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A gapped repeat (respectively, palindrome) occurring in a word w is a factor uvu (respectively, uRvu) of w. In
such a repeat (palindrome) u is called the arm of the repeat (respectively, palindrome), while v is called the gap.
We show how to compute efficiently, for every position i of the word w, the longest gapped repeat and palindrome
occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is,
that for each position i we compute the longest prefix u of w[i..n] such that uv (respectively, uRv) is a suffix of
w[1..i− 1] (defining thus a gapped repeat uvu – respectively, palindrome uRvu), and the length of v is subject to the
aforementioned restrictions.
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1 Introduction
Gapped repeats and palindromes have been investigated for a long time (see, e.g., Gusfield (1997); Brodal
et al. (1999); Kolpakov and Kucherov (2000, 2009a); Kolpakov et al. (2014); Crochemore et al. (2010);
Crochemore and Tischler (2011) and the references therein), with motivation coming especially from the
analysis of DNA and RNA structures, where tandem repeats or hairpin structures play important roles
in revealing structural and functional information of the analysed genetic sequence (see Gusfield (1997);
Brodal et al. (1999); Kolpakov and Kucherov (2009a) and the references therein).

A gapped repeat (respectively, palindrome) occurring in a word w is a factor uvu (respectively, uRvu)
of w. The middle part v of such a structure is called gap, while the two factors u (respectively, the factors
uR and u) are called left and right arms. Generally, the previous works were interested in finding all the
gapped repeats and palindromes, under certain numerical restrictions on the length of the gap or on the
relation between the length of the arm of the repeat or palindrome and the length of the gap.

A classical problem for palindromes asks to find the longest palindromic factor of a word (see, Man-
acher (1975)). This is our first inspiration point in proposing an alternative point of view in the study
of gapped repeats and palindromes. As a second inspiration point for our work, we refer to the longest

∗This is an extension of the conference papers of Gawrychowski and Manea (2015), presented at the 20th International Sympo-
sium on Fundamentals of Computation Theory, FCT 2015, and of Dumitran and Manea (2015), presented at the 40th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2015.
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previous factor table (LPF) associated to a word. This data structure was introduced and considered in the
context of efficiently computing Lempel-Ziv-like factorisations of words (see Crochemore et al. (2013,
2010)). Such a table provides for each position i of the word the longest factor occurring both at position
i and once again on a position j < i. Several variants of this table were also considered by Crochemore
et al. (2010): the longest previous reverse factor (LPrF ), where we look for the longest factor occurring
at position i and whose mirror image occurs in the prefix of w of length i − 1, or the longest previous
non-overlapping factor, where we look for the longest factor occurring both at position i and somewhere
inside the prefix of length i− 1 of w. Such tables may be seen as providing a comprehensive image of the
long repeats and symmetries occurring in the analysed word.

According to the above, in our work we approach the construction of longest previous gapped repeat or
palindrome tables: for each position i of the word we want to compute the longest factor occurring both
at position i and once again on a position j < i (or, respectively, whose mirror image occurs in the prefix
of length i − 1 of w) such that there is a gap (subject to various restrictions) between i and the previous
occurrence of the respective factor (mirrored factor). Similar to the original setting, this should give us a
good image of the long gapped repeats and symmetries of a word.

A simple way to restrict the gap is to lower bound it by a constant; i.e., we look for factors uvu (or
uRvu) with |v| > g for some g ≥ 0. The techniques of Crochemore et al. (2010) can be easily adapted to
compute for each position i the longest prefix u of w[i..n] such that there exists a suffix uv (respectively,
uRv) of w[1..i− 1], forming thus a factor uvu (respectively, uRvu) with |v| > g. Here we consider three
other different types of restricted gaps.

We first consider the case when the length of the gap is between a lower bound g and an upper bound
G, where g and G are given as input (so, may depend on the input word). This extends naturally the case
of lower bounded gaps.

Problem 1 Given w of length n and two integers g and G, such that 0 ≤ g < G ≤ n, construct the
arrays LPrF g,G[·] and LPF g,G[·] defined for 1 ≤ i ≤ n:

a. LPrF g,G[i] = max{|u| | there exists v such that uRv is a suffix of w[1..i − 1] and u is prefix of
w[i..n], with g ≤ |v| < G}.

b. LPF g,G[i] = max{|u| | there exists v such that uv is a suffix ofw[1..i−1] and u is prefix ofw[i..n],
with g ≤ |v| < G}.

We are able to solve Problem 1(a) in linear time O(n). Problem 1(b) is solved here in O(n log n) time.
Intuitively, in the case of gapped palindromes, when trying to compute the longest prefix u of w[i..n] such
that uRv is a suffix of w[1..i− 1] with g < |v| ≤ G, we just have to compute the longest common prefix
between w[i..n] and the words w[1..j]R with g < i − j ≤ G. The increased difficulty in solving the
problem for repeats (reflected in the increased complexity of our algorithm) seems to come from the fact
that when trying to compute the longest prefix u of w[i..n] such that uv is a suffix of w[1..i − 1] with
g < |v| ≤ G, it is hard to see where the uv factor may start, so we have to somehow try more variants for
the length of u. Brodal et al. (1999) give an algorithm that finds all maximal repeats (i.e., repeats whose
arms cannot be extended) with gap between a lower and an upper bound, running in O(n log n+ z) time,
where z is the number of such repeats. It is worth noting that there are words (e.g., (a2b)n/3, from Brodal
et al. (1999)) that may have Θ(nG) maximal repeats uvu with |v| < G. Hence, for G > log n and g = 0,
for instance, our algorithm is faster than an approach that would first use the algorithms of Brodal et al.
(1999) to get all maximal repeats, and then process them somehow to solve Problem 1(b).
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The data structures we construct allow us to trivially find in linear time the longest gapped palindrome
having the length of the gap between g and G, and in O(n log n) time the longest gapped repeat with the
length of the gap between the bounds g and G.

In the second case, the gaps of the repeats and palindromes we investigate are only lower bounded;
however, the bound on the gap allowed at each position is defined by a function depending on the position.

Problem 2 Given w of length n and the values g(1), . . . , g(n) of g : {1, . . . , n} → {1, . . . , n}, construct
the arrays LPrF g[·] and LPF g[·] defined for 1 ≤ i ≤ n:

a. LPrF g[i] = max{|u| | there exists v such that uRv is a suffix of w[1..i − 1] and u is prefix of
w[i..n], with g(i) ≤ |v|}.

b. LPF g[i] = max{|u| | there exists v such that uv is a suffix of w[1..i− 1] and u is prefix of w[i..n],
with g(i) ≤ |v|}.

The setting of this problem can be seen as follows. An expert preprocesses the input word (in a way
specific to the framework in which one needs this problem solved), and detects the length of the gap
occurring at each position (so, computes g(i) for all i). These values and the word are then given to us,
to compute the arrays defined in our problems. We solve both problems in linear time. Consequently,
we can find in linear time the longest gapped palindrome or repeat whose gap fulfils the length restriction
defined by the position where this palindrome or repeat occurs (as above).

Finally, following Kolpakov and Kucherov (2009a); Kolpakov et al. (2014), we analyse gapped repeats
uvu or palindromes uRvu where the length of the gap v is upper bounded by the length of the arm u
multiplied by some factor. More precisely, Kolpakov et al. (2014) investigate α-gapped repeats: words
uvu with |uv| ≤ α|u|. Similarly, Kolpakov and Kucherov (2009a) analyse α-gapped palindromes, i.e.,
words uRvu with |uv| ≤ α|u|. For α = 2, these structures are called long armed repeats (or pairs)
and palindromes, respectively; for α = 1, they are squares and palindromes of even length, respectively.
Intuitively, one is interested in repeats or palindromes whose arms are roughly close one to the other;
therefore, the study of α-gapped repeats and palindromes was rather focused on the cases with small α.
Here, we address the general case, of searching in a word w α-gapped repeats or palindromes for α ≤ |w|.
Problem 3 Given w of length n and a number α ≤ n, construct the arrays LPalα[·] and LRepα[·],
defined for 1 ≤ i ≤ n:

a. LPalα[i] = max{|u| | there exists v such that uRv is a suffix of w[1..i− 1], u is a prefix of w[i..n],
and |uv| ≤ α|u|}.

b. LRepα[i] = max{|u| | there exists v such that uv is a suffix of w[1..i − 1], u is a prefix of w[i..n],
and and |uv| ≤ α|u|}.

The problem of constructing the set S of all factors of a word of length n which are maximal α-gapped
repeats of palindromes (i.e., the arms cannot be extended simultaneously with one symbol to the right or
to the left to get a longer similar structure) was thoroughly considered, and finally settled by Crochemore
et al. (2016); Gawrychowski et al. (2016) (see also the references therein). In both these papers, it is
shown that the number of α-gapped repeats or palindromes a word of length n may contain is Θ(αn).
Using as starting point the algorithm presented in Gawrychowski and Manea (2015), that finds the longest
α-gapped repeat or palindrome (without constructing the set of all such structures), Gawrychowski et al.
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(2016) give an algorithm finding all maximal α-gapped repeats and α-gapped palindromes in optimal
time Θ(αn). Here, we first present the algorithm of Gawrychowski and Manea (2015) for the identifi-
cation of the longest α-gapped repeat or palindrome contained in a word, and briefly explain how it was
extended to output all maximal α-gapped repeats and palindromes in a word. Then we use the algorithm
of Gawrychowski et al. (2016) and a linear time algorithm finding the longest square/palindrome centred
at each position of a word to solve Problem 3 in linear time.

Our algorithms are generally based on efficient data-structures. On one hand, we use efficient word-
processing data structures like suffix arrays, longest common prefix structures, or dictionaries of basic
factors. On the other hand, we heavily use specific data-structures for maintaining efficiently collections
of disjoint sets, under union and find operations. Alongside these data-structures, we make use of a series
of remarks of combinatorial nature, providing insight in the repetitive structure of the words.

2 Preliminaries
The computational model we use to design and analyze our algorithms is the standard unit-cost RAM with
logarithmic word size, which is generally used in the analysis of algorithms. In this model, the memory
word size is logarithmic in the size of the input.

Let V be a finite alphabet; V ∗ denotes the set of all finite words over V . In the upcoming algorithmic
problems, we assume that the words we process are sequences of integers (i.e., over integer alphabets).
In general, if the input word has length n then we assume its letters are in {1, . . . , n}, so each letter
fits in a single memory-word. This is a common assumption in stringology (see, e.g., the discussion by
Kärkkäinen et al. (2006)).

The length of a word w ∈ V ∗ is denoted by |w|. The empty word is denoted by λ. A word u ∈ V ∗ is
a factor of v ∈ V ∗ if v = xuy, for some x, y ∈ V ∗; we say that u is a prefix of v, if x = λ, and a suffix
of v, if y = λ. We denote by w[i] the symbol occurring at position i in w, and by w[i..j] the factor of w
starting at position i and ending at position j, consisting of the catenation of the symbols w[i], . . . , w[j],
where 1 ≤ i ≤ j ≤ n; we define w[i..j] = λ if i > j. The powers of a word w are defined recursively
by w0 = λ and wn = wwn−1 for n ≥ 1. If w cannot be expressed as a nontrivial power (i.e., w is
not a repetition) of another word, then w is primitive. A period of a word w over V is a positive integer
p such that w[i] = w[j] for all i and j with i ≡ j (mod p). Let per(w) be the smallest period of w.
A word w with per(w) ≤ |w|

2 is called periodic; a periodic w[i..j] (with p = per(w[i..j]) < j−i+1
2 )

is a run if it cannot be extended to the left or right to get a word with the same period p, i.e., i = 1 or
w[i − 1] 6= w[i + p − 1], and, j = n or w[j + 1] 6= w[j − p + 1]. Kolpakov and Kucherov (1999)
showed that the number of runs of a word is linear and their list (with a run w[i..j] represented as the
triple (i, j, per(w[i..j])) can be computed in linear time. The exponent of a run w[i..j] occurring in w is
defined as j−i+1

per(w[i..j]) ; the sum of the exponents of all runs in a word of length n is O(n) (see Kolpakov
and Kucherov (1999)).

For a word u, |u| = n, over V ⊆ {1, . . . , n} we build in O(n) time the suffix array as well as data
structures allowing us to retrieve in constant time the length of the longest common prefix of any two
suffixes u[i..n] and u[j..n] of u, denoted LCPu(i, j) (the subscript u is omitted when there is no danger
of confusion). Such structures are called LCP data structures in the following. For details, see, e.g.,
Kärkkäinen et al. (2006); Gusfield (1997), and the references therein. In the solutions of the problems
dealing with gapped palindromes inside a word w (Problems 1(a), 2(a), and 3(a)) we construct the suffix
array and LCP data structures for the word u = w0wR, where 0 is a new symbol lexicographically
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z = w[j, j + 8 · 2k − 1]

y = w[i, i+ 2k − 1]

y

y

y

y
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y y

y

y

Fig. 1: Occurrences of the basic factors y = w[i..i+2k−1] in z = w[j..j+8 ·2k−1]. The overlapping occurrences
are part of runs, and they can be returned as the pair formed of the first occurrence of y from each run and the period
of y. The representation of the occurrences of y in z will return 4 elements: 3 runs and one separate occurrence.

smaller than all the symbols of V ; this takes O(|w|) time. To check whether w[i..j] occurs at position
` in w (respectively, w[i..j]R occurs at position ` in w) we check whether ` + (j − i + 1) ≤ n and
LCPu(i, `) ≥ j − i + 1 (respectively, LCPu(`, 2|w| − j + w)) ≥ j − i + 1). To keep the notation free
of subscripts, when we measure the longest common prefix of a word w[1..j]R and word w[i..n] we write
LCP(w[1..j]R, w[1..i]), and this is in fact an LCP -query on u = w0wR; when we measure the longest
common prefix of a word w[j..n] and word w[i..n] we write LCP(j, i), and this is in fact an LCP -query
on w.

The suffix array of w0wR allows us to construct in linear time a list L of the suffixes w[i..n] of w and
of the mirror images w[1..i]R of the prefixes of w (which correspond to the suffixes of length less than
|w| of w0wR), ordered lexicographically. Generally, we denote by Rank[i] the position of w[i..n] in the
ordered list L of these factors, and by RankR[i] the position of w[1..i]R in L.

The dictionary of basic factors (introduced by Crochemore and Rytter (1991)) of a word w (DBF
for short) is a data structure that labels the factors w[i..i + 2k − 1] (called basic factors), for k ≥ 0
and 1 ≤ i ≤ n − 2k + 1, such that every two identical factors of w get the same label and we can
retrieve the label of any basic factor in O(1) time. The DBF of a word of length n is constructed in
O(n log n) time.

Note that a basic factor w[i..i+ 2k − 1] occurs either at most twice in any factor w[j..j + 2k+1 − 1] or
the occurrences of w[i..i+ 2k−1] in w[j..j+ 2k+1−1] form a run of period per(w[i..i+ 2k−1]) (so the
corresponding positions wherew[i..i+2k−1] occurs inw[j..j+2k+1−1] form an arithmetic progression
of ratio per(w[i..i + 2k − 1]), see Kociumaka et al. (2012)). Hence, the occurrences of w[i..i + 2k − 1]
in w[j..j + 2k+1 − 1] can be presented in a compact manner: either at most two positions, or the starting
position of the progression and its ratio. For c ≥ 2, the occurrences of the basic factor w[i..i+ 2k − 1] in
w[j..j+c2k−1] can be also presented in a compact manner: the positions (at most c) wherew[i..i+2k−1]
occurs isolated (not inside a run) and/or at most c maximal runs that contain the overlapping occurrences
of w[i..i+ 2k − 1], each run having period per(w[i..i+ 2k − 1]).

Remark 1 Using the DBF of a word w of length n, given a number ` > 0 we can produce in O(n log n)
time a data structure answering the following type of queries in O(1) time: “Given i and k return the
compact representation of the occurrences of the basic factor w[i..i + 2k − 1] inside the basic factor
w[i − ` − 2k+1.. i − ` − 1]”. Similarly, given ` > 0 and a constant c > 0 (e.g., c = 10), we can
produce inO(n log n) time a data structure answering the following type of queries inO(1) time: “Given



6 Marius Dumitran, Paweł Gawrychowski, Florin Manea

i and k return the compact representation of the occurrences of the basic factor w[i..i + 2k − 1] in
w[i− `− c2k..i− `− 1] ”.

Indeed, once we construct the dictionary of basic factors of w, we reorganise it such that for each
distinct basic factor we have an array with all the positions where it occurs, ordered increasingly. Now,
we traverse each such array, keeping track of the current occurrence w[i..i − 2k − 1] and a window
containing its occurrences from the range between i − ` − c2k and i − ` (and a compact representation
of these occurrences); when we move in our traversal of this array to the next occurrence of the current
basic factors, we also slide the window in the array, and, looking at the content of the previous window
and keeping track of the occurrences that were taken out and those that were added to its content, we can
easily obtain in constant time a representation of the occurrences of the considered basic factors inside
the new window.

The previous remark is extended by the following lemma in a more general setting: c is no longer a
constant, and in a query we look, this time, for the occurrences of a basic factor w[i..i+ 2k − 1] in factors
z = w[j..j + c2k − 1], where there is no relation between i and j.

Lemma 1 Given a word w of length n and a number c ≥ 2, we can preprocess w in timeO(n log n) such
that given any basic factor y = w[i..i + 2k − 1] and any factor z = w[j..j + c2k − 1], with k ≥ 0, we
can compute in O(log log n+ c) time a compact representation of all the occurrences of y in z.

Proof: We construct the dictionary of basic factors of a word of length n inO(n log n) time and reorganise
it such that for each basic factor we have an array with all its occurrences, ordered by their starting
positions. For each such array we construct data structures that allow predecessor/successor search in
O(log log n) time with linear time preprocessing w.r.t. its length (see, e.g., van Emde Boas (1975)).
When we have to return the occurrences of y = w[i..i+ 2k−1] in z = w[j..j+ c2k−1], we search in the
basic factors-array corresponding to w[i..i+ 2k − 1] the successor of j and, respectively, the predecessor
of j+c2k−1 and then return a compact representation of the occurrences ofw[i..i+2k−1] between these
two values. This representation can be obtained in O(c) time. We just have to detect those occurrences
that form a run; this can be done with a constant number of LCP queries. Indeed, for two consecutive
occurrences, we compute the length of their overlap, which gives us a period of w[i..i+ 2k− 1]. Then we
look in w to see how long can the run with this period be extended to the right, which gives us the number
of occurrences of w[i..i+ 2k − 1] in that run. As their starting positions form an arithmetic progression,
we can represent them compactly. So, we return the representation of the occurrences of w[i..i+ 2k − 1]
from this run, and then move directly to the first occurrence of w[i..i + 2k − 1] appearing after this run
and still in the desired range; as there are at most O(c) runs and separate occurrences of the given basic
factor in the desired range, the conclusion follows. 2

In the following we make use of a result by Gawrychowski (2011), where it is shown that one can also
construct data structures that allow the fast identification of the suffixes of a word that start with a given
basic factor.

Lemma 2 (Gawrychowski (2011)) A word w of length n can be processed in O(n) time such that given
any basic factor w[i..i + 2k − 1], with k ≥ 0, we can retrieve in O(1) time the range of the suffix array
of w of suffixes starting with w[i..i + 2k − 1]. Equivalently, we can find the node of the suffix tree of w
closest to the root, such that the label of the path from the root to that node has the prefix w[i..i+ 2k − 1].

We can now show the following lemma.
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Lemma 3 Given a word v, |v| = α log n, we can process v in time O(α log n) time such that given any
basic factor y = v[j · 2k + 1..(j + 1)2k], with j, k ≥ 0 and j2k + 1 > (α− 1) log n, we can find in O(α)
time O(α) bit-sets, each storing O(log n) bits, characterising all the occurrences of y in v.

Proof: We first show how the proof works for α = 1.
We first build the suffix tree for v inO(α log n) time (see Farach (1997)). We further process this suffix

tree such that we can find in constant time, for each factor v[j · 2k + 1..(j + 1)2k], the node of the suffix
tree which is closest to the root with the property that the label of path from the root to it starts with
v[j · 2k + 1..(j + 1)2k]. According to Lemma 2, this can be done in linear time.

Now, we augment the suffix tree in such a manner that for each node we store an additional bit-set,
indicating the positions of v where the word labelling the path from the root to the respective node occurs.
Each of these bit-sets, of size O(log n), can be stored in constant space; indeed, each log n block of bits
from the bit-set can be seen in fact as a number between 1 and n so we only need to store a constant
number of numbers smaller than n; in our model, each such number fits in a memory word. Computing
the bit-sets can be done in a bottom up manner in linear time: for a node, we need to make the union of
the bit-sets of its children, and this can be done by doing a bitwise or operation between all the bit-sets
corresponding to the children. So, now, checking the bit-set associated to the lowest node of the suffix
tree such that the label of the path from the root to that node starts with v[j · 2k + 1..(j + 1)2k] we can
immediately output a representation of this factor’s occurrences in v.

This concludes the proof for α = 1.
For α > 1, we just have to repeat the algorithm in the previous proof for the words v[i log n + 1..(i +

2) log n]v[(α − 1) log n + 1..α log n], for 0 ≤ i ≤ α − 2, which allows us to find all the occurrences of
the basic factors of v[(α− 1) log n+ 1..α log n] in v. The time is clearly O(α log n).

2

Note that each of the bit-sets produced in the above lemma can be stored in a constant number of mem-
ory words in our model of computation. Essentially, this lemma states that we can obtain in O(α log n)
time a representation of size O(α) of all the occurrences of y in v.

Remark 2 By Lemma 2, given a word v, |v| = α log n, and a basic factor y = v[j ·2k+1, (j+1)2k], with
j, k ≥ 0 and j2k + 1 > (α − 1) log n, we can produce O(α) bit-sets, each containing exactly O(log n)
bits, characterising all the occurrences of y in v. Let us also assume that we have access to all values
log x with x ≤ n (which can be ensured by a O(n) preprocessing). Now, using the bit-sets encoding the
occurrences of y in v and given a factor z of v, |z| = c|y| for some c ≥ 1, we can obtain in O(c) time
the occurrences of y in z: the positions (at most c) where y occurs outside a run and/or at most c runs
containing the occurrences of y. Indeed, the main idea is to select by bitwise operations on the bit-sets
encoding the factors of v that overlap z the positions where y occurs (so the positions with an 1). For each
two consecutive such occurrences of y we detect whether they are part of a run in v (by LCP -queries on
v) and then skip over all the occurrences of y from that run (and the corresponding parts of the bit-sets)
before looking again for the 1-bits in the bit-sets.

Some of our solutions rely on an efficient solution for the disjoint set union-find problem. This problem
asks to maintain a family consisting initially of d disjoint singleton sets from the universe U = [1, n+ 1)
(shorter for {1, . . . , n}) so that given any element we can locate its current set and return the minimal
(and/or the maximal) element of this set (operation called find-query) and we can merge two disjoint sets
into one (operation called union). In our framework, we know from the beginning the pairs of elements
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whose corresponding sets can be joined. Under this assumption, a data-structure fulfilling the above
requirements can be constructed in O(d) time such that performing a sequence of m find and union
operations takes O(m) time in the computation model we use (see Gabow and Tarjan (1983)). As a
particular case, this data structure solves with O(n) preprocessing time and O(1) amortised time per
operation the interval union-find problem, which asks to maintain a partition of the universeU = [1, n+1)
into a number of d disjoint intervals, so that given an element of U we can locate its current interval, and
we can merge two adjacent intervals of the partition.

Remark 3 As a first consequence of the algorithms of Gabow and Tarjan (1983), we recall a folklore
result, stating that we can process inO(n) time a weighted tree withO(n) nodes and all weights inO(n)
so that we can compute off-line, also in linear time, the answer to O(n) weighted level ancestor queries
on the nodes of this tree (where such a query asked for the first node on a path from a given node to the
root such that the sum of the weights of the edges between the given and the returned node is greater than
a given weight).

In the solutions of both tasks of Problem 1, we use the following variant of the interval union-find
problem.

Remark 4 Let U = [1, n+ 1). We are given integers d, ` > 0 and for each i ≤ ` a partition Pi of U in d
intervals, a sequence of d find-queries and a sequence of d union-operations to be performed alternatively
on Pi (that is, we perform one find query then the one union operation, and so on, in the order specified
in the sequences of union and find-queries). We can maintain the structure and obtain the answers to all
find-queries in O(n+ `d) total time.

To see why this holds, assume that we are given the sequence Qi = 〈xi1, . . . , xid〉 of d find-queries and
the sequence Ui = 〈yi1, . . . , yid〉 of d union-operations to be performed alternatively on this partition. As
defined above, first we perform the first find query in which we search for the interval containing x1, then
the first union between the interval ending on y1 and the one starting on y1, then the second find query on
the updated partition, in which we search the interval containing x2, and so on. In the following we show
how to obtain the answers to all find-queries in O(n+ `d) time.

As a first step, we sort in time O(n + `d) all the ends of the intervals in Pi and the elements of Qi
for all i at once, using radix-sort. Then we separate them (now sorted) according to the partition they
correspond to: so, we have for each i an ordered list of the ends of the intervals of Pi and the elements of
Qi. Now we basically have all the data needed to be able to run the the algorithms of Gabow and Tarjan
(1983) in O(d) time for each partition (e.g., the time used in our setting by the sub-routines defined and
used by Gabow and Tarjan (1983) is exactly just the one the required to apply the results of that paper,
for each of the partitions). In conclusion, the total time needed to process one partition and to perform
all the find queries and union operations on it is O(d). This adds up to a total time of O(n+ `d).

We further give another lemma related to the union-find data structure.

Lemma 4 Let U = [1, n + 1). We are given k intervals I1, . . . , Ik included in U . Also, for each j ≤ k
we are given a positive integer gj ≤ n, the weight of the interval Ij . We can compute in O(n + k) time
the values H[i] = max{gj | i ∈ Ij} (or, alternatively, h[i] = min{gj | i ∈ Ij}) for all i ≤ n.

Proof: Let us assume that Ij = [aj , bj) where 1 ≤ aj ≤ n and 1 ≤ bj ≤ n + 1, for all 1 ≤ j ≤ k. We
first show how the array H[·] is computed.
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We sort the intervals I1, I2, . . . , Ik with respect to their starting positions aj , for 1 ≤ j ≤ k. Then,
we produce for each g from 1 to n the list of the intervals Ij that have gj = g (again, sorted by their
starting positions). Using radix-sort we can achieve this in timeO(n+k). Further, we set up a disjoint set
union-find data structure for the universe U = [1, n]. Initially, the sets in our structure are the singletons
{1}. . . . , {n}; the only unions that we can a make while maintaining this structure are between the set
containing i and the set containing i+ 1, for all 1 ≤ i ≤ n− 1. Therefore, we can think that our structure
only contains intervals [a, b); initially, we have in our union-find data structures, for all i ≤ n, the sets
{i} = [i, i + 1). Now, we process the intervals that have weight g, for each g from n to 1 in decreasing
order; that is, the intervals are considered in decreasing order of their weight. So, assume that we process
the input intervals of weight g. Assume that at this moment, U is partitioned in some intervals (some of
them just singletons); initially, as mentioned above, we only have singletons [i, i+ 1). Let Ij = [a, b) be
an input interval of weight g. Let now ` = a (in the following, ` will take different values between a and
b). We locate the interval [c1, c2) (of the union-find structure we maintain) where ` is located; if this is a
singleton and H[`] was not already set, then we set H[`] = g. Further, unless ` is a, we merge the interval
containing ` to that containing `− 1 and set ` = c2; if ` = a we just set ` = c2. In both cases, we repeat
the procedure while ` < b. We process in this manner all the intervals Ij with gj = g, in the order given
by their starting positions, then continue and process the intervals with weight g − 1, and so on.

The algorithm computes H[·] correctly. Indeed, we set H[`] = g when we process an interval Ij of
weight g that contains `, and no other interval of greater weight contained `. To see the complexity of the
algorithm we need to count the number of union and find operations we make. First, we count the number
of union operations. For this, it is enough to note that for each element ` we might make at most 2 unions:
one that unites the singleton interval [`, `+ 1) to the interval of `− 1, which has the form [a, `) for some
a, and another one that unites the interval of ` + 1 to the one of `. So, this means that we make at most
O(n) union operations. For the find operations, we just have to note that when an interval Ij is processed
the total number of finds is O(|Ij \ U | + 2), where U is the union of the intervals that were processed
before Ij . This shows that the total number of find operations is O(k + | ∪j=1,k Ij |) = O(n+ k).

By the results of Gabow and Tarjan (1983), as we know the structure of the unions we can make forms
a tree, our algorithm runs in O(n+ k) time.

The computation of h[·] is similar. The only difference is that we consider the intervals in increasing
order of their weight. 2

We conclude this section with a lemma that will be used in the solutions of Problem 3. It shows how to
compute in linear time the length of the longest square centred at each position of a given word.

Lemma 5 Given a word w of length n we can compute in O(n) time the values SC[i] = max{|u| | u is
both a suffix of w[1..i− 1] and a prefix of w[i..n]}.

Proof: Note that each square u2 occurring in a word w is part of a maximal run w[i′..j′] = pαp′, where
p is primitive and p′ is a prefix of p, and u = q`, where q is a cyclic shift of p (i.e., q is a factor of p2 of
length |p|) and ` ≤ α

2 .
So, if we consider a maximal run r = pαp′ and some ` ≤ α

2 , we can easily detect the possible centre
positions of the squares having the form (q`)2 contained in this run, with q a cyclic shift of p. These
positions occur consecutively in the word w: the first is the (|p|`+ 1)th position of the run, and the last is
the one where the suffix of length |p|` of the run starts. So they form an interval Ir,` and we associate to
this interval the weight gr,` = |p|` (i.e., the length of an arm of the square). In this way, we define O(n)
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intervals (as their number is upper bounded by the sum of the exponents of the maximal runs of w), all
contained in [1, n+ 1), and each interval having a weight between 1 and n. By Lemma 4, we can process
these intervals so that we can determine for each i ∈ [1, n+1) the interval of maximum weight containing
i, or, in other words, the maximum length SC[i] of a square centred on i. This procedure runs in O(n)
time. 2

It is worth noting that using the same strategy as in the proof of Lemma 5, one can detect the minimum
length of a square centred at each position of a word (also called the local period at that position) in linear
time. Indeed, in this case we note that the square of minimum length centred at some position of the
input word must be primitively rooted. Then, we repeat the same strategy as in the proof of Lemma 5, but
only construct the intervals Ir,` for the case when ` = 1 (i.e., the intervals Ir,1) for all runs r, with the
corresponding weights. Then we use Lemma 4 for these intervals to determine the interval of minimum
weight that contains each position of the word. This leads to an alternative solution to the problem of
computing the local periods of a word, solved by Duval et al. (2003). Compared to the solution of Duval
et al. (2003), ours uses a relatively involved data structures machinery (disjoint sets union-find structures,
as well as an algorithm finding all runs in a word), but is much shorter and seems conceptually simpler as
it does not require a very long and detailed combinatorial analysis of the properties of the input word.

The same strategy allows solving the problem of computing in linear time, for integer alphabets, the
length of the shortest (or longest) square ending (or starting) at each position of a given word; this im-
proves the results by Kosaraju (1994); Xu (2010), where such a result was only shown for constant size
alphabets. Let us briefly discuss the case of finding the shortest square ending at each position of the
word; such squares are, clearly, primitively rooted. So, just like in the case of searching squares centred
at some position, we can determine for each run an interval of positions where a square having exactly
the same period as the run may end. The period of each run becomes the weight of the interval associated
to that run. Then we use again Lemma 4 for these intervals to determine the interval of minimum weight
that contains each position of the word. Thus, we determine for each position the shortest square ending
on it. In the case when we want the longest square ending at each position, just like in the case of centred
squares, we define for each run several intervals. Fortunately, this does not increase asymptotically the
complexity.

In the following we apply the machinery developed in this section to identify the longest gapped repeats
and palindromes occurring in a word.

3 Lower and upper bounded gap
In this section we present the solutions of Problems 1(a) and 1(b). With these problems solved, we
can immediately retrieve the longest gapped repeat and palindrome contained in the input word of these
problems, such that the length gap is between a given lower bound and a given upper bound.

Theorem 1 Problem 1(a) can be solved in linear time.

Proof: Let δ = G− g; for simplicity, assume that n is divisible by δ. Further, for 1 ≤ i ≤ n, let u be the
longest factor which is a prefix of w[i..n] such that uR is a suffix of some w[1..k] with g < i − k ≤ G;
then, B[i] is the rightmost position j such that g < i− j ≤ G and uR is a suffix of w[1..j]. Knowing B[i]
means knowing LPrF g,G[i]: we just have to return LPrF (w[i..n], w[1..j]R).

We split the set {1, . . . , n} into n
δ ranges of consecutive numbers: I0 = {1, 2, . . . , δ}, I1 = {δ+ 1, δ+

2, . . . , 2δ}, and so on. Note that for all i in some range Ik = {kδ + 1, kδ + 2, . . . , (k + 1)δ} from those
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defined above, there are at most three consecutive ranges where some j such that g < i− j ≤ G may be
found: the range containing kδ −G+ 1, the range containing (k + 1)δ − g − 1, and the one in between
these two (i.e., the range containing kδ + 1 − g). Moreover, for some fixed i, we know that we have to
look for B[i] in the interval {i − G, . . . , i − g − 1}, of length δ; when we search B[i + 1] we look at
the interval {i + 1 − G, . . . , i − g}. So, basically, when trying to find B[i] for all i ∈ Ik, we move a
window of length δ over the three ranges named above, and try to find for every content of the window
(so for every i) its one element that fits the description of B[i]. The difference between the content of the
window in two consecutive steps is not major: we just removed an element and introduced a new one.
Also, note that at each moment the window intersects exactly two of the aforementioned three ranges.
We try to use these remarks, and maintain the contents of the window such that the update can be done
efficiently, and the values of B[i] (and, implicitly, LPrF g,G[i]) can be, for each i ∈ I , retrieved very fast.
Intuitively, grouping the i’s on ranges of consecutive numbers allows us to find the possible places of the
corresponding B[i]’s for all i ∈ Ik in O(δ) time.

J ′
i J ′′

i

i

Ik

kδ + 1 (k + 1)δ

(k + 1)δ − g

J1 J2 J3

i−G i− g

kδ + 1−G

Fig. 2: Proof of Theorem 1: Construction of the ranges J1, J2, J3 for some range Ik, and of the sliding window
J ′i ∪ J ′′i for some i ∈ Ik

We now go into more details. As we described in the preliminaries, let L be the lexicographically
ordered list of the the suffixes w[i..n] of w and of the mirror images w[1..i]R of the prefixes of w (which
correspond to the suffixes of wR). For the list L we compute the arrays Rank[·] and RankR[·]. We use
the suffix array for w0wR to produce for each of the ranges Ik computed above the set of suffixes of w
that start in the respective range (sorted lexicographically, in the order they appear in the suffix array) and
the set of prefixes of w ending in I , ordered lexicographically with respect to their mirror image.

We consider now one of the ranges of indexes Ik = {kδ + 1, kδ + 2, . . . , (k + 1)δ} from the above,
and show how we can compute the values B[i], for all i ∈ Ik. For some i ∈ Ik we look for the maximum
` such that there exists a position j with w[j − `+ 1..j]R = w[i..i+ `− 1], and i−G ≤ j ≤ i− g. As
already explained, for the i’s of Ik there are three consecutive ranges where the j’s corresponding to the
i’s of Ik may be found; we denote them J1, J2, J3.

Now, for an i ∈ Ik we have that B[i] (for which g < i−B[i] ≤ G) belongs to J ′i ∪ J ′′i , where J ′i is an
interval starting with i−G and extending until the end of the range that contains i−G (which is one of
the ranges J1, J2, J3) and J ′′i is an interval ending with i−g−1, which starts at the beginning of the range
that contains i − g − 1 (which is the range that comes next after the one containing i −G). Referencing
back to the intuitive explanation we gave at the beginning of this proof, J ′i ∪ J ′′i is the window we use to
locate the value of B[i] for an i ∈ Ik.

To computeB[i] for some i, take fi ∈ J ′i such that LCP(w[1..fi]
R, w[i..n]) ≥ LCP(w[1..j′]R, w[i..n])

for all j′ ∈ J ′i . Similarly, take si ∈ J ′′i such that for all j′ ∈ J ′′i we have LCP(w[1..si]
R, w[i..n]) ≥
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LCP(w[1..j′]R, w[i..n]). Once si and fi computed, we set B[i] = si if LCP(w[1..si]
R, w[i..n]) ≥

LCP(w[1..fi]
R, w[i..n]); we set B[i] = fi, otherwise. So, in order to compute, for some i, the value

B[i], that determines LPrF g,G[i], we first compute fi and si.
We compute for all the indices i ∈ Ik, considered in increasing order, the values fi. We consider

for each i ∈ Ik the interval J ′i and note that J ′i \ J ′i+1 = {i − G}, and, if J ′i is not a singleton (i.e.,
J ′i 6= {i − G}) then J ′i+1 ⊂ J ′i . If J ′i is a singleton, than J ′i+1 is, in fact, one of the precomputed range
Ip, namely the one which starts on position i+ 1−G (so, p = i−G

δ ).
These relations suggest the following approach. We start with i = kδ+ 1 and consider the set of words

w[1..j]R with j ∈ J ′i ; this set can be easily obtained in O(δ) time by finding first the range J1 in which
i−G is contained (which takes O(1) time, as J1 = Ip for p =

⌊
i−G
δ

⌋
), and then selecting from J1 of the

set of prefixes w[1..d] of w, ending in J1 with d ≥ i−G (ordered lexicographically with respect to their
mirror image). The ranks corresponding to these prefixes in the ordered list L (i.e., the set of numbers
RankR[d]) define a partition of the universe U = [0, 2n + 1) in at most δ + 2 disjoint intervals. So, we
can maintain an interval union-find data structures like in Remark 4, where the ranks are seen as limits
of the intervals in this structure. We assume that the intervals in our data structure are of the form [a, b),
with a and b equal to some RankR[da] and RankR[db], respectively. The first interval in the structure is
of the form [0, a), while the last is of the form [b, 2n + 1). We now find the interval to which Rank[i]
belongs; say that this is [a, b). This means that the words w[1..da]R and w[1..db]

R are the two words
of {w[1..d]R | d ∈ J ′i} which are closest to w[i..n] lexicographically (w[1..da]R is lexicographically
smaller, w[1..db] is greater). Clearly, fi = da if LCP(w[1..da]R, w[i..n]) ≥ LCP(w[1..db]

R, w[i..n])
and fi = db, otherwise (in case of a tie, we take fi to be the greater of da and db). So, to compute fi we
query once the union-find data structure to find a and b, and the corresponding da and db, and then run
two more LCP queries.

When moving on to compute fi+1, we just have to update our structure and then run the same procedure.
Now, i−G is no longer a valid candidate for fi+1, and it is removed from J ′i . So we just delete it from the
interval union-find data structure, and merge the interval ending right before RankR[i − G] and the one
starting with RankR[i − G]. This means one union operation in our interval union-find structure. Then
we proceed to compute fi+1 as in the case of fi.

The process continues until J ′i is a singleton, so fi equals its single element.
Now, i − G is the last element of one of the ranges J1, J2, or J3; assume this range is Ip. So far, we

performed alternatively at most δ find queries and δ union operations on the union-find structure. Now,
instead of updating this structure, we consider a new interval partition of [0, 2n+ 1) induced by the ranks
of the δ prefixes ending in Ip+1. When computing the values fi for i ∈ Ik we need to consider a new
partition of U at most once: at the border between J1 and J2.

It is not hard to see from the comments made in the above presentation that our algorithm computes
fi ∈ Ik correctly. In summary, in order to compute fi, we considered the elements i ∈ Ik from left to
right, keeping track of the left part J ′i of the window J ′i ∪ J ′′i while it moved from left to right through the
ranges J1, J2 and J3. Now, to compute the values si for i ∈ Ik, we proceed in a symmetric manner: we
consider the values i in decreasing order, moving the window from right to left, and keep track of its right
part J ′′i .

As already explained, by knowing the values fi and si for all i ∈ Ik and for all k, we immediately get
B[i] (and, consequently LPrF g,G[i]) for all i.

We now evaluate the running time of our approach. We can compute, in O(n) time, from the very
beginning of our algorithm the partitions of [1, 2n − 1) we need to process (basically, for each Ik we
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find J1, J2 and J3 in constant time, and we get the three initial partitions we have to process in O(δ)
time), and we also know the union-operations and find-queries that we will need to perform for each such
partition (as we know the order in which the prefixes are taken out of the window, so the order in which
the intervals are merged). In total we have O(n/δ) partitions, each having initially δ + 2 intervals, and
on each we perform δ find-queries and δ-union operations. So, by Remark 4, we can preprocess this data
(once, at the beginning of the algorithm) inO(n) time, to be sure that the time needed to obtain the correct
answers to all the find queries is O(n). So, the total time needed to compute the values fi for all i ∈ Ik
and for all k isO(n). Similarly, the total time needed to compute the values si for all i isO(n). Then, for
each i we get B[i] and LPrF g,G[i] in O(1) time.

Therefore, Problem 1(a) can be solved in linear time. 2

Before giving the formal solution for Problem 1(b), we give a short intuitive description of how this
algorithm is different from the previous one. In this case, when trying to construct the repeat uvu with
the longest arm occurring at a certain position, we need to somehow restrict the range where its left
arm may occur. To this end, we restrict the length of the arm, and, consequently, search for u with
2k ≤ |u| ≤ 2k+1, for each k ≤ log n. Such a factor always start with w[i+ 1..i+ 2k] and may only occur
in the factor w[i−G− 2k+1..i− g]. If 2k ≥ G− g, using the dictionary of basic factors data structures
(from Crochemore and Rytter (1991)) and the results by Kociumaka et al. (2012), we get a constant size
representation of the occurrences of w[i+ 1..i+ 2k] in that range (which are a constant number of times
longer than the searched factor), and then we detect which one of these occurrences produces the repeat
uvu with the longest arm. If 2k < G − g, we use roughly the same strategy to find the repeat uvu with
the longest arm and u starting in a range of radius 2k+1 centred around i−G or in a range of length 2k+1

ending on i− g (again, these ranges are just a constant number of times longer than the searched factor).
To detect a repeat starting between i−G+ 2k+1 and i− g − 2k+1 we use the strategy from the solution
of Problem 1(a); in that case, we just have to return the longest common prefix of w[i..n] and the words
w[j..n] with i − G + 2k+1 ≤ j ≤ i − g − 2k+1. Overall, this approach can be implemented to work in
O(n log n) time.

Theorem 2 Problem 1(b) can be solved in O(n log n) time.

Proof: For 1 ≤ i ≤ n, letB[i] denote the value j such thatw[j..j+LPF g,G[i]−1] = w[i..i+LPF g,G[i]−
1] and g < i− (j+LPF g,G[i]− 1) ≤ G. In other words, to define B[i], let u be the longest factor which
is both a prefix of w[i..n] and a suffix of some w[1..k] with g < i − k ≤ G; then, B[i] is the rightmost
position j such that g < i − (j + |u| − 1) ≤ G and u is a suffix of w[1..j + |u| − 1]. Clearly, knowing
B[i] means knowing LPrF g,G[i].

Intuitively, computing B[i] is harder in this case than it was in the case of the solution of Problem 1(a).
Now we have no real information where B[i] might be, we just know the range of w where the longest
factor that occurs both at B[i] and at i ends. So, to determine B[i] we try different variants for the length
of this factor, and see which one leads to the right answer.

Let δ = G− g and k0 = blog δc; assume w.l.o.g. that n is divisible by δ.
As already noted, the solution used in the case of gapped palindromes in the proof of Theorem 1 does

not work anymore in this case: we do not know for a given i a range in which B[i] is found. So, we try to
restrict the places where B[i] can occur. We split our discussion in two cases.

In the first case, we try to find, for each i and each k ≥ k0, the factor uvu with the longest u, such that
the second u occurs at position i in w, 2k ≤ |u| < 2k+1 and g < |v| ≤ G. Clearly, u should start with the
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Ik

i

i− gi−G

i−G− 2k+1

w[i..i+ 2k − 1]

w[i..i+ 2k − 1]

u

u

Fig. 3: Proof of Theorem 2: Occurrences of w[i..i + 2k − 1] inside w[i − G − 2k+1..i − g − 1]: one separate
occurrence, and a run containing three occurrences. The separate occurrence can be prolonged to produce a gapped
palindrome uvu, which is not, however, long enough as it does not reach the range between i − G and i − g. The
rightmost occurrence in the run produces the gapped repeat w[i..i + 2k − 1]v′w[i..i + 2k − 1], which fulfils the
conditions imposed on the gap.

basic factorw[i..i+2k−1], and the left arm u in the factor uvuwe look for should have its prefix of length
2k (so, a factor equal to the basic factor w[i..i+2k−1]) contained in the factor w[i−G−2k+1..i−g−1],
whose length is G− g + 2k+1 ≤ 2k0+1 + 2k+1 − 1 ≤ 2k+2 − 1 ≤ 4 · 2k.
So, by Remark 1, using the dictionary of basic factors we can retrieve a compact representation of the oc-
currences of w[i..i+ 2k− 1] in w[i−G− 2k+1..i− g− 1]: these consist in a constant number of isolated
occurrences and a constant number of runs. For each of the isolated occurrences w[j′..j′ + 2k − 1] we
compute LCP(j′, i) and this gives us a possible candidate for u; we measure the gap between the two
occurrences of u (the one at j′ and the one at i) and if it is between smaller than G, we store this u as a
possible solution to our problem (we might have to cut a suffix of u so that the gap is also longer than g).
Further, each of the runs has the form pαp′, where |p| is the period of w[i..i+ 2k − 1] and p′ is a prefix of
p (which varies from run to run); such a run cannot be extended to the right: either the period breaks, or it
would go out of the factor w[i−G−2k+1..i−g−1]. Using a LCP query we find the longest factor pβp′′

with period |p|, occurring at position i. For a run pαp′, the longest candidate for the first u of the factor
uvu we look for starts with pγp′′′ where γ = min{α, β} and p′′′ is the shortest of p′ and p′′; if p′ = p′′,
then this factor is extended with the longest factor that occurs both after the current run and after pβp′′

and does not overlaps the minimal gap (i.e., end at least g symbols before i). This gives us a candidate
for the factor u we look for (provided that the gap between the two candidates for u we found is not too
large). In the end, we just take the longest of the candidates we identified (in case of ties, we take the one
that starts on the rightmost position), and this gives the factor uvu with the longest u, such that the second
u occurs at position i in w, 2k ≤ |u| < 2k+1 and g < |v| ≤ G.

Iterating this process for all k and i as above, we obtain for each i the factor uvu with the longest u,
such that the second u occurs at position i in w, 2k0 ≤ |u| and g < |v| ≤ G. By Remark 1, the time
spent in this computation for some i and k is constant, so the overall time used in the above computation
isO(n log n). Clearly, if for some i we found such a factor u, then this gives us both B[i] and LPF g,G[i];
if not, we continue as follows.

In the second case, we try to identify for each i the factor uvu with the longest u, such that the second u
factor occurs at position i in w, u < 2k0 and g < |v| ≤ G. Again, we consider each k ≤ k0−1 separately
and split the discussion in three cases.

Firstly, for each i, we find the factor uvu with the longest u, such that the second u occurs at position
i in w, 2k ≤ u < 2k+1, g < |v| ≤ G, and the first u has its prefix of length 2k in the factor w[i − G −
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2k+1..i−G+2k], whose length is 2k +2k+1 +1 ≤ 4 ·2k. This can be done similarly to the above (report
all the occurrences of w[i..i + 2k − 1] in that range, and try to extend them to get u); for all i and all k
takes O(n log δ) time.

Secondly, for each i, we find the factor uvu with the longest u, such that the second u occurs at
position i in w, 2k ≤ u < 2k+1, g < |v| ≤ G, and the first u has its prefix of length 2k in the factor
w[i− g− 2k+1..i− g− 1], whose length is 2k+1. Again, this can be done like above, and for all i and all
k takes O(n log δ) time.

The third and more complicated subcase is when the first u starts in the factorw[i−G..i−g−2k+1−1],
of length δk = δ − 2k+1. Let gk = g + 2k+1 + 1; obviously, δk = G− gk. Note that, in this case, every
factor of length at most 2k+1 starting inw[i−G..i−g−2k+1−1] ends before i−g, so it is a valid candidate
for the u we look for. In this case we can follow the algorithm from the proof of Theorem 1. We split the
set {1, . . . , n} into ranges of consecutive numbers: I0 = {1, 2, . . . , δk}, I1 = {δk + 1, δk + 2, . . . , 2δk},
and so on. For some I` = {`δk + 1, . . . , (` + 1)δk}, considering all i ∈ I` there are three consecutive
ranges from the ones defined above, where the first u of the factor uvu we look for may occur. The first
(leftmost, with respect to its starting position) such range is the one containing `δk −G, and let us denote
it J1; the last one (rightmost) is the one that contains (`+ 1)δk − gk − 1, and we denote it by J3. Clearly,
between the ranges containing `δk−G and (`+ 1)δk− gk−1, respectively, there is exactly one complete
range, call it J2.

Moreover, for a precise i ∈ I` the possible starting positions of the left arm u of the repeat uvu of the
type we are searching for (i.e., with the gap between g and G), with the second u starting on i, form a
contiguous range J ′i ∪ J ′′i where J ′i is an interval starting with i − G and extending until the end of the
range Jp that contains i−G, and J ′′i is an interval ending with i−gk−1, contained in Jp+1 (when p < 3).
Like before, J ′i ∪J ′′i can be seen as the content of a window that slides through J1, J2, J3 while searching
for B[i]. We denote by fi the position of J ′i such that LCP (fi, i) is maximum among all such positions;
we denote by si the position of J ′′i such that LCP (si, i) is maximum among all such positions. Then we
just have to check where, at fi or si, occurs a longer factor that also occurs at i. We just explain how to
compute fi.

We start with i = `δk + 1 and consider the set of words w[j..n] with j ∈ J ′i ; this set can be easily
obtained in O(δ) time by finding first the range J1 in which i − G is contained and then selecting from
J1 of the set of words w[d..n] of w starting in J1 with d ≥ i − G (ordered lexicographically). The
ranks corresponding to these suffixes in the suffix array of w (i.e., the set of numbers Rank[d]) define
a partition of the universe U = [0, n + 1) in at most δk + 2 disjoint intervals. So, we can maintain an
interval union-find data structures like in Remark 4, where the ranks are seen as limits of the intervals
in this structure. We assume that the intervals in our data structure are of the form [a, b), with a and b
integers that are equal to some Rank[da] and Rank[db]. The first interval in the structure is of the form
[0, a), while the last is of the form [b, n+ 1). Recall that we want to compute fi. To this end, we just have
to find the interval to which Rank[i] belongs; say that this is [a, b). This means that the words w[da..n]
and w[db..n] are the two words of the set {w[d..n] | d ∈ J ′i} which are closest to w[i..n] lexicographically
(w[da..n] is lexicographically smaller, while w[db..n] is lexicographically greater). Clearly, fi = da if
LCP(da, i) ≥ LCP(db, i) and fi = db, otherwise (in case of a tie, we take da if db < da, and db
otherwise). So, to compute fi we have to query once the union-find data structure to find a and b, and the
corresponding da and db, and then compute the answer to two LCP queries.

When moving on to compute fi+1, we just have to update our structure. In this case, i − G is no
longer a valid candidate for fi+1, as it should be removed from J ′i . So we just delete it from the interval



16 Marius Dumitran, Paweł Gawrychowski, Florin Manea

union-find data structure, and merge the interval ending right before Rank[i − G] and the one starting
with Rank[i−G]. This means one union operation in our interval union-find structure. Then we proceed
to compute fi+1 just in the same manner as in the case of fi.

The process continues in this way until we try to compute fi for J ′i being a singleton. This means
that i − G is the last element of one of the ranges J1, J2, or J3; let us assume that this range is Ip from
the ranges defined above. Clearly, this time fi is the single element of J ′i . Until now, we performed
alternatively at most δk find operations and δk union operations on the union-find data structure. Further,
instead of updating the union-find data structure, we consider a new interval partition of [0, n+1) induced
by the ranks of the δk suffixes starting in Ip+1. Note that when computing the values fi for i ∈ I` we
need to consider a new partition of U once: at the border between J1 and J2.

Now, by the same arguments as in the proof for gapped palindromes, the process takes O(n) in total
for all intervals I` (so, when we iterate `), for each k. In this way we find the factor uvu with the longest
u, such that the second u occurs at position i in w, 2k ≤ u < 2k+1, g < |v| ≤ G, and the first u starts in
w[i −G..i − g − 2k+1 − 1]. Iterating for all k, we complete the computation of B[i] and LPF g,G[i] for
all i; the needed time is O(n log δ) in this case.

Considering the three cases above leads to finding for each i the factor uvu with the longest u, such that
the second u factor occurs at position i in w, u < 2k0 and g < |v| ≤ G. The complexity of this analysis
is O(n log δ). After concluding this, we get the value B[i] for each i. Therefore, the entire process of
computing B[i] and LPF g,G[i] for all i takes O(n log n) time. 2

We conclude this section with the following consequence of Theorems 1 and 2.

Theorem 3 Given w of length n and two integers g and G, such that 0 ≤ g < G ≤ n, we can find in
linear time the gapped palindrome uRvu occurring in that word with the longest arm u and g ≤ |v| < G.
Given w of length n and two integers g and G, such that 0 ≤ g < G ≤ n, we can find in O(n log n) time
the gapped repeat uvu occurring in that word with the longest arm u and g ≤ |v| < G.

Proof: It is immediate that, after solving Problem 1 for the word w, we just have to check which is the
longest gapped palindrome (respectively, repeat) stored in the arrayLPrFg,G[·] (respectively, LPF g,G[·]).
2

4 Lower bounded gap
To solve Problem 2(a) we need to find, for some position i of w, the factor w[1..j]R with j ≤ i− g(i) that
occurs closest to w[1..i] in the lexicographically ordered list L of all the suffixes w[k..n] of w and of the
mirror images w[1..k]R of its prefixes. In the following we show how to do this for all i in O(n) time, by
reducing it to answering n find queries in an extended interval union-find data structure.

Theorem 4 Problem 2(a) can be solved in linear time.

Proof: In a preprocessing step of our algorithm, we produce the suffix array ofw0wR and the lexicograph-
ically ordered list L of the suffixes of w[i..n] of w and of the mirror images w[1..i]R of the prefixes of w
(which correspond to the suffixes of wR). For the list L we compute the arrays Rank[·] and RankR[·].

We first want to find, for each i, the prefixw[1..j], such that i−j > g(i), w[1..j]R occurs beforew[i..n]
inL (i.e.,RankR[j] < Rank[i]), and the length of the common prefix ofw[1..j]R andw[i..n] is greater or
equal to the length of the common prefix of w[1..j′]R and w[i..n] for j′ such that RankR[j′] < Rank[i];
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for the prefix w[1..j] as above, the length of the common prefix of w[1..j]R and w[i..n] is denoted by
LPrF<g [i], while B<[i] denotes j. If w[i..n] has no common prefix with any factor w[1..j]R with i− j >
g(i) and RankR[j] < Rank[i], then LPrF<g [i] = 0 and B<[i] is not defined; as a convention, we set
B<[i] to −1

Afterwards, we compute for each i the prefix w[1..j], such that i − j > g(i), w[1..j]R occurs after
w[i..n] in L (i.e., RankR[j] > Rank[i]), and the length of the common prefix of w[1..j]R and w[i..n] is
greater or equal to the length of the common prefix of w[1..j′]R and w[i..n] for j′ such that RankR[j′] >
Rank[i]; for the prefix w[1..j] as above, the length of the common prefix of w[1..j]R and w[i..n] is
denoted by LPrF>g [i], while B>[i] denotes j. Clearly, LPrF g[i] = max{LPrF<g [i],LPrF>g [i]}. If
w[i..n] has no common prefix with any factor w[1..j]R with i− j > g(i) and RankR[j] > Rank[i], then
LPrF>g [i] = 0 and B>[i] is set to −1

For simplicity, we just present an algorithm computing LPrF<g [·] and B<[·]. The computation of
LPrF>g [·] is performed in a similar way.

The main idea behind the computation of LPrF<g [i], for some 1 ≤ i ≤ n, is that if w[1..j1] and
w[1..j2] are such that RankR[j2] < RankR[j1] < Rank[i] and j1 < j2 < i then definitely B<[i] 6= j2.
Indeed, LCP(w[1..j2]R, w[i..n]) < LCP(w[1..j1]R, w[i..n]), and, moreover, i − j2 < i − j1. So, if
i − j2 > g(i) then also i − j1 > g(i), and it follows that LPrF<g [i] ≥ LCP(w[1..j1]R, w[i..n]) >

LCP(w[1..j2]R, w[i..n]), so B<[i] cannot be j2. This suggests that we could try to construct for each i
an ordered list Ai of all the integers j ≤ n such that RankR[j] < i and moreover, if j1 and j2 are in Ai
and j1 < j2 then also RankR[j1] < RankR[j2].

Now we describe how to implement this. Let us now consider i1 and i2 which occur on consecutive
positions of the suffix array of w, such that Rank[i1] < Rank[i2]. The list Ai2 can be obtained from
Ai1 as follows. We consider one by one, in the order they appear in RankR[·], the integers j such that
Rank[i1] < RankR[j] < Rank[i2], and for each of them update a temporary list A, which initially
is equal to Ai1 . When a certain j is considered, we delete from the right end of the list A (where A
is ordered increasingly from left to right) all the values j′ > j; then we insert j in A. When there are
no more indices j that we need to consider, we set Ai2 to be equal to A. It is clear that the list Ai2 is
computed correctly.

Now, for each i we need to compute the greatest j ∈ Ai such that j < i − g(i). As Ai is ordered
increasingly, we could obtain j by performing a predecessor search on Ai (that is, binary searching the
greatest j of the list, which is smaller than i − g(i)), immediately after we computed it, and save the
answer in B<[i]. However, this would be inefficient. Before proceeding, we note that if we compute the
lists Ai for the integers i in the order they appear in the suffix array of w, then it is clear that the time
needed to compute all these lists is linear. Indeed, each j ≤ n is introduced exactly once in the temporary
list, and then deleted exactly once from it. Doing the above mentioned binary searches would add up to a
total of O(n log n). We can do better than that.

Now we have reduced the original problem to a data-structures problem. We have to maintain an
increasingly ordered (from left to right) list A of numbers (at most n, in the range {1, . . . , 2n}, each two
different), subject to the following update and query operations. This list can be updated by the following
procedure: we are given a number j, we delete from the right end of A all the numbers greater than j,
then we append j to A. By this update, the list remains increasingly ordered. The following queries can
be asked: for a given `, which is the rightmost number of A, smaller than `? We want to maintain this
list while n updates are executed, and n queries are asked at different moments of time. Ideally, the total
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time we can spend in processing the list during all the updates should be O(n), and, after all the updates
are processed, we should be able to provide in O(n) time the correct answer for all the queries (i.e., if a
certain query was asked after k update operations were performed on the list, we should return the answer
to the query with respect to the state of the list after those k update operations were completed).

Next we describe our solution to this problem.
We use a dynamic tree data-structure to maintain the different stages of A. Initially, the tree contains

only one path: the root 0 and the leaf 2n+ 1. When an update is processed, in which a number j is added
to the list, we go up the rightmost path of the tree (from leaf to root) until we find a node with a value
smaller than j. Then j becomes the rightmost child of that node (i.e., j is a leaf). Basically, the rightmost
path of a tree after k updates contains the elements of A after those k updates, preceded by 0. When a
query is asked we associate that query with the leaf corresponding to the rightmost leaf of the tree at that
moment. In this way, we will be able to identify, after all updates were processed, the contents of the list
at the moments of time the queries were, respectively, asked: we just have to traverse the path from the
node of the tree associated to that query (this node was a leaf when the query is asked, but after all the
updates were processed might have become an internal node) to the root.

The tree can be clearly constructed in linear time: each node is inserted once on the rightmost tree, and
it disappears from this rightmost tree (and will not be reinserted there) when a smaller value is inserted in
the tree.

In this new setting, the queries can be interpreted as weighted level ancestor queries on the nodes of
the constructed tree (where the weight of an edge is the difference between the two nodes bounding it).
Considering that the size of the tree is O(n), all weights are also O(n), there are O(n) queries, and these
queries are to be answered off-line, it follows (see Remark 3) that we can return the answers to all these
queries in O(n) time.

This completes the linear solution to our problem. 2

To solve Problem 2(b) we use the following lemma.

Lemma 6 Given a word w, let L[i] = min{j | j < i,LCP(j, i) ≥ LCP(k, i) for all k < i}. The array
L[·] can be computed in linear time.

Proof: We first produce the suffix array of w. We denote by Rank[i] the position of w[i..n] in the suffix
array of w.

We first want to find, for each i, the suffixw[j..n], such that j < i is minimum withRank[j] < Rank[i]
and LCP(j, i) ≥ LCP(j′, i) for all j′ < i such thatRank[j′] < Rank[i]. For the suffix w[j..n] as above,
let B<[i] = j. If no such j exists, we set B<[i] = −1.

Similarly, we compute, for each i, the suffix w[j..n], such that j < i is minimum with Rank[j] >
Rank[i] and LCP(j, i) ≥ LCP(j′, i) for all j′ < i such that Rank[j′] > Rank[i]. For the suffix w[j..n]
as above, let B>[i] = j. Again, if no such j exists, we set B>[i] = −1.

For simplicity, we just present an algorithm computing B<[·]. The computation of B>[·] is per-
formed in a similar way. Then, L[i] = B>[i] if LCP(B>[i], i) > LCP(B<[i], i) or LCP(B>[i], i) =
LCP(B<[i], i) and B>[i] > B<[i]; similarly, L[i] = B<[i] if LCP(B>[i], i) < LCP(B<[i], i) or
LCP(B>[i], i) = LCP(B<[i], i) and B>[i] < B<[i].

The main idea behind the computation of B<[i], for some 1 ≤ i ≤ n, is that if w[j1..n] and w[j2..n]
are such that RankR[j2] < RankR[j1] < Rank[i] and j1 < j2 < i then definitely B<[i] 6= j2. In-
deed, LCP(j2, i) ≤ LCP(j1, i), and, moreover, j2 > j1, so j1 is a better candidate than j2 for B<[i].
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This suggests that we should construct for each i an ordered list Ai of all the integers j ≤ n such that
RankR[j] < i and moreover, if j1 and j2 are in Ai and j1 < j2 then also RankR[j1] < RankR[j2]. If j′

is on top of Ai, then B[i] is just the minimum j of Ai such that LCP(j, i) = LCP(j′, i).
Let us now consider i1 and i2 which occur on consecutive positions of the suffix array of w, such that

Rank[i1] < Rank[i2]. Assume that we already computed B[i1]. The list Ai2 can be obtained from
Ai1 by deleting from the right end of the list Ai1 (where Ai1 is ordered increasingly from left to right)
all the values j > i1. Also, to compute B[i2] more efficiently, we also delete all the values of Ai1 that
are greater than B[i1]. Indeed, for some k > B[i1] we have that LCP(B[i], i1) = LCP(B[i], i2) and
LCP(k, i1) = LCP(k, i2), so B[i1] is a better candidate for B[i2] than k. Afterwards, we insert i1 in the
updated list Ai1 , to obtain a list Ai2 from which B[i2] can be computed. Clearly, this entire process takes
linear time, and leads to a correct computation of B<[·].

Afterwards, we compute B>[·] similarly, and get L[·] in linear time. 2

Another lemma shows how the computation of the array LPF g[·] can be connected to that of the array
L[·]. For an easier presentation, let B[i] denote the leftmost starting position of the longest factor xi that
occurs both at position i and at a position j such that j + |xi| ≤ i − g(i); if there is no such factor xi,
then B[i] = −1. In other words, the length of the factor xi occurring at position B[i] gives us LPF g[i].
In fact, LPF g[i] = min{LCP(B[i], i), i− g(i)−B[i]}.

Now, let L1[i] = L[i] and Lk[i] = L[Lk−1[i], for k ≥ 2; also, we define
L+[i] = {L[i], L[L[i]], L[L[L[i]]], . . .}.

The following lemma shows the important fact that B[i] can be obtained just by looking at the values
of L+[i]. More precisely, B[i] equals Lk[i], where k is obtained by looking at the values Lj [i] ≤ i− g(i)
and taking the one such that the factor starting on it and ending on i − g(i) − 1 has a maximal common
prefix with w[i..n]. Afterwards, Theorem 5 shows that this check can be done in linear time for all i, thus
solving optimally Problem 2.

Lemma 7 For a word w of length n and all 1 ≤ i ≤ n such that B[i] 6= −1, we have that B[i] ∈ L+[i].

Proof: Let us assume, for the sake of a contradiction, that B[i] = j /∈ L+[i]. This means that j < i−g(i)
and min{LCP(j, i), i − g(i) − j} ≥ min{LCP(j′, i), i − g(i) − j′} for all j′ < i − g(i). We further
consider two simple cases.

In the first case, there is j′ < j such that j′ ∈ L+[i]; take j′ to be the greatest number less than j
that belongs to L+[i]. Then, it is clear that the longest factor that occurs both at j′ and at i ends before
i−g(i)−1. Otherwise, we would have min{LCP(j, i), i−g(i)−j} ≤ i−g(i)−j < min{LCP(j′, i), i−
g(i) − j′} = i − g(i) − j′, so we would have B[i] = j′, a contradiction. So, it follows immediately,
that LCP(j, i) > LCP(j′, i). Now, if j′ = Lk[i] (that is L[L[. . . L[i] . . .]], where L is applied k times on
i), then there exists k′ < k such that j′′ = Lk

′
[i] > j and LCP(j′′, i) > LCP(j′, i) and LCP(j′, i) =

LCP(L[j′′], i). Clearly, this means that j occurs in the suffix array of w closer to the suffix w[i..n] than
the suffix w[L[j′′]..n], but farther than the suffix w[j′′..n]. So, LCP(j, j′′) > LCP(L[j′′], j), which is
a contradiction to the definition of L[j′′]. In conclusion, we cannot have that there is j′ < j such that
j′ ∈ L+[i].

Now, assume that there is no j′ < j such that j′ ∈ L+[i]. As j /∈ L+[i], this leads immediately to
a contradiction. Since B[i] 6= −1, we have that the suffix starting at position j has at least the prefix of
length one common with all the factors starting at positions from L+[i]. Therefore, at least one element
from L+[i] should be less or equal to j. This concludes our proof. 2
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Fig. 4: Proof of Theorem 5: We measure the length of the common prefix between each factor starting on Lk[i] and
ending on i − g(i) and the suffix w[i..n]. The starting position of the factor that produces the longest such common
prefix is B[i]. Also, this longest common prefix defines the arm u of the gapped repeat uvu.

Theorem 5 Problem 2(b) can be solved in linear time.

Proof: The main idea in this proof is that, to compute LPF g[i], it is enough to check the elements
j ∈ L+[i] with j ≤ i − g(i), and choose from them the one for which min{LCP(j, i), i − g(i) − j} is
maximum; this maximum will be the value we look for. In the following, we show how we can obtain
these values efficiently.

First, if j = L[i] for some i, we define the value end[j] = k ≤ LCP(L[j], i), where |w[j..k]| ≤
min{LCP(L[j], i), k − L[j]}. Basically, for each position k′ ≤ k, the longest factor x starting at L[j]
and ending on k′ which also occurs at position i is longer than any factor starting on position j and ending
on k′ which also occurs at position i. Now we note that if j ∈ L+[i] is the greatest element of this set
such that end[j] ≤ i − g(i) − 1, then LPF g[i] = min{LCP(j, i), i − g(i) − j}. Clearly, end[j] can be
computed in constant time for each j.

To be able to retrieve efficiently for some i the greatest element of this set such that end[j] ≤ i−g(i)−1
we proceed as follows.

First we define a disjoint-set union-find data structure on the universe U = [1, n+ 1), where the unions
can be only performed between the set containing i and that containing L[i], for all i. Initially, each
number between 1 and n is a singleton set in this structure. Moreover, our structure fulfils the conditions
that the efficient union-find data structure of Gabow and Tarjan (1983) should fulfil: the unions we make
form a tree.

Further, we sort in linear time the numbers i − g(i), for all i; we also sort in linear time the numbers
end[k] for all k ≤ n. We now traverse the numbers from n to 1, in decreasing order. When we reach
position j we check whether j equals end[k] for some k; if yes, we unite the set containing k with the
set containing end[k] for all k such that end[k] = j. Then, if j = i − g(i) for some i, we just have to
return the minimum of the set containing i; this value gives exactly the greatest element j ∈ L+[i] such
that end[j] ≤ i − g(i) − 1. So, as described above, we can obtain from it the value of LPF g[i]. The
computation of this array follows from the previous remarks.

To evaluate the complexity of our approach, note that we do O(n) union operations and O(n) find
queries on the union-find data structure. By the results of Gabow and Tarjan (1983), the time needed to
construct the union-find data structure and perform these operations on it is also O(n). From every find
query we get in constant time the value of a element LPF g[i]. So the solution of Problem 2 is linear. 2
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Just like in the previous section, the following consequence of the previous two theorems is immediate.

Theorem 6 Given w of length n and the values g(1), . . . , g(n) of g : {1, . . . , n} → {1, . . . , n}, we can
find in linear time the gapped palindrome (or repeat) uRvu (respectively, uvu) occurring in w, with the
longest arm u, such that if its right arm starts on position i then |v| ≥ g(i).

5 α-gapped Repeats and Palindromes
Recall that an α-gapped palindrome (respectively, repeat) w[i..j]vw[i′..j′] is called maximal if the arms
cannot be extended to the right or to the left: neither w[i..j+1]v′w[i′−1..j′] nor w[i−1..j]vw[i′..j′+1]
(respectively, neither w[i..j + 1]v′w[i′..j′ + 1] nor w[i− 1..j]v′′w[i′ − 1..j′]) are α-gapped palindromes
(respectively, repeats). Gawrychowski and Manea (2015) defined algorithms that find the longest α-
gapped palindromes and repeats in O(αn) time; these algorithms do not compute the set of all α-gapped
palindromes or repeats, but just the ones with the longest arms. We present them below.

We first consider the case of α-gapped repeats.

Theorem 7 Given a wordw of length n and an integer α ≤ n, the longest α-gapped repeat uvu contained
in w can be found in O(αn) time.

Proof: Informally, our approach works as follows (see also Figure 5). For each k, we try to find the
longest α-gapped repeat u1vu2 = uvu, with u1 = u2 = u, and 2k+1 log n ≤ |u| ≤ 2k+2 log n. In each
such repeat, the right arm u2 must contain a factor (called k-block) z, of length 2k log n, starting on a
position of the form j2k log n + 1. So, we try each such factor z, fixing in this way a range of the input
word where u2 could appear. Now, u1 must also contain a copy of z. However, it is not mandatory that this
copy of z occurs nicely aligned to its original occurrence; that is, the copy of z does not necessarily occur
on a position of the form i log n + 1. But, it is not hard to see that z has a factor y of length 2k−1 log n,
starting in its first log n positions and whose corresponding occurrence in u1 starts on a position of the
form i log n + 1. Further, we can use the fact that u1vu2 is α-gapped and apply Lemma 1 to a suitable
encoding of the input word to locate in constant time for each y starting in the first log n positions of z
all possible occurrences of y on a position of the form i log n + 1, occurring not more than (8α + 2)|y|
positions to the left of z. Intuitively, each occurrence of y found in this way fixes a range where u1 might
occur in w, such that u1vu2 is α-gapped. So, around each such occurrence of y (supposedly, in the range
corresponding to u1) and around the y from the original occurrence of z we try to effectively construct
the arms u1 and u2, respectively, and see if we really get an α-gapped repeat. In the end, we just return
the longest repeat we obtained, going through all the possible choices for z and the corresponding y’s. We
describe in the following an O(αn) time implementation of this approach.

The first step of the algorithm is to construct a word w′, of length n
logn , whose symbols, called blocks,

encode log n consecutive symbols of w grouped together. Basically, now we have two versions of the
word w: the original one, and the one where it is split in blocks. Clearly, the blocks can be encoded into
numbers between 1 and n in linear time. Indeed, we produce the suffix array of w, and group together the
suffixes that share a common prefix of length log n. Then, we label (injectively) the groups obtained in
this way with numbers between 1 and n. Finally, a block is encoded as the label of the suffix that starts
with that block. Consequently, we can construct in O(n) time the suffix arrays and LCP -data structures
for both w and w′. We can also build in O(n) time the data structures of Lemma 1 for the word w′.

Now, we try to find the longest α-gapped repeat u1vu2 = uvu of w, with u1 = u2 = u, and
2k+1 log n ≤ |u| ≤ 2k+2 log n, for each k ≥ 1 if α > log n or k ≥ log logn, otherwise. Let us consider
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y

y

y

y z

u uv

Fig. 5: Proof of Theorem 7: Segment of w, split into blocks of length logn. In this segment, z is a k-block of
length 2k logn. For each factor y, of length 2k−1 logn, occurring in the first logn symbols of z (not necessarily
a sequence of blocks), we find the occurrences of y that correspond to sequences of 2k−1 blocks, and start at most
(8α + 2)|y| = (4α + 1) · 2k logn symbols (or, alternatively, (4α + 1) · 2k blocks) to the left of the considered z.
These y factors may appear as runs or as separate occurrences. Some of them can be extended to form an α-gapped
repeat u1vu2 = uvu such that the respective occurrence of y has the same offset in u1 as the initial y in u2.

now one such k. We split again the word w, this time in factors of length 2k log n, called k-blocks. For
simplicity, assume that each split is exact.

Clearly, if an α-gapped repeat u1vu2 like above exists, then u2 contains at least one of the k-blocks.
Consider such a k-block z and assume it is the leftmost k-block of u2. On the other hand, u1 contains
at least 2k+1 − 1 consecutive blocks from w′, so there should be a factor y of w corresponding to 2k−1

of these (2k+1 − 1) blocks which is also a factor of z, and starts on one of the first log n positions of z.
Now, for each k-block z and each y, with |y| = 2k−1 log n and starting in its prefix of length log n, we
check whether there are occurrences of y inw ending before z that correspond to exactly 2k−1 consecutive
blocks of w′ (one of them should be the occurrence of y in u1); note that the occurrence of y in z may not
necessarily correspond to a group of 2k−1 consecutive blocks, but the one from u1 should. As u1vu2 is
α-gapped and |u1| ≤ 2k+2 log n, then the occurrence of y from u1 starts at most (4α+1)2k log n symbols
before z (as |u1v| ≤ α|u2| ≤ α2k+2 log n, and z occurs with an offset of at most 2k log n symbols in u2).
So, the block-encoding of the occurrence of the factor y from the left arm u1 should occur in a factor of
(4α+ 1)2k blocks of w′, to the left of the blocks corresponding to z.

For the current z and an y as above, we check whether there exists a factor y′ of w′ whose blocks
correspond to y, by binary searching the suffix array of w′ (using LCP -queries on w to compare the
factors of log n symbols of y and the blocks of w′, at each step of the search). If not, we try another
possible y. If yes, using Lemma 1 for w′, we retrieve (in O(log log |w′| + α) time) a representation of
the occurrences of y′ in the range of (4α+ 1)2k blocks of w′ occurring before the blocks of z; this range
corresponds to a range of length (4α+ 1)2k log n of w.

If y′ is aperiodic then there are only O(α) such occurrences. Each factor of w corresponding to one of
these occurrences might be the occurrence of y from u1, so we try to extend both the factor corresponding
to the respective occurrence of y′ from w′ and the factor y from z in a similar way to the left and right to
see whether we obtain the longest α-gapped repeat. If y′ is periodic (so, y is periodic as well), we know
that the representation of its occurrences consists of O(α) separate occurrences and O(α) runs in which
y′ occurs (see Preliminaries). The separate occurrences are treated as above. Each run r′ of w′ where y′

occurs is treated differently, depending on whether its corresponding run r from w (made of the blocks
corresponding to r′) supposedly starts inside u1, ends inside u1, or both starts and ends inside u1. We can
check each of these three cases separately, each time trying to establish a correspondence between r and
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the run containing the occurrence of y from z, which should also start, end, or both start or end inside u2,
respectively. Then we define u1 and u2 as the longest equal factors containing these matching runs on
matching positions. Hence, for each separate occurrence of y′ or run of such occurrences, we may find an
α-gapped repeat in w; we just store the longest. This whole process takes O(α) time.

If α > log n, we run this algorithm for all k ≥ 1 and find the longest α-gapped repeat uvu, with
4 log n ≤ |u|, in O(αn) time.

If α ≤ log n, we run this algorithm for all k ≥ log log n and find the longest α-gapped repeat uvu,
with 2log logn+1 log n ≤ |u|, in O(αn) time. If our algorithm did not find such a repeat, we should look
for α-gapped repeats with shorter arm. Now, |u| is upper bounded by 2log logn+1 log n = 2(log n)2, so
|uvu| ≤ `0, for `0 = α ·2(log n)2 +2(log n)2 = (2α+2)(log n)2. Such an α-gapped repeat uvu is, thus,
contained in (at least) one factor of length 2`0 of w, starting on a position of the form 1 +m`0 for m ≥ 0.
So, we take the factors w[1+m`0..(m+2)`0] of w, form ≥ 0, and apply for each such factor, separately,
the same strategy as above. As an important detail, before running the algorithm presented above, we first
encode the symbols ofw[1+m`0..(m+2)`0], which were numbers between 1 and n, to numbers between
1 and 2`0; again, this is done by looking at the suffix array of w, and it allows us to apply recursively the
algorithm described before. The total time needed to do that is O

(
α`0

n
`0

)
= O(αn). Hence, we found

the longest α-gapped repeats uvu, with 2log log(2`0)+1 log(2`0) ≤ |u|. If our search was still fruitless, we
need to search α-gapped repeats with |u| ≤ 2log log(2`0)+1 log(2`0) ≤ 16 log n (a rough estimation, based
on the fact that α ≤ log n).

So, in both cases, α > log n or α ≤ log n, it is enough to find the longest α-gapped repeats with
|u| ≤ 16 log n. The right arm u2 of such a repeat is contained in a factor w[m log n+ 1..(m+ 17) log n]
of w, while u1 surely occurs in a factor x = w[m log n− 16α log n+ 1..(m+ 17) log n] (or, if m log n−
16α log n + 1 ≤ 0, then in a factor x = w[1..(m + 17) log n]); in total, there are O(n/ log n) such x
factors. As before, we can process them in linear time in order to re-encode each of them as a word over
the alphabet consisting of numbers which are in O(αn). In each of these factors, we look for α-gapped
repeats u1vu2 = uvu with 2k+1 ≤ |u| ≤ 2k+2, where 0 ≤ k ≤ log log n+ 2 (the case |u| < 2 is trivial),
and u2 occurs in the suffix of length 17 log n of this factor. Moreover, u2 contains a factor y of the form
x[j2k + 1..(j + 1)2k]. Using Lemma 3 and Remark 2, for each such possible y occurring in the suffix of
length 17 log n of x, we assume it is the one contained in u2 and we produce inO(α) time a representation
of the O(α) occurrences of y in the factor of length (4α + 1)|y| preceding y. One of these should be the
occurrence of y from u1. Similarly to the previous cases, we check in O(α) time which is the longest
α-gapped repeat obtained by pairing one of these occurrences to y, and extending them similarly to the
left and right. The time needed for this is O(α log n) per each of the O( n

logn ) factors x defined above.
This adds up to an overall complexity of O(αn), again.

This was the last case we needed to consider. In conclusion, we can find the longest α-gapped repeat
uvu in O(αn) time. 2

Further we discuss the case of α-gapped palindromes.

Theorem 8 Given a word w of length n, the longest α-gapped palindrome uRvu contained in w can be
determined in O(αn) time.

Proof: Our approach is similar to the case of repeats, presented in the previous theorem. For each k, we
try to find the longest α-gapped palindrome uRvu, with 2k+1 log n ≤ |u| ≤ 2k+2 log n. In each such
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α-gapped palindrome, the right arm u must contain a factor z, of length 2k log n, starting on a position of
the form j2k log n+ 1. So, we try each such factor z, fixing in this way a range of the input word where
u could appear. Now, uR must contain a factor zR; however, it is not mandatory that this factor occurs
at a position of the form i log n + 1. But, just like before, it is not hard to see that z has a factor y, of
length 2k−1 log n, that starts in its first log n positions and whose corresponding occurrence yR from uR

should start on a position of the form i log n+ 1. Further, we can use the fact that uRvu is α-gapped and
apply Lemma 1 to an encoding of the input word to locate in constant time for each y starting in the first
log n positions of z all possible occurrences of yR on a position of the form i log n + 1, occurring not
more than (8α + 2)|y| positions to the left of z. Intuitively, each occurrence of y found in this way fixes
a range where uR might occur in w, such that uRvu is α-gapped. So, around each such occurrence of yR

(supposedly, in the range corresponding to uR) and around the y from z we try to effectively construct the
arms uR and u, respectively, and see if we get the longest α-gapped palindrome. This approach can be
implemented in O(αn) time, just like in the case of α-gapped repeats.

The first step of the algorithm is to construct a word w′, of length n
logn , whose symbols, called blocks,

encode log n consecutive symbols of w grouped together. Now we have two versions of the word w: the
original one, and the one made of blocks. As before, the blocks can be encoded as numbers between 1
and n in linear time. We construct in O(n) time the suffix arrays and LCP -data structures for both w and
w′, and we build in O(n) time the data structures of Lemma 1 for the word w′.

Considering the original word w, we find the α-gapped palindrome uRvu with 2k+1 log n ≤ |u| ≤
2k+2 log n, for each k ≥ log log n. To this end, we split again the word w, this time in factors of length
2k log n, called k-blocks. For simplicity, assume that each split we do is exact; to achieve this, we may
have to pad the word with a new symbol in a suitable manner.

If an α-gapped palindrome uRvu of the kind we search for exists, then u contains at least one of the
k-blocks. Consider such a k-block z and assume it is the leftmost k-block of u. On the other hand, uR

contains at least 2k+1 − 1 consecutive blocks from w′, so there should be a factor y of w with yR corre-
sponding to 2k−1 of these (2k+1 − 1) blocks such that y is a factor of z that starts on one of its first log n
positions. Now, for each k-block z and each y starting it its prefix of length log n, with |y| = 2k−1 log n,
we check whether there are occurrences of yR ending before z (one of them should be the occurrence
of yR in uR) that correspond to exactly 2k−1 consecutive blocks of w′. Note that the occurrence of y
in z may not necessarily correspond to a group of 2k−1 consecutive blocks, but the one of yR from uR

do. As uRvu is α-gapped and |uRv| ≤ α2k+2 log n, then the occurrence of yR from uR starts at most
(4α+1) ·2k log n symbols before z. So, the block-encoding of yR should occur in a factor of (4α+1) ·2k
blocks of w′, to the left of the blocks corresponding to z.

For the considered z and some y as above, by binary searching the suffix array of w′ (using LCP -
queries on the word wwR to compare the factors of log n symbols of yR and the blocks of w′, at each
step of the search), we check whether there exists a factor y′ of w′ whose blocks correspond to yR. If not,
we try another possible y. If yes, we continue. Using Lemma 1 for w′, we obtain a representation of the
occurrences of y′ in the range of (4α + 1) · 2k blocks of w′, occurring before the blocks that correspond
to z; note that this range corresponds to a range of length (4α+ 1) · 2k log n of w.

If y′ is aperiodic then there areO(α) such occurrences. Each factor corresponding to these occurrences
might be the occurrence of yR from uR, so we try to extend it and the y from z in a similar way to see
whether we obtain the longest α-gapped palindrome.

If y′ is periodic (so, y is periodic as well), the representation of its occurrences consists ofO(α) separate
occurrences andO(α) runs in which y′ occurs. The separate occurrences are treated as above. Each run r′
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Fig. 6: Proof of Theorem 8: Segment of w, split into blocks of length logn. In this segment, z is a k-block of
length 2k logn. For each factor y, of length 2k−1 logn, occurring in the first logn symbols of z (not necessarily a
sequence of blocks), we find the occurrences of yR that correspond to sequences of 2k−1 blocks, and start at most
(8α + 2)|y| = (4α + 1) · 2k logn symbols (or, alternatively, (4α + 1) · 2k blocks) to the left of the considered z.
These yR factors may appear as runs or as separate occurrences. Some of them can be extended to form an α-gapped
palindrome uRvu such that the respective occurrence of yR is the mirror image of the initial y in u2.

ofw′ where y′ occurs is treated differently, depending on whether its corresponding run r fromw (made of
the blocks corresponding to r′) supposedly starts inside uR, ends inside uR, or both starts and ends inside
uR. We can check all these three cases separately, each time trying to establish a correspondence between
r and the run containing the occurrence of y from z, which should also end, start, or both start or end
inside u, respectively. Then we define uR and u as the longest mirrored words containing these matching
runs on mirrored positions. In this way, for each separate occurrence of y′ or run of such occurrences,
we found a α-gapped palindrome in w; we just store the longest. This whole process takes O(1) time for
each run.

If α > log n, we run this algorithm for all k ≥ 1 and find the longest α-gapped palindrome uRvu, with
4 log n ≤ |u|, in O(αn) time.

If α ≤ log n, we run this algorithm for all k ≥ log log n and find the longest α-gapped palindrome
uRvu, with 2log logn+1 log n ≤ |u|, in O(αn) time. If our algorithm did not find such a palindrome, we
should look for α-gapped palindrome with shorter arm. The length of this arm, |u|, is now upper bounded
by 2log logn+1 log n = 2(log n)2, so |uRvu| ≤ `0, for `0 = α · 2(log n)2 + 2(log n)2 = (2α+ 2)(log n)2.
Such an α-gapped palindrome uRvu is, thus, contained in (at least) one factor of length 2`0 of w, starting
on a position of the form 1+m`0 form ≥ 0. So, we take the factorsw[1+m`0..(m+2)`0] of w, form ≥
0, and apply for each such factor, separately, the same strategy as above. As noted in the previous proof,
these words can be re-encoded in linear time as words over an alphabet of size O(log n). The total time
needed to do that is O

(
α`0

n
`0

)
= O(αn). Hence, we found the longest α-gapped palindromes uRvu,

with 2log log(2`0)+1 log(2`0) ≤ |u|. If our search was still fruitless, we search α-gapped palindromes with
|u| ≤ 2log log(2`0)+1 log(2`0) ≤ 16 log n (a rough estimation, based on the fact that α ≤ log log n).

Now in both cases (when α > log n or α ≤ log n) it is enough to find the α-gapped palindromes with
|u| ≤ 16 log n. The right arm u of such a repeat is contained in a factor w[m log n + 1..(m + 17) log n]
of w, while uR surely occurs in a factor x = w[m log n−16α log n+ 1..(m+ 17) log n] (or, if m log n−
16α log n + 1 ≤ 0, then in a factor x = w[1..(m + 17) log n]). In total, there are O(n/ log n) such x
factors, and after a linear time preprocessing we can ensure that they are all over integer alphabets with
respect to their length. In each of them, we look forα-gapped palindromes uRvuwith 2k+1 ≤ |u| ≤ 2k+2,
where 0 ≤ k ≤ log log n + 1 (the case |u| < 2 is trivial), and u2 occurs in the suffix of length 9 log n
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of this factor. Moreover, u contains a factor y of the form x[j2k + 1..(j + 1)2k]. Using Lemma 3 and
Remark 2, for each such possible y occurring in the suffix of length 17 log n of x, we assume it is the one
contained in u and we produce in O(α) time a representation of the O(α) occurrences of yR in the factor
of length (4α + 1)|y| preceding y. One of these should be the occurrence of yR from uR. Similarly to
the previous cases, we check inO(α) time which is the longest α-gapped palindrome obtained by pairing
one of these occurrences to y, and extending them similarly to the left and right. The time needed for this
is O(α log n) per each of the O( n

logn ) factors x defined above. This adds up to an overall complexity of
O(αn), again.

This was the last case we needed to consider. In conclusion, we can find the longest α-gapped palin-
drome uRvu in O(αn) time. 2

The algorithms presented in the previous two proofs were non-trivially extended by Gawrychowski
et al. (2016) to algorithms that construct the sets of all maximal α-gapped repeats and maximal α-gapped
palindromes (which have a non-empty gap) in O(αn) time. Essentially, instead of looking for the longest
α-gapped repeat (or palindrome) that contains a certain basic factor (as we did in this proof), we look
for all the maximal α-gapped repeats (respectively, palindromes) that contain the respective basic factor.
Using a series of deep combinatorial observations on the structure of these maximal gapped repeats or
palindromes, one can output all of them in O(1) time per repeat or palindrome. Using the crucial fact
that the number of both α-gapped repeats with non-empty gap as well as α-gapped palindromes with
non-empty gap is O(αn) (in fact, the main result of Gawrychowski et al. (2016)), we get that they can all
be identified and output in O(αn) time.

Accordingly, we further show that given the set S of all factors of a word which are maximal α-gapped
palindromes (respectively, repeats) we can compute the array LPalα (respectively, LRepα) for that word
in O(n+ |S|) time. As a consequence, for constant α, these problems can be solved in linear time.

Note that, in this case, our strategy is fundamentally different from the ones we used in the cases
of Problems 1 and 2. There we were able to construct the desired data structures without constructing
first the set of all maximal gapped palindromes and maximal gapped repeats whose gap fulfilled the
required restrictions. Here we first find all maximal α-gapped repeats and α-gapped palindromes using
the algorithms of Gawrychowski et al. (2016), and then compute directly the desired data structures.

Theorem 9 Problem 3(a) can be solved in O(αn) time.

Proof: We assume that we are given an input word w, for which the set S of all maximal α-gapped
palindromes is computed, using the algorithm of Gawrychowski et al. (2016).

Let us consider a maximal α-gapped palindrome w[i..i+ `−1]vw[j..j+ `−1], with w[i..i+ `−1]R =
w[j..j + ` − 1]. For simplicity, let us denote by δ = |v| = j − i − `, the length of the gap; here, i and
j + `− 1 will be called the outer ends of this palindrome, while j and i+ `− 1 are the inner ends.

It is not hard to see that from a maximal α-gapped palindrome one can get a family of α-gapped palin-
dromes whose arms cannot be extended by appending letters simultaneously to their outer ends. We now
show how this family of α-gapped palindromes can be computed. Intuitively, we extend simultaneously
the gap in both directions, decreasing in this way the length of the arms of the palindrome, until the gap
becomes long enough to violate the α-gapped restriction. The longest possible such extension of the gap
can be easily computed.

Indeed, let r =
⌊
(α−1)`−δ
α+1

⌋
. It is not hard to check that for r′ ≤ r we have that w[i..i + ` − r′ −

1]v′w[j+ r′..j+ `−1], with v′ = w[i+ `− r′−1..i+ `−1]vw[j..j+ r′−1], is an α-gapped palindrome
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w[i..i+ `− 1] w[j..j + `− 1]
v

Ip j + ri+ `− r − 1

tR tv′

yyR v′′

Fig. 7: Proof of Theorem 9: p = uvu is a maximal α-gapped palindrome (here α = 2) with |v| = δ and |u| = `.

We define r =
⌊

(α−1)`−δ
α+1

⌋
=
⌊
`−δ
3

⌋
. This allows us to define the interval Ip, where the right arm of an α-gapped

palindrome obtained from p may start. Further, yRv′′y is an example of such an α-gapped palindrome; tRv′t is a
gapped palindrome obtained from p, which is not α-gapped: it’s right arm does not start in Ip. The interval Ip has
weight j + `− 1.

whose left arm cannot be extended by appending letters to their outer ends. For r′ > r we have that
w[i..i + ` − r′ − 1]v′w[j + r′..j + ` − 1], with v′ = w[i + ` − r′ − 1..i + ` − 1]vw[j..j + r′ − 1],
is still a gapped palindrome, but it is not α-gapped anymore. So, for a maximal α-gapped palindrome
p = w[i..i+ `− 1]vw[j..j + `− 1], we associate the interval Ip = [j, j + r], and associate to it a weight
g(Ip) = j + ` − 1. Intuitively, we know that at each position j′ ∈ Ip there exists a factor u, ending at
position j + `− 1, such that uRv is a suffix of w[1..j′ − 1] for some v.

On the other hand, if u is the longest factor starting at some position j′ ≤ n such that uRv is a suffix of
w[1..j − 1], then the factor w[i..j] = uRvu is, in fact, a maximal α-gapped palindrome xRyx(i.e., uR is
a prefix of xR and u is a suffix of x). In other words, u and uR could be extended simultaneously inside
the gap, but not at the outer ends.

Consequently, to compute LPalα[i] for some i ≤ n we have to find the α-gapped palindromes p ∈ S
for which the interval Ip contains i. Then, we identify which of these intervals has the greatest weight.
Say, for instance, that the interval Ipm which contains i, is the one that weight maximal weight k from all
the intervals containing i. Then LPalα[j] = k − j + 1. Indeed, from all the factors u starting at position
j, such that uRv is a suffix of w[1..j′ − 1] for some v, there is one that ends at position k, while all the
other end before k (otherwise, the intervals associated, respectively, to the maximal α-gapped palindromes
containing each of these factors uRvuwould have a greater weight). So, the palindrome ending at position
k is the longest of them all.

This allows us to design the following algorithm for the computation of LPalα[j]. We first use the
algorithm of Kolpakov and Kucherov (2009a) to compute the set S of all maximal α-gapped palindromes
of w. For each maximal α-gapped palindrome p = w[i..i + ` − 1]w[i + `..j − 1]w[j..j + ` − 1], we
associate the interval Ip = [j, j + r], where r =

⌊
(α−1)`−δ
α+1

⌋
and δ = j − i − `, and associate to it the

weight g(Ip) = j+`−1. We process these |S| intervals, with weights and bounds in [1, n], inO(n+ |S|)
time as in Lemma 4, to compute for each j ≤ n the maximal weight H[j] of an interval containing j.
Then we set LPalα[j] = H[j]− j + 1.

The correctness of the above algorithm follows from the remarks at the beginning of this proof. Its
complexity is clearly O(αn). 2

The solution of Problem 3(b) is very similar.
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Theorem 10 Problem 3(b) can be solved in O(αn) time.

Proof: We first use the algorithm of Gawrychowski et al. (2016) to compute the set S of all maximal
α-gapped repeats with non-empty gap of w. For each maximal α-gapped repeat p = w[i..i+ `− 1]w[i+

`..j−1]w[j..j+ `−1], we associate the interval Ip = [j, j+r], where r =
⌊
(α−1)`−δ

α

⌋
and δ = j− i− `,

and associate to it the weight g(Ip) = j + `− 1. We process these |S| intervals, with weights and bounds
in [1, n], in O(n + |S|) time as in Lemma 4, to compute for each j ≤ n the maximal weight H[j] of
an interval containing j. Now, we use Lemma 5 to compute the values SC[j] for each j ≤ n. We set
LRepα[j] = max{H[j]− j + 1, SC[j]}.

The complexity of this algorithm is O(αn), as |S| ∈ O(αn) (see Gawrychowski et al. (2016)).
The correctness of the algorithm follows from the following remark. For a maximal α-gapped repeat

p = w[i..i + ` − 1]w[i + `..j − 1]w[j..j + ` − 1] let r =
⌊
(α−1)`−δ

α

⌋
, where δ = j − i − `. Then the

factors w[i + r′..i + ` − 1]w[i + `..j + r′ − 1]w[j + r′..j + ` − 1] are α-gapped repeats for all r′ ≤ r,
whose right arm cannot be extended anymore to the right. Moreover, the factors w[i+ r′..i+ `− 1]w[i+
`..j + r′ − 1]w[j + r′..j + ` − 1] are gapped repeats which are not α-gapped for all r′ > r. The rest of
the arguments showing the soundness of our algorithm are similar to those of Theorem 9. 2

6 Future Work
In this paper we proposed a series of algorithms that construct data structures giving detailed information
on the longest gapped repeats and palindromes occurring in a given word. There are several directions in
which the work presented here can be continued.

Firstly, it seems interesting to us whether Problem 1(b) (the construction of the array LPF g,G[·]) can be
solved faster. An intermediate problem could be to check whether we can find in linear time the longest
gapped repeats with the length of the gap between a given lower bound and a given upper bound.

Secondly, although the algorithms we propose in Theorems 7 and 8 do not rely on computing and going
through all the maximal α-gapped repeats and palindromes when looking for the longest such structure,
they have asymptotically the same complexity as the (optimal) algorithms finding all such structures.
Thus, it seems natural and interesting to design algorithms finding the longest α-gapped repeat or palin-
drome of a word that run faster than the algorithms we proposed here (and, in particular, than the algo-
rithms finding all these structures). Also, it is interesting whether we can construct the data structures
defined in Problem 3 without producing first the list of all α-gapped repeats and palindromes.

Lastly, following the problems studied by Gawrychowski et al. (2013a, 2014), one could be interested
in finding the longest gapped pseudo-repeats. More precisely, for a literal bijective anti-/morphism f ,
we want to find the longest word (or words) u such that a given word w contains a factor f(u)vu with
|v| subject to different length-restrictions (e.g., between a lower and an upper bound, or shorter than
|u| multiplied by a factor, like in the case of α-gapped repeats and palindromes, etc.). Such repeats
and palindromes are sometimes used to formalise repeats and palindromes occurring in DNA sequences.
In this setting one works with the alphabet {A,C,G, T}. When we are interested in direct repeats we
may take f work as a morphism and model the Watson-Crick complementarity: f(A) = T, f(C) =
G, f(G) = C, and f(T ) = A; when we are interested in inverted repeats in the genetic sequence we may
take f work as an antimorphism, still defined by the Watson-Crick complementarity. It is not hard to see
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that our algorithms can also be adapted in a straightforward manner to work in the context of such gapped
pseudo-repeats.
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