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2).



2 The aim of this paper is to extend this theorem to pyramidal polyubes, namely anatural extension of trapezoidal polyomino to any dimension.Roughly speaking, a pyramidal polyube is a piling-up of briks of a non-inreasingsize (see Figure 1).
Figure 1: Left: A trapezoidal polyomino. Right: A 3-dimensional pyramidal polyube.To prove this result, we introdue a subset of the set of pyramidal polyubes, thatis, the well-unfoldable pyramidal polyubes. Roughly speaking, a pyramidal polyube

P is well-unfoldable if it ontains a Hamiltonian path w of its basis (its lower brik)allowing us to unfold P as a pyramidal polyomino Pw, whih is tilable if and only ifso is P [BC92℄. Moreover, any tiling of Pw provides in a onstrutive way a tiling of
P . Finally, we show that every pyramidal polyube P ontains a well-unfoldable onewhih is tilable if and only if P is tilable.This paper is skethed as follows: in Setion 1, we introdue several basi notionsused in the present paper (unit ubes, polyubes, trapezoidal polyominoes and pyra-midal polyubes, dominos, tilability by dominoes. . . ) and we give a shorter proof ofL. Bougé and M. Cosnard's theorem [BC92℄, using a sub-lass of trapezoidal polyomi-noes, namely the regular ones. Setion 2 deals with the pyramidal polyubes. In thissetion, we introdue the well-unfoldable pyramidal polyubes, and show that suh apolyube is tilable if and only if it is balaned. Finally, we prove that, for the domino-tiling problem, eah pyramidal polyube an be supposed to be well-unfoldable. Todo this, we onsider redued pyramidal polyubes, obtained by removing balanedbriks from the boundary of pyramidal polyubes. We onlude this setion by stat-ing the main result of the present paper, namely, that a pyramidal polyube is tilableby dominoes if and only if it is balaned.1. Basi notionsThe aim of this setion is to introdue the basi notions we use in the sequel of thisartile. Firstly, we de�ne the notions of unit ubes, polyominoes, dominoes and thenotion of tilability by dominoes. Seondly, we provide the grid Z

n with a hessboard-like oloration whih gives a neessary ondition for a polyomino to be tilable bydominoes. Finally, we de�ne the notion of pyramidal polyubes for any dimension
n, and give a short proof of L. Bougé and M. Cosnard's theorem, stating that atrapezoidal polyomino P , namely a pyramidal polyube in dimension 2, is tilable bydominoes if and only if it is balaned, that is, the number of white unit squares isequal to the number of blak ones inluded in P .



3From now on, n denotes a natural integer stritly greater than 1.1.1. General notionsAssume {e1, . . . , en} to be the anonial basis of the R-vetor spae R
n. For anyvetor x ∈ R

n, let us denote by xi ∈ R, its i-th omponent in the basis {e1, . . . , en}.A point of Z
n is alled a unit ube. If n = 2, a unit ube is also alled a unit square.The reason of this terminology omes from the fat that one usually represents the unitube x as the ube in R

n of edge 1 and entered at x, or with x as its lower vertex (i.e.with the lower oordinates). In the sequel of the present artile we indi�erently useboth representations. For instane, the Z
n-representation is more hepful for a graphtheoretial approah whereas the R

n-one is more helpful for a topologial approah.A polyube is a simply-onneted (for the usual topology of R
n) �nite union of unitubes. In dimension 2, a polyube is also alled a polyomino.Two unit ubes x ∈ Z

n and y ∈ Z
n are said to be adjaent if ‖x − y‖1 =∑n

i=1
|xi − yi| = 1. A union of two adjaent unit ubes is alled a domino (seeFigure 2).

Figure 2: Left: A vertial domino. � Right: An horizontal domino.A polyube P is said to be tilable by dominoes, or just tilable for short, if P is adisjoint union of dominoes (see Figure 3).
Figure 3: Left: A polyomino P . � Right: A domino-tiling of P .Let x and y be two unit ubes and let us assume that {x,y} is a domino. Then, itis lear that ‖x‖1 and ‖y‖1 do not have the same parity. Hene, a neessary onditionfor a polyube P to be tilable is to inlude the same number of unit ubes with aneven norm as the number of unit ubes with an odd norm. For this reason, we provide

Z
n with a hessboard-like oloration depending on the parity of ‖x‖1: a unit ube
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x ∈ Z

n is said to be white (resp. blak) if ‖x‖1 is even (resp. odd). As mentionedabove, the unit ubes inluded in a domino are of di�erent olors, and, if a polyube
P is tilable by dominoes, then the number of white ubes inluded in P must beequal to the number of blak ones. If this property holds, the polyube P is said tobe balaned.Generally, the balane ondition is not su�ient for a polyube to be tilable. SeeFigure 4 for a ounter-example.

Figure 4: An untilable balaned polyomino.In order to de�ne the pyramidal polyubes, let us introdue the notion of brik.Let x ∈ Z
n and d ∈ N

n. The (unit) brik B(x, d) is the polyube de�ned as follows:
B(x, d) =

n⋃

λ∈
Q

n
j=1

{0,...,dj−1}

{
x +

n∑

i=1

λiei

}
.The number dn is alled the height of the brik B(x, d). In dimension 2, a brik is ausual retangle of width d1 and height d2. In dimension 3, a brik is a retangularparallelepiped of depth d1, width d2 and height d3 (see Figure 5).

Figure 5: Left: a two-dimensional brik � Right: a three-dimensional brik.Let us now de�ne the notion of pyramidal polyubes. Roughly speaking, a pyra-midal polyube is a piling-up of briks of a non-inreasing size along the vetor en.More preisely, a polyube P is said to be a pyramidal polyube, and is denoted by
P = (B1, . . . , Bk), if there exists a �nite non-inreasing sequene B1 ⊇ B2 ⊇ · · · ⊇ Bk,suh that:

P =
k⋃

i=1



Bi +
i−1∑

j=0

hjen



,where h0 = 0 and hi denotes the height of the brik Bi, for i ∈ {1, . . . , k}. If n = 2, apyramidal polyube is also alled a trapezoidal polyomino (see Figure 6 and Figure 7).The brik B1 is alled the basis of the pyramidal polyube P = (B1, . . . , Bk). Fromnow on, we only onsider standard representations of pyramidal polyubes,namely the representation (B1, . . . , Bk) where eah brik is of height 1.
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Figure 6: Left: a trapezoidal polyomino. � Right: a 3-dimensional pyramidal polyube.

Figure 7: Left: a sequene of briks of a non-inreasing size � Right: the assoiatedpyramidal polyube.1.2. Trapezoidal polyominoesBefore proving L. Bougé and M. Cosnard's theorem, let us �rst introdue a notationand a terminology for the speial ase of trapezoidal polyominoes.Notation. � Sine, the tilability of a polyomino is invariant by an integer-vetortranslation, one an identify a trapezoidal polyomino P with the heights (h1, . . . , hl)of the olumns piled-up over the unit ubes of the basis (see Figure 8).
Figure 8: The trapezoidal polyomino whose height-representation is P = (1, 1, 3, 5, 4, 2, 2).



6 A partiular lass of trapezoidal polyominoes is the lass of regular ones. A trape-zoidal polyomino P = (h1, . . . , hk) is said to be regular if there exists i0 ∈ {1, . . . , k}suh that P = (1, 2, . . . , i0 − 1, i0, i0 + 1, . . . , 2, 1) (see Figure 9). A �rst remark is
Figure 9: The regular trapezoidal polyomino whose height-representation is P =
(1, 2, 3, 4, 3, 2, 1).that a regular trapezoidal polyomino is not balaned. Indeed, the olumns with evenheight are balaned while the ones with odd height have always an exess of the sameolor. We an now easily dedue that:Theorem 1 [BC92℄ A trapezoidal polyomino P is tilable by dominoes if and only ifit is balaned.Proof. We have already mentioned that the balane ondition is neessary. Con-versely, let us suppose that P is balaned. Then, P is not regular and, by de�nitionontains at least one domino on its boundary (see Figure 10). By removing it from

Figure 10: Tiling a non-regular balaned trapezoidal polyomino.
P , we obtain an other balaned trapezoidal polyomino stritly inluded in P . Weonlude by indution on the number of unit ubes of P . 22. The pyramidal polyubesIn this setion, we investigate the general ase of pyramidal polyubes. For larityissues, we give all the proofs for the 3-dimensional ase. The forthomingmaterial extends in a straightforward way to any dimension.A �rst intuitive idea to tile a pyramidal polyube P with dominoes is to proeedby erosion, that is, by removing balaned briks from the boundary of P with the



7onstraint to keep a pyramidal polyube. It is exatly what we did in the proof ofTheorem 1 in the two-dimensional ase. In fat, this method fails in the general ase(see Figure 11): we obtain a pyramidal polyube from whih we annot remove anybalaned brik from the boundary by keeping a pyramidal polyube. Suh a pyramidalpolyube is said to be redued. More preisely, a redued pyramidal polyube is apyramidal polyube P , suh that, for any balaned brik B interseting P , P \ B isnot a pyramidal polyube.
Figure 11: A tilable pyramidal polyube untilable by erosion.A quite unexpeted fat is that the n-dimensional tiling problem for pyramidalpolyubes an be redued to a two-dimensional tiling problem for trapezoidal poly-ominoes. In fat, given a pyramidal polyube P , after having removed all the balanedbriks we an from the boundary of P , we obtain a pyramidal polyube P1, whih istilable if and only if so is P . Moreover, P1 an be assoiated to a trapezoidal poly-omino P2 with the same balane. Finally, every tiling of P2 provides in a anonialway a tiling of P1, and then provides a tiling of P .In this setion, we �rst introdue the notion of well-unfoldable pyramidal polyubesand show that, suh a polyube is tilable if and only if it is balaned. Next, weintrodue the strati�able pyramidal polyubes whih are shown to be unfoldable.Finally, we prove that every redued pyramidal polyube is strati�able, and hene istilable if and only if it is balaned. By de�nition of redued pyramidal polyubes, wededue that a pyramidal polyube is tilable if ad only if it is balaned.2.1. The well-unfoldable pyramidal polyubesThe aim of this setion is to show that suh a pyramidal polyube inludes a partiularHamiltonian path in its basis, alled an Ariadne's thread, reduing the tiling problemto a tiling problem in two dimensions.Let us begin with giving several de�nitions. Let P be a polyube. The adjaenygraph of P is the bipartite graph GP whose verties are the unit ubes inluded in Ppartitioned by their olor and whose edges are the adjaeny relations between unitubes. With this point of view, a tiling of P by dominoes is equivalent to a perfetmathing of P (see Figure 12). Let P be a pyramidal polyube. The adjaeny graphof its basis is alled the adjaeny basis graph of P .In 3 dimensions, another way to de�ne pyramidal polyubes is to onsider them asa union of olumns piled-up over a plane. Let us formulate a similar point a view inthe any dimension ase. We denote by C(x, h) and we all olumn of height h ∈ N

⋆
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Figure 12: Left to right: a polyube � its adjaeny graph � a perfet tiling.piled-up over the unit ube x ∈ Z

2, the following polyube:
C(x, h) =

h−1⋃

i=0

{x + (i − 1)en}.Let us notie that the olum of height 1 over the unit ube x is nothing but x itself.Hene, viewing the n-dimensional polyube as a union of olumns piled-up overan hyperplane, we an onsider a pyramidal polyube P = (B1, . . . , Bk) as a map
P̃ : B1 −→ N

⋆ mapping eah unit ube of B1 to the height of the olumn piled-upover it. Considering a standard representation of P = (B1, . . . , Bk), that is, eahbrik is of height 1, an expliit formula of P̃ is (see Figure 13):
P̃ : B1 −→ N

⋆

x 7→ max {j ∈ {1, . . . , k} | x ∈ Bj} .
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Figure 13: Left: a sequene of briks of non-inreasing size � Center: the assoiatedpyramidal polyube. � Right: its height-representionLet P = (B1, . . . , Bk) be a pyramidal polyube. Let w = (w1, . . . , wm) be aHamiltonian path of the adjaeny basis graph of P . Let hi ∈ N
⋆ be the height of theolumns piled-up over the unit ube wi, i ∈ {1, . . . , m}. Then,

P =

m⋃

i=1

C(wi, hi).



9Let us onsider the polyomino Pw = (h1, . . . , hm) (in a height-representation), alledthe w-unfold of P (see Figure 14). Sine Pw is onneted, we easily dedue that Pw

Figure 14: Left to right: a pyramidal polyube � a Hamiltionian path of its adjaenybasis graph � the orresponding unfold.and P have the same balane. Moreover, a quite interesting fat is:Proposition 2 The adjaeny graph of Pw is isomorphi to a partial graph of theadjaeny graph of P . In partiular, if Pw is tilable then so is P .Proof. Roughly speaking we want to show that unfolding a pyramidal polyube doesnot reate any adjaeny relation. Let Φ : P −→ Pw be the map de�ned by:
Φ : P −→ Pw

wi + jien 7→ ie1 + jie2,for i ∈ {1, . . . , m} and ji ∈ {0, . . . , hm − 1}. It is lear that Φ is one-to-one. Let
ie1 + je2 and i′e1 + j′e2 be two unit squares of Pw and let us assume them to beadjaent, that is, |i′ − i| + |j′ − j| = 1.

• If |i′ − i| = 1, then j = j′. Sine wi and wi′ are adjaent by de�nition of w, wededue that wi + jen and wi′ + j′en are adjaent too.
• If |j′ − j| = 1, then i = i′ and wi + jen and wi′ + j′en are adjaent.

2A partiular lass of pyramidal polyubes is the lass of the ones admitting a trape-zoidal unfold. Suh a pyramidal polyube is said to be well-unfoldable. A Hamiltionianpath of the adjaeny basis graph of a pyramidal polyube P providing a trapezoidalunfold is alled an Ariadne's thread of P . A diret onsequene of the previousproposition is:Corollary 3 A well-unfoldable pyramidal polyube is tilable by dominoes if and onlyif it is balaned.Proof. We have already seen that the balane ondition is neessary. Conversely, let
P be a well-unfoldable balaned pyramidal polyube, w be an Ariadne's thread of Pand Pw be the w-unfold of P . Then, Pw is balaned and is tilable from Theorem 1,and we onlude that P is tilable by Proposition 2. 2Unfortunately, every pyramidal polyube is not neessarily well-unfoldable (seeFigure 15). It remains now to exhibit a non-empty set of well-unfoldable pyramidalpolyubes.
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Figure 15: A non well-unfoldable pyramidal polyube.2.2. The strati�able pyramidal polyubesRoughly speaking, a pyramidal polyube P = (B1, . . . , Bk) is said to be strati�able ifeah brik Bi is a disjoint union of unbalaned briks. In this setion, we show thateah strati�able pyramidal polyube is well-unfoldable and then, is tilable if and onlyif it is balaned.De�nition 1 (Strati�able pyramidal polyube) A pyramidal polyube P =

(B1, . . . , Bk) is said to be strati�able if there exist a �nite sequene (S1, . . . , Sm)of unbalaned briks suh that, for all j ∈ {1, . . . , m}, ⋃j

i=1
Si is a brik, and a �nitenon-inreasing sequene (m1, . . . , mk) of {1, . . . , m} suh that, for all j ∈ {1, . . . , k},⋃j

i=1
Si = Bj .

PSfrag replaements S1
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S5Figure 16: Left to right: a pyramidal polyube � a strati�ation suh that S1 = B2and S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5 = B1.We state now the main result of this setion:Theorem 4 A strati�able pyramidal polyube is well-unfoldable.Proof. Let us �rst notie that a brikB(x, d) is balaned if and only if one of the di's iseven. Indeed, if all the di's are odd, then the number of unit ubes inluded in B(x, d)is odd and B(x, d) annot be balaned. Conversely, let Dk =
∏k

j=1
{0, . . . , dj − 1},



11for k ∈ {1, 2, 3}. If one di's is even, for instane d3, then
B(x, d) =

⋃

λ∈D3

{x + λ1e1 + λ2e2 + λ3e3}

=
⋃

λ∈D2

d3−1⋃

λ3=0

{x + (λ1e1 + λ2e2) + λ3e3}.Moreover, for any 2-uple λ ∈ D2, the polyube ⋃d3−1

λ3=0
{x + (λ1e1 + λ2e2) + λ3e3} isbalaned sine d3 is even and the result follows.Seondly, by a similar deomposition of a brik, we dedue that a balaned(resp. unbalaned) brik admits a Hamiltonian path linking any ouple of endpointsof an even edge (resp. linking two diametrially opposite unit ubes).Let (S1, . . . Sm) be a strati�ation of P and let (m1, . . . , mk) be the orrespondingnon-inreasing sequene. Let Tj =

⋃j

i=1
Si. Then, for all j ∈ {1, . . . , k}, Tmk

= Bkand Tj is balaned if and only if j is even.
• Assume that mk is even. Then Bk admits a Hamiltonian path linking twoendpoints of an even edge of Bk. Sine Smk+1 is unbalaned, it is adjaent to

Bk by an odd edge (see Figure 17). Then, we extend the Hamiltonian path of Bk

Figure 17: Left to right: adjoining an unbalaned brik to a balaned one.to an Ariadne's thread of (Bk, Bk ∪ Smk+1) linking two diametrially oppositeunit ubes of Bk ∪ Smk+1.
• If mk is odd, then Bk admits a Hamiltonian path linking two diametriallyopposite unit ubes of Bk and, whatever the ommon edge between Smk+1and Bk, we an extend the Hamiltonian path of Bk to an Ariadne's thread of

(Bk, Bk ∪Smk+1) linking the endpoints of one of its even edges (see Figure 18).We onlude by iteration on m. 2Unfortunately, every pyramidal polyube is not strati�able (see Figure 19).
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Figure 18: Left to right: adjoining two unbalaned briks.

Figure 19: An unstrati�able pyramidal polyube.2.3. The redued pyramidal polyubesIn the present setion we show that every pyramidal polyube ontains a strati�ablepyramidal polyube, also alled redued pyramidal polyube. The main signi�aneof a redued pyramidal polyubes is that it is tilable by dominoes if and only if theoriginal pyramidal polyube from whih it is omputed is tilable by dominoes.Let us now reall the notion of redued pyramidal polyube:De�nition 2 (Redued pyramidal polyube) A pyramidal polyube P is saidto be redued if for any balaned brik B interseting P , P \ B is not a pyramidalpolyube.Let us now prove the main result of this setion:Theorem 5 A redued pyramidal polyube is strati�able.Proof. Similarly as before, we only treat the three-dimensional ase. Let P =
(B1, . . . , Bk) be a redued pyramidal polyube. If k = 1, then P is learly strati�able.Let us suppose that any redued pyramidal polyube with height k− 1 is strati�able.Sine P = (B1, . . . , Bk) is supposed to be redued, then so is P ′ = (R2, . . . , Rk), andhene, P ′ is strati�able.Several ases an our depending on B1 and B2. First let usnotie that B1 has at most one even edge (see Figure 20). We dedue that the on�g-urations of B2 in B1 an only be the following ones (see Figure 21), and we see in eahase how to dedue a strati�ation of P from a strati�ation of (B2, . . . , Bk). Indeed,it is su�ient to see that B1 is a union of B2 and unbalaned brik (S1, . . . , Sm) with
B2 ∪ S1 ∪ · · · ∪ Sj , for all j ≤ m is a brik, whih is immediate (see Figure 21). 2A onsequene of this theorem is:
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Figure 20: If B1 has two even edges, then P is not redued.

Figure 21: The di�erent possible on�gurations for B1 and B2.Corollary 6 Let P be a pyramidal polyube and P ′ be a redued pyramidal polyubeof P , omputed by removing balaned briks from the boundary of P . Then P is tilableby dominoes if and only if so is P ′.Proof. By onstrution, it is lear that P is tilable if so is P ′. Conversely, let ussuppose that P is tilable. Then P is balaned and P ′ too. From Theorem 5, wededue that P ′ is well-unfoldable and by Corollary 3, we onlude that P ′ is tilableby dominoes. 2We an now state the main result of this paper:Theorem 7 A pyramidal polyube is tilable by dominoes if and only if it is balaned.Proof. The balane ondition is learly neessary. Conversely, assume P to be abalaned pyramidal polyube and P ′ be a redued pyramidal polyube omputedfrom P by removing balaned briks from the boundary of P . Then, P ′ is balanedand is tilable by dominoes by Theorems 5 and 4 and Corollary 3. We onlude withCorollary 6. 23. ConlusionIn the present paper, we have generalized to any dimension a result due to L. Bougéand M. Cosnard [BC92℄, stating that a trapezoidal polyomino is tilable by dominoes ifand only if it is balaned, onsidering the pyramidal polyubes as a natural extension
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