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A permutation classC is splittable if it is contained in a merge of two of its proper subclasses, and it is 1-amalgamable
if given two permutations σ, τ ∈ C, each with a marked element, we can find a permutation π ∈ C containing
both σ and τ such that the two marked elements coincide. It was previously shown that unsplittability implies 1-
amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation
classes by showing that the class Av(1423, 1342) is both splittable and 1-amalgamable. Our construction is based on
the concept of LR-inflations, which we introduce here and which may be of independent interest.
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1 Introduction
In the study of permutation classes, a notable interest has recently been directed towards the operation
of merging. We say that a permutation π is a merge of σ and τ if the elements of π can be colored red
and blue so that the red elements form a copy of σ and the blue elements form a copy of τ . For instance,
Claesson, Jelı́nek and Steingrı́msson [3] showed that every 1324-avoiding permutation can be merged
from a 132-avoiding permutation and a 213-avoiding permutation, and used this fact to prove that there
are at most 16n 1324-avoiding permutations of length n.

A general problem that follows naturally is how to identify when a permutation class C has proper
subclasses A and B, such that every element of C can be obtained as a merge of an element of A and an
element ofB. We say that such a permutation classC is splittable. Jelı́nek and Valtr [4] showed that every
inflation-closed class is unsplittable and the class of σ-avoiding permutations, where σ is a direct sum of
two nonempty permutations and has length at least four, is splittable. Furthermore, they mentioned the
connection of splittability to more general structural properties of classes of relational structures studied
in the area of Ramsey theory, most notably the notion of 1-amalgamability. We say that a permutation
class C is 1-amalgamable if given two permutations σ, τ ∈ C, each with a marked element, we can find
a permutation π ∈ C containing both σ and τ such that the two marked elements coincide.

∗Supported by the project 16-01602Y of the Czech Science Foundation.
†This work has received financial support from the Neuron Foundation for Support of Science.

ISSN 1365–8050 c© 2017 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

ar
X

iv
:1

70
4.

08
73

2v
3 

 [
m

at
h.

C
O

] 
 4

 D
ec

 2
01

7

http://dmtcs.episciences.org/
http://dmtcs.episciences.org/3292


2 Vı́t Jelı́nek, Michal Opler

Not much is known about 1-amalgamability of permutation classes. Jelı́nek and Valtr [4, Lemma 1.5],
using a more general result from Ramsey theory, showed that unsplittability implies 1-amalgamability, and
they raised the question whether there is a permutation class that is both splittable and 1-amalgamable. In
this paper, we answer this question by showing that the class Av(1423, 1342) has both properties.

For this task, we will introduce a slightly weaker property than being inflation-closed, that is being
closed under inflating just the elements that are left-to-right minima. We say that an element of permuta-
tion π is a left-to-right minimum, or just LR-minimum, if it is smaller than all the elements preceding it.
In Section 4 we shall prove that certain properties of a permutation class C imply that its closure under
inflating LR-minima is splittable and 1-amalgamable. And finally in Section 5 we show that the class
Av(1423, 1342) is actually equal to the class Av(123) closed under inflating left-to-right minima and that
Av(123) has the desired properties.

2 Basics
A permutation π of length n ≥ 1 is a sequence of all the n distinct numbers from the set [n] =
{1, 2, . . . , n}. We denote the i-th element of π as πi. Note that we omit all punctuation when writing
out short permutations, e.g., we write 123 instead of 1, 2, 3. The set of all permutations of length n is
denoted Sn.

We say that two sequences of distinct numbers a1, . . . , an and b1, . . . , bn are order-isomorphic if for
every two indices i < j we have ai < aj if and only if bi < bj . Given two permutations π ∈ Sn and
σ ∈ Sk, we say that π contains σ if there is a k-tuple 1 ≤ i1 < i2 < · · · < ik ≤ n such that the sequence
πi1 , πi2 , . . . , πik is order-isomorphic to σ and we say that such a sequence is an occurrence of σ in π.
Furthermore, we say that the corresponding function f : [k]→ [n] defined as f(j) = ij is an embedding
of σ into π. In the context of permutation containment, we often refer to the permutation σ as a pattern.

A permutation that does not contain σ is σ-avoiding and we let Av(σ) denote the set of all σ-avoiding
permutations. Similarly, for a set of permutations F , we let Av(F ) denote the set of permutations that
avoid all elements of F . Note that for small sets F we omit the curly braces, e.g., we simply write Av(σ, ρ)
instead of Av({σ, ρ}).

We say that a set of permutations C is a permutation class if for every π ∈ C and σ contained in π, σ
belongs to C as well. Observe that a set of permutations C is a permutation class if and only if there is
a set F such that C = Av(F ). Moreover, for every permutation class C, there is a unique inclusionwise
minimal set F such that C = Av(F ); this set F is known as the basis of C. A class is said to be principal
if its basis has a single element, i.e., if the class has the form Av(σ) for a permutation σ.

Suppose that π ∈ Sn is a permutation, let σ1, . . . , σn be an n-tuple of non-empty permutations,
and let mi be the length of σi for i ∈ [n]. The inflation of π by the sequence σ1, . . . , σn, denoted
by π[σ1, . . . , σn], is the permutation of length m1 + · · · + mn obtained by concatenating n sequences
σ1σ2 · · ·σn with these properties:

• for each i ∈ [n], σi is order-isomorphic to σi, and

• for each i, j ∈ [n], if πi < πj , then all the elements of σi are smaller than all the elements of σj .

For two sets of permutations A and B, we let A[B] denote the set of all the permutations that can be
obtained as an inflation of a permutation from A by a sequence of permutations from B. We say that a
set of permutations A is ·[B]-closed if A[B] ⊆ A, and similarly a set of permutations B is A[·]-closed if
A[B] ⊆ B. Finally, we say that a set of permutations C is inflation-closed if C[C] ⊆ C.
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Figure 1: An example of inflation: 2413[213, 1, 21, 12] = 43582167.

There is a nice way to characterize an inflation-closed class through its basis. We say that a permu-
tation π is simple if it cannot be obtained by inflation from smaller permutations, except for the trivial
inflations π[1, . . . , 1] and 1[π]. Inflation-closed permutation classes are precisely the classes whose basis
only contains simple permutations [1, Proposition 1].

3 Splittability and 1-amalgamability
We now focus on the properties of splittability and 1-amalgamability of permutation classes. Mostly,
we state or rephrase results that were already known. For more detailed overview, especially regarding
splittability, see Jelı́nek and Valtr [4].

3.1 Splittability
We say that a permutation π is a merge of permutations τ and σ, if it can be partitioned into two disjoint
subsequences, one of which is an occurrence of σ and the other is an occurrence of τ . For two permutation
classes A and B, we write A � B for the class of all merges of a (possibly empty) permutation from A
with a (possibly empty) permutation from B. Trivially, A�B is again a permutation class.

Conversely, we say that a multiset of permutation classes {P1, . . . , Pm} forms a splitting of a permuta-
tion class C if C ⊆ P1�· · ·�Pm. We call Pi the parts of the splitting. The splitting is nontrivial if none
of its parts is a superset of C, and the splitting is irredundant if no proper submultiset of {P1, . . . , Pm}
forms a splitting of C. A permutation class C is then splittable if C admits a nontrivial splitting.

The following simple lemma is due to Jelı́nek and Valtr [4, Lemma 1.3].

Lemma 3.1. For a class C of permutations, the following properties are equivalent:

(a) C is splittable.

(b) C has a nontrivial splitting into two parts.

(c) C has a splitting into two parts, in which each part is a proper subclass of C.

(d) C has a nontrivial splitting into two parts, in which each part is a principal class.
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Following the previous Lemma 3.1, we can characterize a splittable classC by the splittings of the form
{Av(π),Av(σ)}, where both π and σ are permutations from C. We want to identify permutations inside
C that cannot define any such splitting.

Definition 3.2. Let C be a permutation class. We say that a permutation π ∈ C is unavoidable in C, if
for any permutation τ ∈ C, there is a permutation σ ∈ C such that any red-blue coloring of σ has a red
copy of τ or a blue copy of π. We let UC denote the set of all unavoidable permutations in C.

It is easy to see that a permutation π is unavoidable in C if and only if C has no nontrivial splitting into
two parts with one part being Av(π). A more detailed overview of the properties of unavoidable permu-
tations was provided by Jelı́nek and Valtr [4, Observation 2.2-3], we will mention only the observations
needed for our results.

Note that for a nonempty permutation class C, the set of unavoidable permutations UC is in fact a
nonempty permutation class contained in the class C. We can use the class of unavoidable permutations
to characterize the unsplittable permutation classes.

Observation 3.3. A permutation class C is unsplittable if and only if UC = C.

Furthermore, we can show that if C is closed under certain inflations then also UC is closed under the
same inflations. Again, the following result is due to Jelı́nek and Valtr [4, Lemma 2.4].

Lemma 3.4. Let C be a permutation class. If, for a set of permutations X , the class C is closed under
·[X], then UC is also closed under ·[X], and if C is closed under X[·], then so is UC . Consequently, if C
is inflation-closed, then UC = C and C is unsplittable.

3.2 Amalgamability
Now let us introduce the concept of amalgamation, which comes from the general study of relational
structures.

We say that a permutation class C is π-amalgamable if for any two permutations τ1, τ2 ∈ C and any
two mappings f1 and f2, where fi is an embedding of π into τi, there is a permutation σ ∈ C and two
mappings g1 and g2 such that gi is an embedding of τi into σ and g1 ◦ f1 = g2 ◦ f2. We also say, for
k ∈ N that a permutation class C is k-amalgamable if it is π-amalgamable for every π of order at most k.
Furthermore, a permutation class C is amalgamable if it is k-amalgamable for every k.

−→

Figure 2: One possible 1-amalgamation of 1423 and 2431 with highlighted embeddings of the singleton permutations
is the permutation 3275416.
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Note that k-amalgamability implies (k − 1)-amalgamability, so we have an infinite number of increas-
ingly stronger properties. However, the situation is quite simple in the case of the permutation classes. As
shown by Cameron [2], there are only five infinite amalgamable classes, the classes Av(12), Av(21), the
class of all layered permutations Av(231, 312), the class of their complements Av(213, 132) and the class
of all permutations. These are also the only permutation classes that are 3-amalgamable, implying that for
any k ≥ 3, a permutation class is k-amalgamable if and only if it is amalgamable.

In contrast, very little is known about 1-amalgamable and 2-amalgamable permutation classes. In this
paper, we are particularly interested in the 1-amalgamable permutation classes.

Definition 3.5. Let C be a permutation class. We say that a permutation π ∈ C is 1-amalgamable in C, if
for every τ ∈ C and every prescribed pair of embeddings f1 and f2 of the singleton permutation 1 into π
and τ there is a permutation σ ∈ C and embeddings g1 and g2 of π and τ into σ such that g1◦f1 = g2◦f2.
We use AC to denote the set of all 1-amalgamable permutations in C.

Trivially, AC is a permutation class contained in C. Moreover, the properties of AC are largely analo-
gous to those of UC , as shown by the next several results.

Observation 3.6. A permutation class C is 1-amalgamable if and only if AC = C.

Similarly to UC , the set AC is closed under the same inflations as the original class C.

Lemma 3.7. Let C be a permutation class. If, for a set of permutations X , the class C is closed under
·[X], then AC is also closed under ·[X], and if C is closed under X[·], then so is AC . Consequently, if C
is inflation-closed, then AC = C and C is 1-amalgamable.

Proof: Suppose that C is closed under ·[X]. We can assume that X itself is inflation-closed since if C is
closed under ·[X], it is also closed under ·[X[X]].

Let π ∈ AC be a 1-amalgamable permutation of order k and let ρ1, . . . , ρk be permutations from X .
Our goal is to prove that π[ρ1, . . . , ρk] also belongs to AC . We can assume, without loss of generality,
that all ρi are actually equal to a single permutation ρ. Otherwise, we could just take ρ ∈ X that contains
every ρi (this is possible since X is inflation-closed) and prove the stronger claim that π[ρ, . . . , ρ] belongs
to AC . Let us use π[ρ] as a shorthand notation for π[ρ, . . . , ρ].

It is now sufficient to show that π[ρ] belongs to AC for every π ∈ AC and ρ ∈ X . Fix a permutation
τ ∈ C and two embeddings f1 and f2 of the singleton permutation into π[ρ] and τ . We aim to find a
permutation σ ∈ C and two embeddings g1 and g2 of π[ρ] and τ into σ such that g1 ◦ f1 = g2 ◦ f2. We
can straightforwardly decompose f1 into an embedding h1 of the singleton permutation into π, by simply
looking to which inflated block order-isomorphic to ρ the image of f1 belongs, and an embedding h2 of
the singleton permutation into ρ, determined by restricting f1 only to that copy of ρ. Since π belongs to
AC , there is a permutation σ′ with embeddings g′1 and g′2 of π and τ such that g′1 ◦ h1 = g′2 ◦ f2.

Define σ = σ′[ρ], and view σ as a concatenation of blocks, each a copy of ρ. Let us define mapping g1
by simply using g′1 to map blocks of π[ρ] to the blocks of σ, each element in π[ρ] gets mapped to the same
element of the corresponding copy of ρ in σ. Then define mapping g2 by using g′2 to map its elements to
the blocks of σ and then within the copy of ρ to the single element in the image of h2. It is easy to see
that g1 and g2 are in fact embeddings of π[ρ] and τ into σ. Also the images of g1 ◦ f1 and g2 ◦ f2 must
lie in the same block of σ. And finally these images must be equal since we used h2 to place the single
element from the image of g2 inside each block of σ.

We now show that if C is closed under X[·] then so is AC . Fix a permutation ρ ∈ X of order k, and a
k-tuple π1, . . . , πk of permutations from AC . We will show that ρ[π1, . . . , πk] belongs to AC .
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Fix a permutation τ ∈ C and two embeddings f1 and f2 of the singleton permutation into ρ[π1, . . . , πk]
and τ . We aim to find a permutation σ ∈ C and two embeddings g1 and g2 of ρ[π1, . . . , πk] and τ into σ
such that g1 ◦ f1 = g2 ◦ f2. We again view ρ[π1, . . . , πk] as a concatenation of k blocks, the i-th block
being order-isomorphic to πi. Suppose that the image of f1 is in the j-th block. Let us decompose f1
into an embedding h1 of the singleton permutation into ρ whose image is the j-th element of ρ, and an
embedding h2 of the singleton permutation into πj . Since πj belongs to AC , there is a permutation σ′

with embeddings g′1 and g′2 of πj and τ such that g′1 ◦ h2 = g′2 ◦ f2.
Define σ = ρ[π1, . . . , πj−1, σ

′, πj+1, . . . , πk] and let us define mapping g1 in the following way. Every
block of ρ[π1, . . . , πk] except for the j-th one gets mapped to the corresponding block of σ, and the j-
th block is mapped using the embedding g′1 to the j-th block of σ. Then define mapping g2 simply by
mapping τ to the j-th block of σ using g′2. It is easy to see that both g1 and g2 are in fact embeddings of
ρ[π1, . . . , πk] and τ into σ. Furthermore, the images of g1 ◦ f1 and g2 ◦ f2 both lie in the j-th block of σ.
Their equality then follows from the construction since g′1 ◦ h2 = g′2 ◦ f2.

It remains to show that if C is inflation-closed then AC = C. But if C is inflation-closed, then it
is closed under ·[C], so AC is also closed under ·[C]. And since AC trivially contains the singleton
permutation, for every π ∈ C we have that π = 1[π] also belongs to AC .

As noted by Jelı́nek and Valtr [4, Lemma 1.5], it follows from the results of Nešetřil [5] that if a
permutation class C is unsplittable then C is also 1-amalgamable. Using the same argument, we get the
following stronger proposition relating the classes UC and AC .

Proposition 3.8. Let C be a permutation class, then UC ⊆ AC .

Proof: Let π be an unavoidable permutation in C and let τ be a permutation from C. By the definition
of UC , there is a permutation σ ∈ C such that any red-blue coloring of σ has a red copy of τ or a blue
copy of π. We claim that σ contains every 1-amalgamation of π and τ . Suppose for a contradiction that
there are two embeddings f1 and f2 of the singleton permutation 1 into π and τ such that there are no
embeddings g1 and g2 of π and τ into σ that would satisfy g1 ◦ f1 = g2 ◦ f2.

Let f1(1) = a and f2(1) = b. We aim to color the elements of σ to avoid both a red copy of τ and a
blue copy of π. We color an element σi red if and only if there is an embedding of π which maps πa to σi.
Trivially, we cannot obtain a blue copy of π, since we must have colored the image of πa red. On the other
hand, suppose we obtained a red copy of τ . Then the image of τb was painted red which means that there
is an embedding of π which maps πa to the same element. We assumed that such a pair of embeddings
does not exist, therefore we defined a coloring of σ that contains neither a red copy of τ nor a blue copy
of π.

4 Left-to-right minima
We say that the element πi covers the element πj if i < j and simultaneously πi < πj . The i-th element
of a permutation π is then a left-to-right minimum, or shortly LR-minimum, if it is not covered by any
other element.

Similarly we could define LR-maxima, RL-minima and RL-maxima. However we can easily translate
between right-to-left and left-to-right orientation by looking at the reverses of the permutations, and sim-
ilarly between maxima and minima by looking at the complements of the permutations. Therefore we
restrict ourselves to dealing only with LR-minima from now on.
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Definition 4.1. Suppose that π ∈ Sn is a permutation with k LR-minima and let σ1, . . . , σk be a k-tuple
of non-empty permutations. The LR-inflation of π by the sequence σ1, . . . , σk is the permutation resulting
from the inflation of the LR-minima of π by σ1, . . . , σk. We denote this by π〈σ1, . . . , σk〉.

〈
,

〉
=

Figure 3: An example of LR-inflation: 2413〈213, 21〉 = 4357216.

Definition 4.2. We say that a permutation class C is closed under LR-inflations if for every π ∈ C with
k LR-minima, and for every k-tuple σ1, . . . , σk of permutations from C, the LR-inflation π〈σ1, . . . , σk〉
belongs to C. The closure of C under LR-inflations, denoted CLR, is the smallest class which contains C
and is closed under LR-inflations.

Recall that one can characterize inflation-closed classes by a basis that consists of simple permutations.
We can derive a similar characterization in the case of classes closed under LR-inflations. We say that a
permutation is LR-simple if it cannot be obtained by LR-inflations except for the trivial ones. Using the
same arguments, it is easy to see that a permutation class is closed under LR-inflations if and only if every
permutation in its basis is LR-simple.

4.1 LR-splittability
We aim to define a stronger version of splittability that would help us connect the properties of permutation
classes and their LR-closures. A natural way to do that is to consider an operation similar to the regular
merge, with LR-minima being shared between both parts.

Definition 4.3. We say that a permutation π is a LR-merge of permutations τ and σ, if its non LR-
minimal elements can be partitioned into two disjoint sequences, such that one of them is, together with
the sequence of LR-minima of π, an occurrence of τ , and the other is, together with the sequence of LR-
minima of π, an occurrence of σ. For two permutation classes A and B, we write A �LR B for the class
of all LR-merges of a permutation from A with a compatible permutation from B. Trivially, A �LR B is
again a permutation class.

Note that we can also look at LR-merges as a special red-blue colorings of permutations in which the
LR-minima are both blue and red at the same time. Naturally we can use this definition of LR-merge to
define LR-splittability in the same way that the concept of regular merge gives rise to the definition of
splittability.
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−→

Figure 4: For example one possible LR-merge of 45213 and 3214 is the permutation 462153. The corresponding
embedding of 3214 is indicated.

Definition 4.4. We say that a multiset of permutation classes {P1, . . . , Pm} forms a LR-splitting of a
permutation class C if C ⊆ P1 �LR · · · �LR Pm. We call Pi the parts of the LR-splitting. The LR-
splitting is nontrivial if none of its parts is a superset of C, and the LR-splitting is irredundant if no proper
submultiset of {P1, . . . , Pm} forms an LR-splitting of C. A permutation class C is then LR-splittable if
C admits a nontrivial LR-splitting.

Clearly, every LR-splittable class is splittable. Moreover, some properties of LR-splittability are anal-
ogous to the properties of splittability, as shown by the following lemma. We omit the proof as it uses the
very same (and easy) arguments as the proof of Lemma 3.1.

Lemma 4.5. For a class C of permutations, the following properties are equivalent:

(a) C is LR-splittable.

(b) C has a nontrivial LR-splitting into two parts.

(c) C has an LR-splitting into two parts, in which each part is a proper subclass of C.

(d) C has a nontrivial LR-splitting into two parts, in which each part is a principal class.

Now we can state some of the results connecting splittability and LR-splittability of permutation classes
and their LR-closures.

Proposition 4.6. Let C be a permutation class that is closed under LR inflations. Then C is splittable if
and only if C is LR-splittable.

Proof: Trivially, LR-splittability implies splittability since we can take the corresponding red-blue color-
ing and simply assign an arbitrary color to each of the LR-minima. Now suppose that C admits splitting
{D,E} for some proper subclasses D and E. We aim to prove that also C ⊆ D �LR E. Let us first show
that C contains a permutation τ that belongs neither to D nor to E. From the definition of splittability,
there are permutations τD ∈ C \D and τE ∈ C \ E. Define τ as the LR-inflation of τD with τE , which
clearly lies outside both subclasses D and E.

Let us suppose that there is some π ∈ C not belonging to D �LR E , i.e., there is no red-blue coloring
of π which proves it is an LR-merge of a permutation α ∈ D and a permutation β ∈ E. Let π′ be the
permutation created by inflating each LR-minimum of π with τ . Since π′ belongs to C, it has a regular
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red-blue coloring with the permutation corresponding to the red elements π′R ∈ D and the permutation
corresponding to the blue elements π′B ∈ E. However there must be both colors in each block created by
inflating a LR-minimum of π with τ , and therefore there is a valid red-blue coloring of π that assigns both
colors to the LR-minima.

Finally, we want to show that, under modest assumptions, the LR-splittability of a permutation class
implies the LR-splittability (and thus the splittability) of its LR-closure.

Proposition 4.7. If C, D and E are permutation classes satisfying C ⊆ D �LR E, then CLR ⊆ DLR �LR

ELR. Consequently, if neitherDLR norELR contain the whole classC, then its closureCLR is LR-splittable
into parts DLR and ELR.

Proof: We will inductively construct a valid red-blue coloring which proves that CLR ⊆ DLR �LR E
LR.

First, any permutation in CLR that cannot be obtained from shorter permutations using LR-inflations must
belong to C and we simply use the red-blue coloring that witnesses the inclusion C ⊆ D �LR E.

Now take π ∈ CLR that can be obtained by LR-inflation from shorter permutations as π = α〈β1, . . . , βk〉.
We can already color the permutation α and all the permutations βi and we construct a coloring of π in the
following way: color the inflated blocks βi according to the coloring of βi and the remaining uninflated
elements of α get the color according to the coloring of α. It remains to show that the permutation πR
corresponding to the red elements of π belongs to DLR and the permutation πB corresponding to the blue
elements of π belongs to ELR. Since the LR-minima of α are both red and blue, the permutation πR is an
LR-inflation of the red elements of α by the red elements of the permutations βi. All these permutations
belong to DLR and thus their LR-inflation also belongs to DLR. Using the very same argument we can
show that πB belongs to ELR.

It remains to show that the splitting of CLR into DLR and ELR is nontrivial. However that follows from
the assumption that neither DLR nor ELR contain the whole class C.

4.2 LR-amalgamability
Similarly to the situation with LR-splittability we want to describe a property of permutation classes which
would imply 1-amalgamability of their respective LR-closures.

Definition 4.8. We say that a permutation class C is LR-amalgamable if for any two permutations
τ1, τ2 ∈ C and any two mappings f1 and f2, where fi is an embedding of the singleton permutation
into τi and its image is not an LR-minimum of τi, there is a permutation σ ∈ C and two mappings g1 and
g2 such that gi is an embedding of τi into σ, g1 ◦ f1 = g2 ◦ f2 and moreover gi preserves the property of
being a LR-minimum.

Observe that LR-amalgamability does not imply 1-amalgamability since it does not guarantee 1-amalgamation
over LR-minima and conversely, 1-amalgamability does not imply LR-amalgamability because it may not
preserve the property of being an LR-minimum. However, we can at least prove that LR-amalgamability
implies 1-amalgamability for classes that are closed under LR-inflations. Recall that we actually derived
equivalence between LR-splittability and splittability in Proposition 4.6.

Lemma 4.9. Let C be a permutation class that is closed under LR inflations. If C is LR-amalgamable
then C is also 1-amalgamable.
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Proof: Let π1 and π2 be arbitrary permutations from C and f1, f2 embeddings of the singleton permuta-
tion into π1 and π2 respectively. If neither of the images of f1 and f2 is an LR-minimum of the respective
permutation we obtain their 1-amalgamation directly since C is LR-amalgamable.

Now we can assume without loss of generality that the single element in the image of f1 is a LR-
minimum of π1. We can create the resulting 1-amalgamation by simply inflating this LR-minimum by the
permutation π2. It is then easy to derive the mappings g1 and g2 that show it is the desired 1-amalgamation.

We conclude this section by relating LR-amalgamability of a permutation class and 1-amalgamability
of its LR-closure.

Proposition 4.10. If a permutation classC is LR-amalgamable then its LR-closureCLR is LR-amalgamable
and thus also 1-amalgamable.

Proof: Let π1, π2 ∈ CLR be permutations and f1, f2 embeddings of the singleton permutation, fi into πi
such that the image of fi avoids the LR-minima of πi. We aim to prove by induction on the length of π1
and π2 that there is a corresponding LR-amalgamation of π1 and π2. Consider two cases. If neither of the
two permutations π1 and π2 can be obtained as an LR-inflation of a shorter permutation then they both
belong to C. And since C itself is LR-amalgamable they have a desired LR-amalgamation that belongs
to C.

Without loss of generality we can now assume that π1 can be obtained by LR-inflations as π1 =
α〈β1, . . . , βk〉 where the permutations α, β1, . . . , βk are all strictly shorter than π1. Again we consider
two separate cases. First, assume that the image of the embedding f1 lies inside the block corresponding
to the j-th inflated LR-minimum of α, which is order-isomorphic to βj . From induction we get a LR-
amalgamation σ of βj and π2 for the embeddings f ′1 and f2, where f ′1 is the embedding f1 restricted to
the inflated block of βj . Observe that the permutation α〈β1, . . . , βj−1, σ, βj+1, . . . , βk〉 is precisely the
LR-amalgamation of π1 and π2 we were looking for.

Finally we have to deal with the situation when the image of the embedding f1 lies outside of the blocks
corresponding to the inflated LR-minima of π1. We can obtain from induction a LR-amalgamation σ of
α and π2 for the embeddings f ′′1 and f2, where f ′′1 is the embedding f1 restricted to the permutation
α. Let g1 be the corresponding embedding of α into σ that preserves the LR-minima. We construct the
desired LR-amalgamation of π1 and π2 in the following way: take σ and for every LR-minimum of α
inflate its image under g1 with the corresponding permutation βi. The resulting permutation is clearly a
1-amalgamation of π1 and π2, and it also preserves the LR-minima.

Lemma 4.9 implies that CLR is also 1-amalgamable.

5 Main result
Now we are ready to prove that 1-amalgamability and unsplittability are not equivalent by exhibiting as
a counterexample the LR-closure of Av(123). First, let us show that this class actually has a nice basis
consisting of only two patterns.

Proposition 5.1. The class Av(1423, 1342) is the closure of Av(123) under LR-inflation.

Proof: First, let us show that any permutation from the LR-closure of Av(123) avoids both 1423, 1342.
Because both of these patterns contain 123, they would have to be created by the LR-inflations. However,
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Figure 5: Partition of a general permutation with 3 RL-maxima into the setsAj,k and an example how the non-empty
sets might look for some π ∈ Av(1423, 1342).

that is not possible since there is no nontrivial interval in either 1423 or 1342 which contains the minimum
element.

Now, let π be a permutation from Av(1423, 1342). We will show by induction that this permutation
can be obtained by a repeated LR-inflation of permutations from Av(123). If π does not contain 123
the statement is trivially true. Otherwise, consider the set of the right-to-left maxima of π. We want to
show that the remaining elements of π can be split into a descending sequence of intervals. If this holds
then we can get π as an LR-inflation of a 123-avoiding permutation by permutations order-isomorphic to
the intervals. And by induction these shorter permutations can be obtained as repeated LR-inflations of
123-avoiding permutations.

Let us show that there is no occurrence of the pattern 132 that maps only the letter 2 on an RL-
maximum. For a contradiction suppose we have such an occurrence and a corresponding embedding
f of 132 into π. Then there must be an element covered by πf(3) since it is not an RL-maximum, i.e., an
element πk such that k > f(3) and πk > πf(3). However, π restricted to these four indices would form
the pattern 1342. Using the same argument, we can also show that there is no occurrence of the pattern
132 which maps only the letter 3 on an RL-maximum as we would get an occurrence of the pattern 1423
together with the RL-maximum covered by the image of 2.

And finally, we conclude by showing that the elements of π that are not RL-maxima can indeed be split
into a descending sequence of intervals. Let I = {i1, . . . , im} be the index set of the RL-maxima of π
and furthermore define i0 = 0 and π0 = n+1. Let us represent the remaining elements of π as a set A of
n−m points on a plane

A = {(i, πi) | πi is not an RL-maximum of π}.
We define a partition of A into sets Aj,k for any 1 ≤ j < k ≤ m

Aj,k = {(x, y) | (x, y) ∈ A and ij−1 < x < ij and πik < y < πik−1
}.

For any j, k and l, every element of Aj,k is larger than all the elements of Aj+1,l in the second coor-
dinate since otherwise we would get a 132 occurrence with the letter 3 mapped to πij . Similarly for any
j, k and l, every element of Aj,k is to the left of all the elements of Al,k+1 as otherwise we would get
a 132 occurrence with the letter 2 mapped to πik . This transitively implies that all non-empty sets Aj,k

correspond to a sequence of descending intervals.
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Figure 6: For example the 123-avoiding permutation 796385412 with the non-minimal elements split into three
different runs.

In order to show that Av(1423, 1342) is splittable, we shall first prove the LR-splittability of Av(123)
and then apply the results we have obtained in Subsection 4.1.

Lemma 5.2. The class Av(123) is LR-splittable, and more precisely, it satisfies

Av(123) ⊆ Av(463152)�LR Av(463152).

Proof: Let π be a permutation from Av(123). Clearly π is a merge of two descending sequences, its LR-
minima and the remaining elements. The idea is to decompose the non-minimal elements into runs such
that for every run there is a specific LR-minimum covering each element of the run but covering none from
the following run. This can be done easily by the following greedy algorithm. In one step of the algorithm,
let πi be the first non-minimal element which was not used yet and let j be the maximum integer such that
πj is an LR-minimum covering πi. The next run then consists of all non-minimal elements starting from
πi that are covered by πj .

We color each run blue or red such that adjacent runs have different colors. We obtained a red-blue
coloring of the non-minimal elements and it only remains to check whether the monochromatic permu-
tations form a proper subclass of Av(123). Observe that the first elements of two adjacent runs cannot
be covered by a single LR-minimum, which implies that two elements from different non-adjacent runs
cannot be covered by a single LR-minimum. By this observation, in the monochromatic permutations πB
and πR any two elements covered by the same LR-minimum must belong to the same run.

We claim that a monochromatic copy of the pattern 463152 ∈ Av(123) can never be created this way.
Assume for contradiction that there is a permutation π ∈ Av(123) on which the algorithm creates a
monochromatic copy of 463152 and let f be the corresponding embedding of 463152 into π. Observe
that every LR-minimum of 463152 is covering some other element and therefore f must preserve the
property of being an LR-minimum, otherwise we would get an occurrence of the pattern 123. Following
our earlier observations, the elements πf(6), πf(5) and πf(2) must fall into the same run since πf(5) shares
LR-minima with both of the other two elements. And because elements of the same run are covered by a
single LR-minimum, there is an LR-minimum πi covering πf(6) and πf(2). However, πi must then also
cover πf(3) which contradicts the fact that πf(3) itself is an LR-minimum of π.

Corollary 5.3. The class Av(1423, 1342) is splittable.
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−→

Figure 7: Example of two permutations 3142 and 231 drawn from two parallel lines with highlighted embeddings of
the singleton permutation and their LR-amalgamation 532614.

Proof: In the previous Lemma 5.2 we showed that Av(123) is LR-splittable, more precisely that Av(123) ⊆
Av(463152) �LR Av(463152) . Since the permutation 463152 is LR-simple, we get the splittability
of Av(123)LR from Proposition 4.7. Finally, owing to Proposition 5.1, we know that Av(123)LR and
Av(1423, 1342) are in fact identical.

Our final task is to show that Av(1423, 1342) is 1-amalgamable by proving the LR-amalgamability of
Av(123). In order to do that we will use the following result which is due to Waton [6]. Note that Waton
in fact proved the equivalent claim for parallel lines of positive slope and the permutation class Av(321).

Proposition 5.4 (Waton [6]). The class of permutations that can be drawn on any two parallel lines of
negative slope is Av(123).

Lemma 5.5. The class Av(123) is LR-amalgamable.

Proof: Fix arbitrary two parallel lines of negative slope in the plane. Let π1 and π2 be permutations
avoiding 123 and f1 and f2 be mappings where fi is an embedding of the singleton permutation into πi
and its image is not an LR-minimum of πi. According to Proposition 5.4 both π1 and π2 can be drawn
from our fixed parallel lines. Fix sets of points A1 and A2 which lie on these lines whose corresponding
respective permutations are π1 and π2. Moreover, we can choose the sets such that the elements in the
images of f1 and f2 share the same coordinates. Otherwise we could translate one of the sets in the
direction of the lines to align these two points. Finally, if a point x ∈ A1 and a point y ∈ A2 share
one identical coordinate we can move x a little bit in the direction of the lines without changing the
permutation corresponding to the set A1.

We may easily see that the permutation corresponding to the union A1 ∪A2 with the natural mappings
of π1 and π2 is the desired LR-amalgamation of π1 and π2.

Applying Proposition 4.10, we get the desired result that the classAv(1423, 1342) is indeed 1-amalgamable.

Corollary 5.6. The class Av(1423, 1342) is 1-amalgamable.

6 Further directions
Using our results about LR-inflations, we proved that a single class Av(1423, 1342) is both 1-amalgamable
and splittable. Naturally, the same holds for its three symmetrical classes, i.e. Av(3241, 2431), Av(4132, 4213)
and Av(2314, 3124), since both splittability and 1-amalgamability is preserved when looking at the re-
verses or complements of the permutations. However, the question remains whether these results can be
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used to find more classes that are both 1-amalgamable and splittable or even infinitely many such classes.
It would be particularly interesting to find other such classes with small basis.

Our method of obtaining a splittable 1-amalgamable class was based on the notion of LR-inflations,
and the related concepts of LR-amalgamations and LR-splittings. These notions can be generalized to a
more abstract setting as follows: suppose that we partition every permutation π into ‘inflatable’ and ‘non-
inflatable’ elements, in such a way that for any embedding of a permutation σ into π, the non-inflatable
elements of σ are mapped to non-inflatable elements of π. We might then consider admissible inflations
of π (in which only the inflatable elements can be inflated), admissible splittings of π (which are based on
two-colorings in which each inflatable element receives both colors), as well as admissible amalgamations
(where we amalgamate by identifying non-inflatable elements, and the amalgamation must preserve the
inflatable elements of the two amalgamated permutations). In this paper, we only considered the special
case when the inflatable elements are the LR-minima; however, the main properties of LR-inflations,
LR-splittings and LR-amalgamations extend directly to the more abstract setting.
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