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The PASEP (Partially Asymmetric Simple Exclusion Process) is a probabilistic model of moving particles, which is

of great interest in combinatorics, since it was realized that its partition function counts a certain kind of tableaux.

These tableaux have several variants such as permutations tableaux, alternative tableaux, tree-like tableaux, Dyck

tableaux, etc. We introduce in this context certain walks in Young’s lattice, that we call stammering tableaux (by

analogy with oscillating tableaux, vacillating tableaux, hesitating tableaux). Some natural bijections make a link with

rook placements in a double staircase, chains of Dyck paths obtained by successive addition of ribbons, Laguerre

histories, Dyck tableaux, etc.
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1 Introduction

1.1 The PASEP

The PASEP (Partially Asymmetric Simple Exclusion Process) is a probabilistic model of moving particles

which motivated a lot of recent combinatorial developments. Our description of the model is very brief

since we are more interested in the combinatorial objects, so we refer to [7] for a definition, and [6] for

the related combinatorics. A state in this model is a binary word of length N over ◦ and •, and can be

interpreted as a sequence of N sites, each being empty (◦) or occupied by a particle (•). The possible

transitions are :

– a factor •◦ becomes ◦• (a particle moves to the right),

– a factor ◦• becomes •◦ (a particle moves to the left),

– an initial ◦ becomes • (a new particle arrives from the left),

– a final • becomes ◦ (a particle exits on the right).

These 4 events occur with probabilities depending on 4 real positive parameters p, q, α, β, and by a

rescaling argument we can assume p = 1. For each state τ ∈ {◦, •}N , its probability in the stationary

distribution is denoted pτ .

A recipe to compute the stationary probability pτ is the Matrix Ansatz of Derrida et al. obtained in [7].

Suppose that we have two operators F and E satisfying a commutation relation:

FE − qEF = F + E. (1)
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We can identify a state τ with a binary word w in F and E by the rule • → F , ◦ → E. Using (1), the

resulting binary word can be put in normal form, i.e., a linear combination of EiF j :

w =
∑

i,j≥0

ci,jE
iF j

where ci,j are polynomials in q (and a finite number of them are nonzero). Then, the result is as follows:

pτ =
p̄τ
ZN

where the nonnormalized probability p̄τ is
∑

i,j≥0 ci,jα
−iβ−j , and the normalizing factor is ZN =

∑

p̄τ
summed over τ ∈ {•, ◦}N (it can also be obtained from the normal form of (F +E)N since this expands

as the sum of all binary words). A consequence is that pτ and ZN are polynomials with nonnegative

coefficients in α−1, β−1, and q.

1.2 Tableau combinatorics

The connection of the PASEP model with permutations and statistics on them is done in [6], where Corteel

and Williams used so-called permutation tableaux, defined as 0-1 fillings of Young diagrams with certain

rules. Indeed, since each p̄τ is a polynomial, it is a natural to look for its combinatorial meaning, and

the main result of [6] shows that this quantity is a generating function of permutation tableaux whose

shape is a particular Young diagram depending on τ . In particular the partition function ZN is a 3-variate

refinement of (N + 1)! with a combinatorial interpretation on permutations.

Later, other kinds of tableaux have been introduced: alternative tableaux [22], tree-like tableaux [2],

and Dyck tableaux [3]. They are all variants of each other, but each has its own combinatorial properties.

For example, Viennot [22] showed that the relation (1) leads to alternative tableaux, bypassing the proba-

bilistic model. Tree-like tableaux [2] have a nice tree structure, and there is a nice insertion algorithm that

permits building these object inductively. Particularly relevant to the present work, Dyck tableaux [3] con-

nects with labelled Dyck paths called Laguerre histories (see also [11]). These various refecences make

clear that all this tableau combinatorics is interesting in itself, and the link with the PASEP is sometimes

not apparent.

Essentially, our stammering tableaux (tableaux bégayants in French) can be seen as another variant of

these objects. However, the word “tableaux” has a different meaning here: they are not fillings of Young

diagrams, and should rather be considered as a variant of oscillating tableaux, vacillating tableaux, or

hesitating tableaux (see [5] and below). These objects are essentially obtained from the Matrix Ansatz

in (1).

1.3 Realizations of the Matrix Ansatz operators

Although it is not a priori needed to compute the stationary probabilities pτ , it is useful to have explicit

realizations of operators E and F satisfying (1). For example, Derrida et al. provide tridiagonal semi-

infinite matrices realizations of E and F that were exploited in [11].

A natural idea to realize the relation in (1) is to start from the much more common relation

DU − qUD = I (2)
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where I is the identity (sometimes called the q-canonical commutation relation). Then, let

F = D(U + I), E = D(U + I)U.

It can be checked that the relation in (2) implies the one in (1), indeed:

FE = D(U + I)D(U + I)U = D(U + I)DU +D(U + I)DUU,

EF = D(U + I)UD(U + I) = D(U + I)UD +D(U + I)UDU,

and we get

FE − qEF = D(U + I) +D(U + I)U = F + E.

Thus, explicit realizations of E and F can be obtained from the ones of D and U .

1.4 Walks in Young’s lattice

In the particular case q = 1, a classical way to realize the relation DU − UD = I is to define

U(λ) =
∑

µ⋗λ

µ and D(λ) =
∑

µ⋖λ

µ, (3)

where ⋖ is the cover relation in Young’s lattice Y , and D, U are seen as linear operators on the vector

space based on Y . We refer to Stanley’s notion of differential poset [17] (see next section). In this setting,

– oscillating tableaux naturally appear in the expansion of (U +D)n∅,

– vacillating tableaux naturally appear in the expansion of ((U + I)(D + I))n∅,

– hesitating tableaux naturally appear in the expansion of (DU + ID + UI)n∅.

See [5] for definitions and more on this subject. So, motivated by the Matrix Ansatz of the PASEP, it is

natural to consider the tableaux appearing in similar expansions, with the powers of F +E = D(U + I)2.

These are our stammering tableaux, formally defined in the next section.

These new objects allow one to see more clearly some properties that have been investigated before

in permutation tableaux and their variants. The various bijections here are rather simple and natural. In

particular, there is the question of a recursive construction to make clear that there are n! such objects of

size n, which can involve insertion algorithms [2, 3]. As we will see through this article, the recursive

construction in our case is extremely simple. Another property is the link with earlier results by Françon

and Viennot in [10]. We will see that this link becomes clear through our notion of chains of Dyck shapes

(see Section 5). But perhaps the most important point is that these objects make a bridge between the

tableaux combinatorics of the PASEP and the tableaux combinatorics of Young’s lattice.

1.5 Organization

Sections 2 to 6 give definitions and several bijections (except Section 4 that shows that a poset of Dyck

paths naturally appearing in Section 3 is a lattice). In Section 7, we consider a variant of stammering

tableaux that we know how to enumerate, and Section 8 contains a few open problems.
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2 Stammering tableaux and the double staircase

We begin with a few definitions and reference to the literature. A general reference is [18].

A Young diagram is a bottom left aligned set of unit squares, for example:

.

Our definition respects the French convention but others exist. Such a diagram is characterized by its

sequence of row lengths, from bottom to top. The previous example gives 4, 2, 1. Such a sequence is an

integer partition, i.e., a nonincreasing sequence of positive integers. This gives a bijection between Young

diagram and integer partition.

Each of the unit square in the Young diagram is called a cell. Each cell has four corners, and a point

being a corner of at least one cell is called a vertex of the Young diagram.

Let Y denote Young’s lattice, which is the set of all Young digrams endowed with the inclusion order

(seeing Young diagrams as set of cells). Let ∅ denote its minimal element, the empty Young diagram. Let

⋖ denote the cover relation on Y (and ⋗ the reverse relation).

An important property of Y is that it is a differential poset [17].

Definition 2.1. A stammering tableau of size n is a sequence (λ(0), . . . , λ(3n)) ∈ Y3n+1 such that λ(0) =
λ(3n) = ∅, and:

– if i ≡ 0 or 1 mod 3 then either λ(i) ⋖ λ(i+1) or λ(i) = λ(i+1),

– if i ≡ 2 mod 3 then λ(i) ⋗ λ(i+1).

For example,
(

∅, , ; , , ; , , ; , , ; ∅
)

is a stammering tableau of size 4. Note that for readability, there is a “;” at every three steps, i.e., at each

step going down. Through the whole article, we will have two running examples to illustrate the various

bijections:

Λ1 =
(

∅, , ; , , ; , , ; , , ; , , ; ∅
)

.

and

Λ2 =
(

∅, , ; , , ; , , ; , , ; , , ; , , ; ∅
)

.

Roby [16] and Krattenthaler [13] showed that oscillating tableaux and their variants correspond via

Fomin’s growth diagrams [8] to some fillings of Young diagrams. We can do the same with stammering

tableaux, and we are led to the following definition:
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Definition 2.2. Let 2δn denote the double staircase diagram of n rows, defined as the Young diagram

with row lengths (2n, 2n − 2, . . . , 2). A partial filling of 2δn with some dots, such that there is exactly

one dot per row and at most one per column, is called a rook placement of size n.

See Figure 1 for examples. Note that it is easy to build a rook placement T ′ of size n inductively from

a rook placement T of size n − 1. When adding a new row to the bottom of T , this gives a priori 2n
possible choices for the location of the dot of this new row, but n − 1 of them are forbidden by the rule

that there is at most one dot per column. So there remains n+ 1 choice for T ′ starting with a given T . In

particular this shows that there are (n+ 1)! rook placements of size n.

•

•

•

•

•

•

•

•

•

•

•

Figure 1: Rook placements in the double staircase.

Let us present the description of Fomin’s growth diagrams. See [13, 16]. The idea is to assign a Young

diagram to each vertex of the double staircase. So in the pictures, we will have a big Young diagram,

namely the double staircase, and small Young diagrams at its vertices. Note that the terminology “growth

diagram” is rather standard even if there is possible confusion with the notion of Young diagram.

In each cell of the double staircase, the Young diagram in the North-East corner is determined by the

three Young diagrams in the other corners, according to the local rules given below. Starting with empty

diagrams ∅ along the West and South border of the double staircase, we can assign diagrams to all other

vertices. The rules are as follows. Consider the four diagrams at the corners of a cell, then, with the

notation of Figure 2:

– if µ 6= ν, then ρ = µ ∪ ν;

– if λ = µ = ν and the cell is empty, ρ = λ;

– if λ = µ = ν and the cell contains a dot, then ρ is obtained from λ by adding 1 to its first part;

– if λ 6= µ = ν, then ρ is obtained from µ by adding 1 to its (k + 1)st part, where k > 0 is minimal

such that λk 6= µk.

(•)

λ

µ ρ

ν

Figure 2: Generic cell of a growth diagram.
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•

•

•

•

•

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅ ∅

•

•

•

•

•

•
∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅

∅ ∅ ∅ ∅ ∅ ∅ ∅

Figure 3: Growth diagrams.

The growth diagrams obtained from the rook placements in Figure 1 are in Figure 3. By following the

North-East boundary, from the top-left corner to the bottom-right corner, we read a sequence of Young

diagrams. The two growth diagrams in Figure 3 give our two running examples Λ1 and Λ2 defined at the

beginning of this section.

The same bijection can be described using the Schensted insertion instead of the growth diagrams. This

algorithm is described in [18, Chapter 7]. An incomplete standard tableau is a filling of a Young diagram

with integers such that:

– the integers are increasing along rows (from left to right) and columns (from bottom to top),

– there are no repetition among them.

Let T be such a tableau. If k > 0 is not an entry of T , let T ← k denote the tableau obtained after row

insertion of k (see [18, Chapter 7]). If k is an entry of T located at a corner, let T → k denote the tableau

obtained after removing k.

From a rook placement R of size n, we can form a sequence T0, . . . , T3n of incomplete standard

tableaux in the following way. We label the dots in R so that the dot in the kth row (from bottom to top)

has label k, see Figure 4. We read the North-East border of R from the top-left corner to the bottom-right

corner. This border contains 3n steps, and starting from the empty tableau T0, we define T0, . . . , T3n in

such a way that:

– if the ith step is horizontal, at the top of a column which contains no dot, then Ti = Ti−1,

– if the ith step is horizontal, at the top of a column which contains the dot with label k, then Ti =
Ti−1 ← k,

– if the ith step is vertical, at the right of a row which contains the dot with label k, then Ti = Ti−1 → k.

For example, the rook placements in Figure 4 respectively give the sequences

∅, 2 , 2 5 ; 2 , 2 4 ,

4

2 3 ; 2 3 , 2 3 ,

2

1 3 ;

2

1 ,

2

1 ,

2

1 ; 1 , 1 , 1 ; ∅

and

∅, 4 , 4 6 ; 4 , 4 5 , 4 5 ; 4 , 4 ,

4

1 ; 1 , 1 3 , 1 3 ; 1 , 1 , 1 2 ; 1 , 1 , 1 ; ∅.
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If we forget the integer entries, the sequence of shapes of the incomplete standard tableaux T0, . . . , T3n

form a stammering tableau λ(0), . . . , λ(3n), and it is precisely the one associated to R via the growth

diagram. This is a general fact and follows from known properties of these constructions [8, 13, 16].

5

4

3

2

1

6

5

4

3

2

1

Figure 4: Rook placements in double staircase, with labeled dots.

Finally, let us present a third equivalent construction via Viennot’s shadow lines [21]. We give only one

example of this construction, in Figure 5 (page 8).

Start from a rook placement R in the double staircase. The idea is that each dot projects a quarterplane-

like shadow to its North-East. The boundary of the union of all these shadows gives a curve, the first

shadow. We can do the same thing with the dots left alone by the first shadow, this gives the second

shadow. The other shadows are constructed in the same way. In the first picture of the example, we see

that only two shadows are necessary to cover all dots of the rook placement. Now, the idea is that these

shadow lines determine the first rows of the partitions in a stammering tableau as follows. Starting from

0, we read the 3n steps of the North-East boundary of the diagram, add 1 when reading a horizontal step

crossing a shadow line, remove 1 when reading a vertical step crossing a shadow line, doing nothing

otherwise.

The next step is to put a dot at each k-shaped corner of the shadows. We obtain a new set of dots, which

has to be a rook placement as well. The shadows of these dots gives the second rows in the stammering

tableau. See the second picture in the example of Figure 5.

Going on with the successive shadows of the successive new sets of dots give the full stammering

tableau. We don’t give the proof that this construction is equivalent to the previous ones, and refer to [21]

for more details.

Remark 2.3. We have introduced stammering tableaux using the interpretation of the operators D and

U acting on Young diagrams, and given bijections with the rook placements in the double staircase using

various methods. It is also possible to obtain the rook placements from the operators D and U (as abstract

operators satisfying a commutation relation DU − UD = I) using the methods in [19].

Remark 2.4. Although we do not give the details here, it is possible to give reverse local rules for growth

diagrams. See [14, Section 2.1.8]. In the notation of Figure 3, it means that if we know µ, ν, and ρ, we

can recover λ and whether the cell contains a dot or not. So if we have a stammering tableaux along the

North-East border of the double staircase diagram, we can apply these rules to complete the rest of the

picture, and get a rook placement. This is the reverse bijection of the one presented in this section.
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•

•

•

•

•

•

•

•

•

•

•

•

∅, , ; , , ; , , ; , , ;

, , ; , , ; , , ; ∅

Figure 5: Shadows of a rook placement.
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3 Chains of Dyck shapes

A Dyck path of length 2n is a path in N2 from (0, 0) to (2n, 0) with steps (1, 1) and (1,−1). The two kind

of steps will be denotedր= (1, 1) andց= (1,−1). The height of (x, y) ∈ N2 is its second coordinate

y. Accordingly, each step in a Dyck path has an initial height and a final height, namely the heights of its

starting point and ending point, respectively.

We can also see a Dyck path of length 2n as a binary word of length 2n over {ր,ց} such that in each

prefix, there are moreր thanց (in the weak sense). These words are called Dyck words. A prefix of a

Dyck word is called a Dyck prefix.

A property of stammering tableaux or rook placements that will be important in the sequel is that we

can naturally associate a Dyck path to each of them.

Definition 3.1. Let R be a rook placement in the double staircase 2δn. We define a Dyck path d(R) of

length 2n+ 2 as follows:

– the first step isր, the last step isց,

– if 2 ≤ i ≤ 2n+ 1, the ith step isր if the (i− 1)st column of R contains a dot andց otherwise.

See Figure 6 for an example.

Figure 6: The Dyck paths associated to the rook placements in Figure 1.

Lemma 3.2. With the previous definition, d(R) is indeed a Dyck path.

Proof: Let 1 ≤ i ≤ 2n. Among the first i columns of R, say that x contains a dot and y are empty

(so x + y = i). In the double staircase, the first i columns entirely contain the topmost ⌊i/2⌋ rows, so

x ≥ ⌊i/2⌋, and y = i − x ≤ ⌈i/2⌉. The first i + 1 steps of d(R) contains 1 + x stepsր and y stepsց,

so the height after the (i + 1)st step is 1 + x − y. We have 1 + x − y ≥ 1 + ⌊i/2⌋ − ⌈i/2⌉ ≥ 0 so that

the path d(R) stays above the horizontal axis.

Instead of Dyck paths, it will convenient to use the equivalent notion given below.

Definition 3.3. The staircase partition of size n is δn = (n, n− 1, . . . , 1) ∈ Y . A Dyck shape of length

2n is a skew shape δn/λ where λ ∈ Y is such that λ ⊂ δn−1.

We will use here an unusual notation for Young diagrams, that we call Japanese notation. It is obtained

from the French notation by performing a 135 degree clockwise rotation. By following the upper border of

a Dyck shape in Japanese notation, we recover a Dyck path. See Figure 7 for an example with n = 5 and

λ = (3, 1, 1, 1). Note that the parts of the partition correspond to the number of cells in each South-East

to North-West diagonal.
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Figure 7: A Dyck shape.

Each (unit) square cell of a Dyck shape has some coordinates (x, y). They are normalized so that the

bottom left cell has coordinates (0, 0), the one to its North-East has coordinates (1, 1), the bottom right

cell has coordinates (2n− 2, 0), and so on. A column of a Dyck shape is a set of cells having the same x-

coordinate, for example the Dyck shape in Figure 7 has 8 non-empty columns, one of them having 2 cells

and the others only 1 cell. Similarly, a row of a Dyck shape is a set of cells having the same y-coordinate.

In the example of Figure 7, there are three non-empty rows. The notion of diagonals should be clear, to

distinguish the two different kinds, we refer to them as �-diagonals and �-diagonals.

Definition 3.4. A skew shape is called a ribbon if it is connected and contains no 2 × 2 square. Let D
and E be two Dyck shapes of respective length 2n and 2n+ 2, then we denote D ⊏ E and say that E is

obtained from D by addition of a ribbon if D ⊂ E and the difference E/D is a ribbon.

In this definition, we assume that the two Dyck shapes are arranged so that their leftmost cells coincide

(which is coherent with the way we defined the coordinates in the skew shape).

Remark 3.5. This definition is easily translated in terms of binary words overր andց. Let D a dyck

word, then D ⊏ E if and only if E is obtained from D ցց by changing aց into aր (and each step

ց of D ցց can be changed except the last one, so that there are n+ 1 possibilities for a path of length

2n).

Figure 8 shows the ribbons that can be added to the Dyck path of Figure 7. Note that the number of

�-diagonals of these ribbons are exactly the integers from 1 to 6. This is a general fact:

Proposition 3.6. Let D be a Dyck shape of length 2n and 1 ≤ i ≤ n+ 1. Then there is a unique way to

add to D a ribbon whose number of �-diagonals is i.

The result is clear upon inspection and does not deserve a detailed formal proof.

Figure 8: Addition of a ribbon to a Dyck path.
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Definition 3.7. An n-chain of Dyck shapes is a sequence D1 ⊏ D2 ⊏ · · · ⊏ Dn where Di is a Dyck

shape of length 2i. The biggest path Dn is called the shape of the chain, and we say the chains ends at

Dn.

Note that from Proposition 3.6, the number of n-chains of Dyck shapes is n!.
When we have an n-chain D1 ⊏ D2 ⊏ · · · ⊏ Dn, the ribbons Di/Di−1 with 1 ≤ i ≤ n (where we

take the convention D0 = ∅) form a partition of Dn as a set of cells. We can thus represent an n-chain

ending at D as a partition of D in n ribbons, see Figure 9 for an example. Conversely, a Dyck shape

D of length 2n partitioned in n ribbons arise in this way if it satisfies the following condition: the right

extremities of the ribbons are exactly the n cells in the bottom row of D.

Proposition 3.8. Let R be a rook placement in 2δn−1. Let Ri be the rook placement in 2δi obtained by

keeping only the i top rows of R (by convention, R0 is empty so that d(R0) = δ1/∅, the unique Dyck

shape of length 2, and Rn−1 = R). Then d(R0), . . . , d(Rn−1) is an n-chain of Dyck shapes. This defines

a bijection between rook placements in 2δn−1 and n-chains of Dyck shapes.

Proof: Let us compare d(Ri−1) and d(Ri). If the dot in the ith row of Ri is on the right extremity, d(Ri)
is obtained from d(Ri−1) by addingրց at the end. In the other cases, since only one dot is added from

Ri−1 to Ri, d(Ri) as a Dyck word is obtained from d(Ri−1) by replacing aց with aր and adding two

ց at the end. This shows d(Ri−1) ⊏ d(Ri), so d(R0), . . . , d(Rn−1) is indeed a chain of Dyck shapes.

We can recover the rook placement R from the chain of Dyck shapes. Indeed, let j be the index of the

first step where the two paths d(Ri−1) and d(Ri) differs, or j = 2i + 1 if d(Ri−1) is a prefix of d(Ri).
Then there is a dot in the (j − 1)st cell of the ith row of R.

Since both sets have the same cardinality, what we have defined is a bijection.

Figure 9: The chains of Dyck shapes corresponding to rook placements in Figure 1.

4 The poset of Dyck paths

The transitive and reflexive closure of the relation ⊏ defines the structure of a graded poset on the set of

Dyck paths of all possible lengths. The rank of a path is half its length, for example the minimal Dyck

path (i.e., the empty path) has rank 0, andրց has rank 1. In terms of this poset, what we call an n-chain

of shape D is a saturated chain of n elements starting atրց and arriving at D. Let (D,≤) denote this

poset, the goal of this section is to prove that it is lattice.

Let D be a Dyck path. Its Dyck word is the infinite binary word (di)i≥1 obtained from D by replacing

ր with 1,ց with 0, and appending an infinite sequence of 0’s. Note that the rank of a Dyck path is the

number of 1’s in the corresponding Dyck word. Though seemingly useless, appending the final sequence

of 0’s slightly simplifies some statements such as the next proposition.
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The height in a Dyck path D after i steps is the number of 1’s minus the number of 0’s among d1, . . . , di.
We have di ≥ 0 for i ≤ 2n where n is the rank of the path and di < 0 for i > 2n. We also define the

height similarly for a binary word which is not a priori a Dyck word.

Proposition 4.1. Let D,E ∈ D and (di)i≥1, (ei)i≥1 their Dyck words. We have D ≤ E if and only if

di ≤ ei for all i.

Proof: It is clear that if D1, D2 are Dyck words, D1 ⊏ D2 means that D2 can be obtained from D1 by

changing a 0 into a 1. So D ⊏ E implies di ≤ ei for all i. We deduce that D ≤ E also implies this

condition.

It remains to show the other implication. So we suppose now di ≤ ei for all i, and we will show D ≤ E
by induction on the difference of ranks.

The initial case is clear: if D and E have the same rank, we get di = ei for all i so D = E and in

particular D ≤ E. Otherwise, let M be the maximal integer such that dM < eM . In particular, dM = 0
and eM = 1. We define E′ = (e′i) by changing this eM = 1 into a 0. If E′ is indeed a Dyck word, we

have D ≤ E′ by using the induction hypothesis. Also E′ ⊏ E by construction, so E′ ≤ E, and it follows

D ≤ E.

So it remains to show that E′ is a Dyck word. If the difference of ranks is 1, we have E′ = D so it

is a Dyck word. So we can assume that the difference of ranks is at least 2. From di ≤ ei, we get that

hi(E) − hi(D) is increasing with i. We have that hM (E) − hM (D) is twice the difference of rank of E
and D, i.e., at least 4. So hM (E′) − hM (D) is at least 2. So hi(E

′) = hi(D) + 2 for i ≥ M , so it is

nonnegative as long as hM (D) ≥ −2. Now let M ′ be the minimal integer with hM ′(E′) = 0. We easily

obtain di = ei = 0 for i ≥M ′ and the fact that E′ is a Dyck word.

Proposition 4.2. D is a lattice.

Proof: Let D and E be two Dyck path. To show the existence of the join operation, let us define a Dyck

path D ∨ E by:

(D ∨ E)i = max(di, ei).

Using the previous lemma, it is clear that D ≤ D ∨ E, E ≤ D ∨ E, and D ≤ F , E ≤ F implies

D ∨E ≤ F . So we only have to show that D ∨E is indeed a Dyck path with this definition. Suppose for

example that the length of D is bigger than that of E. We see from the definition that D ∨ E is obtained

from D by changing some stepsց intoր, so it is clear that the new path cannot go below height 0.

Now, we show the existence of the meet operation D ∧E. First, consider the sequence c defined by

ci = min(di, ei).

It might not be a Dyck word, for example if D = 110010... and E = 101010... (where the dots represent

the infinite sequence of 0’s). So, let us consider the smallest prefix c′ of c containing more 0’s than 1’s.

We define D ∧E as the Dyck word c′... (where the dots represent the infinite sequence of 0’s). It is clear

that D ∧ E ≤ D, D ∧ E ≤ E. Suppose that F ≤ D and F ≤ E for some Dyck path F = (fi). We have

fi ≤ ci, so the path F goes below height 0 after |c′| steps. We deduce that fi = 0 when i is greater than

|c′|. So F ≤ D ∧ E.
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5 Permutations and their profiles

As mentioned above, the number of n-chains of Dyck shapes is n!, and the goal of this section is to give

a bijection with permutations. It is related with the notion of the profile of a permutation as defined by

Françon and Viennot [10], i.e., a Dyck path encoding the location of peaks, valleys, double ascents and

double descents, as defined below (the term shape was maybe more close to the french “forme”, but it was

already in use in this paper). This notion of profile gives another interpretation of the relation ⊏ (addition

of a ribbon) in Dyck paths, giving a natural bijection between chains of Dyck shapes and permutations.

Definition 5.1. Let σ ∈ Sn. We will take the convention that σ0 = 0 and σn+1 = n + 1. The integer

σi ∈ {1, . . . , n} is called:

– a peak if σi−1 < σi > σi+1,

– a valley if σi−1 > σi < σi+1,

– a double ascent if σi−1 < σi < σi+1,

– a double descent if σi−1 > σi > σi+1.

For example, if σ = 42135, 1 is a valley, 2 is a double descent, 3 and 5 are double ascents, 4 is a peak.

Note that in this definition, the value σi, not the index i, is a peak if σi−1 < σi > σi+1 (and similarly for

the other statistics). This is not coherent with the usual definition of a descent and ascent (an index i such

that σi > σi+1 or σi < σi+1), but it is nonetheless standard.

Definition 5.2. The profile of a permutation σ ∈ Sn is a Dyck path ∆(σ) of length 2n, defined as follows.

We see it as a binary word w = w1 · · ·w2n over the alphabet {ր,ց}, such that the factor w2i−1w2i is :

– րր if i is a valley of σ,

– ցց if i is a peak of σ,

– րց if i is a double ascent of σ,

– ցր if i is a double descent of σ.

In the previous example σ = 42135, we get ∆(σ) =րրցրրցցցրց (which is as well the

Dyck path represented in Figure 7).

Remark 5.3. This notion of profile of a permutation and the associated Dyck path ∆(σ) has also been

introduced by Brändén and Leander [4], in slightly different terms.

Let σ ∈ Sn be a permutation, considered as a word σ1 · · ·σn. We define σ′ ∈ Sn−1 as what we obtain

after removing n. For example, (1457236)′ = 145236. More generally, by mimicking the notation for

derivatives, we define σ(0) = σ and σ(i+1) = (σ(i))′.
The goal of this section is to prove:

Theorem 5.4. The map

σ 7→
(

∆(σ(n−1)), . . . ,∆(σ′′),∆(σ′),∆(σ)
)

(4)

defines a bijection between Sn and n-chains of Dyck shapes.
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The inverse bijection will be described explicitly below. Anticipating a little, let us announce that the

permutations

τ = 513462 and υ = 5471326

correspond to the chains of Dyck shapes in Figure 9. We can check for example that

∆(τ (0)) = ∆(513462) =րրրրրցրցցցցց,

∆(τ (1)) = ∆(51342) =րրրրրցցցցց,

∆(τ (2)) = ∆(1342) =րցրրրցցց,

∆(τ (3)) = ∆(132) =րցրրցց,

∆(τ (4)) = ∆(12) =րցրց,

∆(τ (5)) = ∆(1) =րց,

which corresponds to the first chain of Dyck paths in Figure 9.

The proof of Theorem 5.4 and the definition of the inverse bijection will follow from the lemma below.

Lemma 5.5. Let σ ∈ Sn, then we have ∆(σ′) ⊏ ∆(σ). If ∆(σ′) is a prefix of ∆(σ), then σ is obtained

from σ′ by inserting n in the last position. Otherwise, let k be the index of the first step where the paths

∆(σ′) and ∆(σ) differ, then:

– if k is odd, σ is obtained from σ′ by inserting n just after k+1
2 ,

– if k is even, σ is obtained from σ′ by inserting n just before k
2 .

Proof: Let us compare ∆(σ′) and ∆(σ). If n is at the end of σ, then ∆(σ) is obtained from ∆(σ′) by

addingրց at the end, corresponding to the double ascent n. So ∆(σ′) ⊏ ∆(σ) (this is the addition of a

ribbon with one cell).

Otherwise, n is between two other integers, i.e., there is in σ a factor i, n, j (with the convention that

i = 0 if n is at the beginning of σ). We suppose first that i < j. It means that either

– j is a double ascent in σ′ and a valley in σ, or

– j is a peak in σ′ and a double descent in σ.

On the Dyck paths, it means that the jth pair of steps is eitherրց in σ′ andրր in σ, orցց in σ′ and

ցր in σ, i.e., in each case the (2j)th step isց in σ′ andր in σ. It is easily checked that the other steps

do not change. So ∆(σ′) ⊏ ∆(σ). Suppose then that i > j. It means that either

– i is a double descent in σ′ and a valley in σ, or

– i is a peak in σ′ and a double ascent in σ.

On the Dyck paths, it means that the ith pair of steps is eitherցր in σ′ andրր in σ, orցց in σ′ and

րց in σ, i.e., in each case the (2i − 1)st step isց in σ′ andր in σ. It is easily checked that the other

steps do not change. So ∆(σ′) ⊏ ∆(σ).
Note that the cases i < j and i > j we considered can be distinguished via the parity of the changed

step between ∆(σ′) and ∆(σ). Thus we can finish the proof of the proposition: in the first case, we can
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find j from the index of the changed step and we know that n is just before j, and in the second case, we

can find i from the index of the changed step and we know that n is just after i.

The inverse bijection of (4) can be described explicitly. Let (D1, . . . , Dn) be an n-chain of Dyck paths.

We build a permutation σ ∈ Sn by inserting successively 1, 2, . . . , n. Start from 1 ∈ S1, corresponding

to the 1-chain of Dyck paths (րց). Suppose we have already inserted 1, . . . , j, then we insert j + 1
as follows. Let i ≥ 1 be such that the leftmost cell of the ribbon Dj+1/Dj is in the ith column. If

i = 2j + 1, which means the ribbon Dj+1/Dj contains a single square, then j + 1 is inserted in last

position. Otherwise:

– if i is even and i = 2i′, then j + 1 is inserted to the left of i′,

– if i is odd and i = 2i′ − 1, then j + 1 is inserted to the right of i′.

Let us give the details for the first example of Figure 9. In this case, we have 6 ribbons, the leftmost

cells of the successive ribbons are in columns 1,3,4,5,2,7. So, starting from the permutation 1:

– first i = 3, so insert 2 in the last position and get 12,

– then i = 4, so insert 3 to the left of 2 and get 132,

– then i = 5, so insert 4 to the right of 3 and get 1342,

– then i = 2, so insert 5 to the left of 1 and get 51342,

– then i = 7, so insert 6 to the right of 4 and get 513462,

Thus we get τ = 513462.

6 Laguerre histories and Dyck tableaux

One result of Françon and Viennot [10] is that the number of permutations with a given profile D is a

product of integers easily described in terms of the Dyck path D. This is done via a bijection between per-

mutations and Laguerre histories (see [20]), the name being justified by the link with Laguerre orthogonal

polynomials. To relate this with Theorem 5.4 in the previous section, we give a bijection between chains

of Dyck shapes and these objects. Note that Laguerre histories were previously related to the PASEP

partition function and permutation tableaux in [11].

Definition 6.1. A column of a Dyck path is below a stepր if its topmost cell is not contiguous to another

cell to its North-West. Alternatively, the kth column is below a stepր if the kth step of the path isր.

Let D be a Dyck path of length 2n, then a Laguerre history of shape D is a filling of D with n dots such

that there is one dot in each column below a stepր (and no dot in the other columns).

See Figure 10 for some examples of Laguerre histories.

If a stepր in a Dyck path is from height h to h+ 1, the column below it contains ⌊h2 ⌋+ 1 cells (here

the height of the step is seen as the y-coordinate in the path in N2 with two kinds of steps, not in the

skew shape). This means that a Laguerre history is a Dyck path together with a choice among ⌊h2 ⌋ + 1
possibilities for each stepր from height h to h + 1, i.e., we recover the notion of subdivided Laguerre

history (see Viennot [20, Chapter 2] and de Médicis and Viennot [15, Section 4]). In particular, it follows

from [15, Section 4] that there are n! Laguerre histories of length 2n.
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•
•
•
•
•

•

•
•
•
•

•
•

•

Figure 10: Laguerre histories.

Proposition 6.2. Let D1 ⊏ · · · ⊏ Dn be a chain of Dyck paths of shape D = Dn. We define a filling

of D by putting a dot in the left extremity of each ribbon Di+1/Di. Then what we obtain is a Laguerre

history, and this defines a bijection between n-chains of Dyck shapes and Laguerre histories of the same

shape D.

Proof: We first prove that what we obtain is indeed a Laguerre history. Let 2 ≤ i ≤ n. The Dyck path Di

is obtained fromDi−1 ցց by changing some stepց (say, this is the kth step) into aր. By construction,

it means that the ith ribbon has its left extremity in the kth column of the Dyck path. We can deduce that

there is exactly one dot in each column below a stepր in D at the end of the process.

Then, we define the inverse bijection. Let H be a Laguerre history of shape D. To find what are the

ribbons of the corresponding chain of Dyck paths, we proceed as follows. Start from the rightmost cell

of the Dyck path, and follow the upper border of cells from right to left until arriving to a cell containing

a dot; the path we just followed is the last added ribbon D, remove D and do the same thing to find the

other ribbons. It is easy to show that the two bijections are inverses of each other.

For example, the bijection described in the previous proposition sends the chains in Figure 9 to the

Laguerre histories in Figure 10.

Definition 6.3 (Aval et al. [2]). Let D be a Dyck shape of length 2n. A Dyck tableau of shape D is a

filling of D with n dots such that there is one dot in each odd column.

See Figure 11 for some examples of Dyck tableaux.

• •

•

•

• • • • •

•

• • •

Figure 11: Dyck tableaux.

To see the equivalence between Dyck tableaux and our definition of Laguerre histories, we need the

following lemma.

Lemma 6.4. Let D be a Dyck shape. Then there is a bijection between the columns of D below a stepր,

and its odd columns. It is such that c and κ(c) contain the same number of cells.
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c
κ(c)

Figure 12: Definition of the bijection κ.

Proof: The bijection κ is constructed as follows. If a column c is both odd and below a step ր, then

κ(c) = c. This is always the case for the first column. As for the other case, let c be an even column

below a step ր. It will be associated to κ(c), an odd column of the same height as c and which is not

below a stepր.

We use the notion of facing steps. If we have a stepր in a Dyck path, from (x, y) to (x + 1, y + 1),
its facing step is the step ց from (x′, y + 1) to (x′ + 1, y) where x′ > x is minimal. Note that in this

situation, x and x′ have different parity, which follows because a Dyck path only visits pairs (i, j) with

i+ j even. Reciprocally, each stepց is the facing step of a unique stepր, than we can also call its facing

step.

To define κ(c), we follow the illustration in Figure 12. The column c is the below a stepր, say (x, y)
to (x + 1, y + 1). Note that x + 1 is even, by the assumption that c is an even column. And the number

of cells of c is (y + 1)/2. In the example, x = 7, y = 5. The stepր from (x, y) to (x + 1, y + 1) has

a facing stepց from (x′, y + 1) to (x′ + 1, y). Then κ(c) is defined as the (x′ + 1)st column, i.e., that

below the end point of this facing stepց.

Since the notion of facing step gives a pairing between steps ր and ց, it is easily seen that we can

recover c from κ(c). By construction, κ(c) is not below a stepր, and x′ + 1, y are odd. It follows that

κ(c) has the same number of cells as c. See Figure 12.

The previous lemma can be used to give a bijection between Laguerre histories of shape D and Dyck

tableaux of the same shape. Let H be a Laguerre history of shape D, we can define a Dyck tableau T of

shape D by the following condition :

– if a column c in H contains a dot in its ith cell (from bottom to top, for example), then the column

κ(c) in T also contains a dot in its ith cell.

This is clearly bijective.

For example, from the Laguerre histories in Figure 10, we obtain the Dyck tableaux in Figure 11. More
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precisely, the correspondence between columns can be illustrated by numbering dots, giving:

1

2
3

4

5

6

→

1 3

5

6

4 2
,

and

1

2
3

4

5

6

7

→

1 3 4

5

6 7 2
.

7 A generalization

In this section, we consider a generalization of stammering tableaux where we do not require λ(0) =

λ(3n) = ∅ anymore. Let T
(n)
µ,ν be the number of such tableaux λ(0), . . . , λ(3n) with λ(0) = µ and

λ(3n) = ν. We don’t know how to compute this number in general, but we have a simple answer when

either µ or ν is empty.

Also we need to consider a generalization of rook placements in 2δn, so in this section we do not require

that there is exactly one dot per row.

Lemma 7.1. The number of fillings of 2δn with k dots, such that there is at most one dot per row and at

most one per column, is
(n+ 1)!

(n− k + 1)!

(

n

k

)

.

Proof: These numbers satisfy the recursion

an,k = an−1,k + (2n− k + 1)an−1,k−1,

which can be checked either on the definition with rook placements or on the given formula. The initial

conditions are a0,0 = 1, an,k = 0 if n < 0 or k < 0 or k > n.

Proposition 7.2. Let λ ∈ Y with |λ| = k, and let fλ be the number of standard tableaux of shape λ. Then

we have

T
(n)
∅,λ = (n+ 1)!

(

n

k

)

fλ

and

T
(n)
λ,∅ =

(n+ 1)!

(k + 1)!

(

n

k

)

fλ.
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Proof: The idea is to use growth diagrams to build a bijection between these generalized stammering

tableaux and rook placements in the double staircase together with some additional data. Note that we

will here use the reverse local rules of growth diagrams ([14, Section 2.1.8]). Using the notation of

Figure 3, it means that if we know µ, ν, ρ, we can find λ and whether the cell contains a dot or not.

Let us begin with the first equality. Let λ(0), . . . , λ(3n) with λ(0) = ∅ and λ(3n) = λ. We can put

this sequence of partitions along the North-East border of 2δn from the top left corner to the bottom right

corner, and use the reverse local rules of growth diagrams to complete the picture, i.e., fill some cells with

a dot and assign a Young diagram to each vertex. We obtain a rook placement R in 2δn with n dots,

and the bottom border contains a sequence ρ(0), . . . , ρ(2n) such that ρ(i−1) = ρ(i) if the ith column of R
contains a dot, ρ(i−1) = ρ(i) or ρ(i−1)⋖ρ(i) otherwise. This ρ(0), . . . , ρ(2n) can be encoded by a standard

tableau of shape λ (describing the sequence of shapes without repetition) and the choice of k columns

among the n columns without a dot (describing what are the indices i such that ρ(i−1) ⋖ ρ(i)). So there

are
(

n
k

)

fλ such sequences for a given rook placement. Since there are (n + 1)! rook placements in 2δn,

we obtain T
(n)
∅,λ = (n+ 1)!

(

n
k

)

fλ.

The second result is similar but starting with the assumption λ(0) = λ and λ(3n) = ∅. We put this

sequence along the North-East border of 2δn, and the reverse local rule of growth diagrams are performed.

We obtain a partial rook placement R in 2δn with n − k dots, and the left border of 2δn is a sequence

ρ(0), . . . , ρ(n) such that ρ(i−1) = ρ(i) if the ith row of R contains a dot, and ρ(i−1)⋖ρ(i) otherwise. Using

the previous lemma, we obtain T
(n)
λ,∅ = (n+1)!

(k+1)!

(

n

k

)

fλ.

To illustrate the first identity, if we start from

(

∅, , ; , , ; , , ; , , ; , , ;
)

,

the growth diagram is in Figure 13. Here n = 4 and k = 3. We get a rook placement in 2δ4, and the

bottom line

∅ , ∅ , ∅ , ∅ , ∅ , , , , .

This sequence of Young diagrams can be encoded in the standard tableau

2

1 3 ,

together with the indices i = 5, 7, 9 such that the ith column in the growth diagram has a change in its

bottom line.

And if we start from

, , ; , , ; , , ; , , ; , , ; ∅ ,

the growth diagram is in Figure 14. Here n = 5 and k = 3. We get a rook placement in 2δ5 with 2 rooks,

together with the sequence of Young diagrams in the rightmost line:

∅ , ∅ , , , , ,

which can be encoded in the standard tableau

3

1 2 .
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•

•

•

•

∅

∅∅

∅∅

∅∅∅∅∅

∅∅∅∅∅

Figure 13: A growth diagram illustrating reverse local rules.

Note that we do not need to keep track of when repetitions occur in this sequence, because these corre-

spond to rows containing a dot in the growth diagram.

•

•
∅

∅∅∅∅∅∅

∅∅∅∅∅∅∅∅∅∅

Figure 14: A growth diagram illustrating reverse local rules.

8 Open problems

The poset introduced in Section 4 is reminicent of the notion of Fomin’s dual graded graphs [9], since

there are n! paths from the minimal element to some element of rank n. So the problem is to find some

dual order relation 4 on the set of Dyck paths of all possible lengths, so that we have the commutation

relation DU − UD = I (or some variation) for the up and down operators as in (3) where U is defined

with the cover relation of ≤ and D is defined with the cover relation of 4. See [9] for details. Note that

4 must be a tree in this situation. If there is such a construction, it might be related with a Hopf algebra

of Dyck paths. So, defining a relevant coproduct on the algebra of Dyck path of Brändén and Leander [4]

is a related question.

It is well known that standard tableaux are related with representations of the symmetric groups. Os-

cillating tableaux are related with that of Brauer algebras [1], and vacillating tableaux are related with

that of partition algebras [12]. It would be interesting to see if our stammering tableaux have any similar

algebraic meaning.

On the purely combinatorial level, there are a lot of enumerative or bijective results on Dyck tableaux,

tree-like tableaux, permutation tableaux, and links with permutation statistics, q-Eulerian numbers, etc.

See for example [2, 3, 11, 22]. It would be interesting to see if the combinatorial objects presented in this

paper are helpful on these topics.
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Foata-Zeilberger. Adv. in Appl. Math. 15 (1994), 262–304.

https://arxiv.org/abs/1604.04140
https://pastel.archives-ouvertes.fr/tel-01327405


22 Matthieu Josuat-Vergès

[16] T.W. ROBY: Applications and extensions of Fomin’s generalization of the Robinson-Schensted

correspondence to differential posets. Phd. Thesis, M.I.T., Cambridge, 1991.

[17] R.P. STANLEY: Differential posets. J. Am. Math. Soc. 1 (1988), 919–961.

[18] R.P. STANLEY: Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.

[19] A. VARVAK: Rook numbers and the normal ordering problem. J. Combin. Theory Ser. A 112(2)

(2005), 292–307.
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