

look at Fig. 11, we find out the following.

A shift has influence in just two cases. Case 1: When the overlap between the moving columns and the

still columns is a rise, we lose two z-edges. Case 2: When the overlap just mentioned is a weak fall, we

gain two z-edges.

Therefore, we have U(x, y, z) = Gsq+(x, z−2, z2, yz).
Next, every piece of a brick wall has something like a twin; the twin is a column-convex polyomino on

the honeycomb lattice. See Fig. 12. As regards the three perimeter counts (x-edges, y-edges, z-edges),

between the twins there is no difference.
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Fig. 10: A column-convex polyomino becomes similar to a piece of a brick wall.

Note that the twin which lives on the honeycomb lattice is subject to one (and only one) restriction on

its freedom. Namely, it can have no ceiling overlaps. The definition follows.

Let P be a column-convex polyomino on the honeycomb lattice. A ceiling overlap is the event that, in

a pair of adjacent columns of P , the bottom cell of the right column is the upper right neighbour of the

top cell of the left column.

So, U(x, y, z) is also the perimeter generating function for column-convex polyominoes which live on

the honeycomb lattice, but have no ceiling overlaps.

From now on, when we say “a column-convex polyomino”, we mean a column-convex polyomino on

the honeycomb lattice.

Let P be a column-convex polyomino, and let P have one ceiling overlap. Then we can think of P as

two column-convex polyominoes, say P1 and P2, staying stuck together. Here, neither of P1 and P2 has

any ceiling overlaps. See Fig. 13. Notice that P has two z-edges less than P1 and P2 taken cumulatively.

We now see how to express the perimeter generating functions. For column-convex polyominoes with

one ceiling overlap, the expression is z−2U2. More generally, Ghex —that is, the perimeter generating

function for all column-convex polyominoes—can be written as

Ghex = U + Uz−2U + Uz−2Uz−2U + . . .

= U(1 + z−2U + z−2Uz−2U + . . .)

=
U

1 − z−2U
.

Therefore U = Ghex

1+z−2Ghex
. Let

µ− = − (1 − y2)(1 − z2)

2(1 − y2z2)
, µ+ =

(1 + y2)(1 + z2)

2(1 − y2z2)
, (25)
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Fig. 11: Effects of the shifts on the vertical perimeter. At every column-column interface there is an arrow, labelled

with the local balance of vertical half-edges.
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Fig. 12: Twin polyominoes.

Fig. 13: The ceiling overlap divides P into P1 and P2.
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and

V = N

(

x2

1 + x2µ2
−

, 1 + µ−, yz

)

. (26)

Recalling that U(x, y, z) = Gsq+(x, z−2, z2, yz), we now go back to relation (24) and we substitute

z−2 for a, z2 for b0, and yz for y. We quickly find that

(1 − y2z2)U

1 − y2z2 − (z−2 + z2 − 1)U
= V,

which, together with the relation between U and Ghex, gives

Ghex =
1 − y2z2

1 − y2 − z2





2

1 + y2 + z2 + (1 − y2 − z2)
(

1 − 2V
1−y2z2

) − 1



 . (27)

Next we combine (26) with (16), obtaining

(1 + x2µ2
−

)

(

1 − 2V

1 − y2z2

)4

− (1 + x2 + 2x2µ−µ+)

(

1 − 2V

1 − y2z2

)2

+ x2µ2
+ = 0, (28)

where µ− and µ+ are given by (25).

Now follows the long and tiring, but unavoidable task of solving equation (28). Once we are finished,

we embed the formula for 1 − 2V
1−y2z2 into (27). This yields the following theorem.

Theorem 3 The perimeter generating function for column-convex polyominoes on the honeycomb lat-

tice is given by

Ghex(x, y, z) =
1 − y2z2

1 − y2 − z2
·































2

1 + y2 + z2 + (1 − y2 − z2)

√

√

√

√

2+x2

[

1+
(y2

−z2)2

(1−y2z2)2

]

+2
√

∆

4+x2 (1−y2)2(1−z2)2

(1−y2z2)2

− 1































, (29)

where

∆ = 1 − 2x2 y2(1 + z2)2 + (1 + y2)2z2

(1 − y2z2)2
+ x4 (y2 − z2)2

(1 − y2z2)2
.

If we set y = z, the formula for Ghex becomes much simpler.

Corollary 1 We have

Ghex(x, y, y) =
1 − y4

1 − 2y2













2

1 + 2y2 + (1 − 2y2)
√

2+x2+2
√

δ

4+x2

(

1−y2

1+y2

)2

− 1













,
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where

δ = 1 − 4x2y2

(1 − y2)2
.

In the case of the generating function Gsq(x, y), the two square roots can be written in two ways: sepa-

rately, as in (10), and one inside the other, as in (15). However, I think that the formulae for Ghex(x, y, z)
and Ghex(x, y, y) cannot be written in a form such that two square roots of rational functions stand sepa-

rately.

In Maple, there is a command (called mtaylor) for computing multivariate Taylor series. Now, with

our formula for Ghex(x, y, z), mtaylor works all right. By contrast, with Lin and Wu’s [11] formula for

Ghex(x, y, z), mtaylor arrives at an impasse. This happens because the denominator of their formula

involves a factor D = y2 + z2 + . . ., which is a polynomial with no constant term.

15 Appendix

A referee has rightly remarked that we should prove (and not just believe in) the equivalence between

the formulae for Ghex given in this paper and in Lin and Wu’s paper [11]. Hence, we started from Lin

and Wu’s formula, which reads

Ghex(x, y, z) =
1 − y2z2

4D

[

a + b
√

S +
(c + d

√
S)

√
T

2(1 + y2z2) + x2(1 − y2)(1 − z2)

]

, (30)

where

a = 1 + 4(y2 + z2) + 3y4 + 4y2z2 + 3z4 − 8y2z2(y2 + z2)

− 6y2z2(y4 + z4) − 11y4z4 + 4y4z4(y2 + z2) + 3y4z4(y2 + z2)2

+ x2[y2 + z2 − 4y2z2(y2 + z2) − y6 − z6

+ y2z2(y6 + z6) + 5y4z4(y2 + z2)],

b = (1 − y2z2)[1 − (y2 + z2)2],

c = −(1 − y2z2)[1 + 4(y2 + z2) + 3y4 + 7y2z2 + 3z4 + 4y2z2(y2 + z2)

+ y2z2(y2 + z2)2 + x2(y2 + z2)(1 − y4 − z4)],

d = −1 + y4 + y2z2 + z4 − y2z2(y2 + z2)2,

D = (y2 + z2)[1 + 2(y2 + z2) + y4 + z4 − 4y2z2(y2 + z2)

− y2z2(2y4 + 3y2z2 + 2z4) + 2y4z4(y2 + z2) + y4z4(y2 + z2)2]

+ x2y2z2[1 − (y2 + z2)2(1 − y2z2)],

S = 1 − 2(x2y2 + y2z2 + x2z2) − 8x2y2z2 + x4y4 + y4z4 + x4z4

− 2x2y2z2(x2 + y2 + z2),

T = 2(1 − y2z2)2 + 2x2[2 − (y2 + z2)(1 + y2z2) + 2y4z4]

+ x4(1 − y2)2(1 − z2)2 + 2(1 − y2z2)
√

S.
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By appropriately squaring two times, from (30) we got a degree-four algebraic equation. We factored that

equation (at the price of employing pretty much RAM), and we removed the redundant factors. The result

was a sensibly shorter degree-four algebraic equation, still satisfied by Lin and Wu’s expression (30). Let

this latter degree-four algebraic equation be numbered (A). Next, we wanted to know whether equation

(A) is satisfied by our expression (29), too. Much to our relief, the answer was yes. However, equation

(A) has four solutions. To show that (29) and (30) are one and the same solution of (A), we computed all

four solutions of (A). In the case x = y = z, those four solutions have power series expansions

1 − x − 3

2
x2 + . . . , 1 + x − 3

2
x2 + . . . ,

x6 + 3x10 + 2x12 + . . . and
1

2
x−2 − 3

4
x2 − 5

8
x6 + . . . .

Now, the power series expansions of (29) and (30) both begin with a sixth-order term. (This must be so.

On the hexagonal lattice, the one-celled polyomino has perimeter 6.) Hence, (29) and (30) are both equal

to that solution of (A) which gave us the series x6 + 3x10 + 2x12 + . . . . That is to say, our expression

(29) and Lin and Wu’s expression (30) are equal to one another.
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