Strong chromatic index of products of graphs

Olivier Togni
LE2I, UMR CNRS 5158, Université de Bourgogne, BP 47870, 21078 Dijon Cedex, France
olivier.togni@u-bourgogne.fr

received January 2004, revised November 2006, accepted May 2007.

Abstract

The strong chromatic index of a graph is the minimum number of colours needed to colour the edges in such a way that each colour class is an induced matching. In this paper, we present bounds for the strong chromatic index of three different products of graphs in terms of the strong chromatic index of each factor. For the Cartesian product of paths, cycles or complete graphs, we derive sharper results. In particular, strong chromatic indices of d-dimensional grids and of some toroidal grids are given along with approximate results on the strong chromatic index of generalized hypercubes.

Keywords: Strong edge colouring; induced matching; Cartesian product; Kronecker product; strong product.

1 Introduction

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. An edge between vertex x and vertex y will be denoted by $x y$.

A proper edge-colouring is a mapping $c: E(G) \rightarrow \mathbb{N}$ satisfying $c(x y) \neq c(y z), \forall x y, y z \in E$. For any vertex $x \in V$, let $S_{c}(x)$ denote the set of the colours of all edges incident to x. A proper edge-colouring c is said to be strong if no two edges of the same colour lie on a path of length 3 ; that is, for any edge $x y$ of $G, S_{c}(x) \cap S_{c}(y)=\{c(x y)\}$. Equivalently, a strong colouring also corresponds to a partition of the edges into induced matchings. The strong chromatic index of G, denoted by $\chi_{s}^{\prime}(G)$, is the minimum number of colours of any strong colouring of G. A strong colouring of a graph G corresponds to a vertex colouring of $L(G)^{2}$, the square of the line-graph of G; where the square of a graph is obtained by adding edges between vertices at distance 2 in the graph. A colouring of the square of a graph is also referred to as a distance- 2 or $L(1,1)$ colouring in some works.

These problems of strong edge-colouring and distance colouring have interesting applications, specifically for channel assignment in mobile multi-hop radio networks [10] and in cellular networks [4].
The problem of determining the strong chromatic index of a graph is proved to be NP-complete, even for bipartite graphs of girth at least g, for any fixed g [6]. In 1985, Erdős and Nešetřil conjectured (see [2]) that the strong chromatic index of every graph of maximum degree Δ is at most $\frac{5}{4} \Delta^{2}$. Later, Faudree et al. conjectured in [2] that $\chi_{s}^{\prime}(G) \leq \Delta^{2}$ for bipartite graphs G of maximum degree Δ. In [7], a probabilistic argument is used to show that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta(G)^{2}$. Other approximation results exist, for instance for cubic graphs [1], multigraphs [3] and C_{4}-free graphs [5]. Exact values for specific graphs are presented in [2, 8, 9].

In this paper, we study the strong chromatic index of graphs obtained by Cartesian, Kronecker and strong products (definitions are given below). In Section 2, we derive upper bounds for each of them in terms of the strong chromatic index of the two factors along with two lower bounds for the Cartesian product. In Section 3, we turn our attention on the Cartesian product to present improved bounds for products of paths, cycles or cliques. In particular, these results allow to find the exact value of the strong chromatic index for d-dimensional grids and some d-dimensional toroidal grids and approximate results for other toroidal grids and generalized hypercubes.

The following notation will be used throughout this paper. For a graph G, denote by n_{G} its order, by $\Delta(G)$ its maximum degree and by $\chi(G)$ its chromatic number.

The Cartesian product $G \square H$ of two graphs G and H has vertex set $V(G) \times V(H)$ and edge set $\{(a, x)(b, y): a b \in E(G)$ and $x=y$ or $x y \in E(H)$ and $a=b\}$.

The Kronecker (sometimes called direct or categorical) product $G \times H$ has vertex set $V(G) \times V(H)$ and edge set $\{(a, x)(b, y): a b \in E(G)$ and $x y \in E(H)\}$.

The strong product $G \boxtimes H$ has vertex set $V(G) \times V(H)$ and edge set $E(G \square H) \cup E(G \times H)$.

2 General bounds

2.1 Cartesian product

Theorem 1 For any graph G and for any graph H that contains two adjacent vertices of maximum degree, we have

$$
\chi_{s}^{\prime}(G \square H) \geq 2 \Delta(G \square H)
$$

Proof: Let $a b$ be an edge of G, with a being a vertex of maximum degree and let $x y$ be an edge of H, with both x and y being a vertex of maximum degree. Denote by S the set of all edges incident to (a, x) or (a, y) plus the edge $(b, x)(b, y)$. Then all edges of S must be coloured by distinct colours in any strong colouring. A simple count gives $|S|=2 \Delta(G)+2 \Delta(H)=2 \Delta(G \square H)$.

Theorem 2 Let G and H be two graphs. For the Cartesian product, we have

$$
\chi_{s}^{\prime}(G \square H) \leq \chi_{s}^{\prime}(G) \chi(H)+\chi_{s}^{\prime}(H) \chi(G)
$$

Proof: Let $G^{\prime}=G \square H$ and let $k_{G}=\chi_{s}^{\prime}(G)$ and $k_{H}=\chi_{s}^{\prime}(H)$. Denote by c_{G} a strong colouring of G with colours from $0,1, \ldots k_{G}-1$ and denote by c_{H} a strong colouring of H with colours from $0,1, \ldots k_{H}-1$. Let v_{G} be a proper vertex colouring of G using the $\chi(G)$ colours $0,1, \ldots \chi(G)-1$ and let v_{H} be a proper vertex colouring of H using the $\chi(H)$ colours $0,1, \ldots \chi(H)-1$.

A colouring c^{\prime} of G^{\prime} is defined as follows:
For any edge $a b$ of G, for any vertex x of H, set

$$
c^{\prime}((a, x)(b, x))=c_{G}(a b)+k_{G} v_{H}(x)
$$

for any edge $x y$ of H, for any vertex a of G, set

$$
c^{\prime}((a, x)(a, y))=c_{H}(x y)+k_{H} v_{G}(a)+k_{G} \chi(H)
$$

As c_{G} and c_{H} are proper colourings and $c^{\prime}((a, x)(b, x))<k_{G} \chi(H)$, then c^{\prime} is a proper colouring too. So it remains to show that c^{\prime} is strong. For any vertex a of G and for any vertex x of H, let $I(a, x)=\left\{s+k_{G} v_{H}(x): s \in S_{c_{G}}(a)\right\}$ and let $J(a, x)=\left\{s+k_{H} v_{G}(a)+k_{G} \chi(H): s \in S_{c_{H}}(x)\right\}$.
First, consider two vertices (a, x) and (b, x) of G^{\prime}, with $a b \in E(G)$. By the definition of the colouring c^{\prime}, we have $S_{c^{\prime}}((a, x))=I(a, x) \cup J(a, x)$, and $S_{c^{\prime}}((b, x))=I(b, x) \cup J(b, x)$. Since c_{G} is strong, we have that $S_{c_{G}}(a) \cap S_{c_{G}}(b)=\left\{c_{G}(a b)\right\}$. Thus $I(a, x) \cap I(b, x)=\left\{c_{G}(a b)+k_{G} v_{H}(x)\right\}$. Since v_{G} is a proper colouring, we have $v_{G}(a) \neq v_{G}(b)$. Thus $J(a, x) \cap J(b, x)=\emptyset$. Therefore $S_{c^{\prime}}((a, x)) \cap$ $S_{c^{\prime}}((b, x))=\left\{c_{G}(a b)+k_{G} v_{H}(x)\right\}=\left\{c^{\prime}((a, x)(b, x))\right\}$.

Next, consider two vertices (a, x) and (a, y) of G^{\prime}, with $x y \in E(H)$. By a similar argument, as v_{H} is a proper colouring and c_{H} is a strong colouring, we have $S_{c^{\prime}}((a, x)) \cap S_{c^{\prime}}((a, y))=\left\{c^{\prime}((a, x)(a, y))\right\}$.

Hence we have proved that c^{\prime} is a strong colouring of $G^{\prime}=G \square H$ with $\chi_{s}^{\prime}(G) \chi(H)+\chi_{s}^{\prime}(H) \chi(G)$ colours.

To see how tight the above theorem is, we present the following lower bound in relation with the fractional chromatic number. The fractional chromatic number of a graph G is $\chi_{f}(G)=\min \frac{k}{p}$ for which G has a p-tuple k-colouring, that is an assignment of p positive integers from a set of k integers (colours) to each vertex of G such that adjacent vertices receive disjoint sets of colours. It is known that $\omega(G) \leq \chi_{f}(G) \leq \chi(G)$ for any graph G, where $\omega(G)$ is the clique number of G.

Theorem 3 Let G and H be two graphs, then

$$
\chi_{s}^{\prime}(G \square H) \geq \chi_{f}(G) \Delta(H)
$$

Proof: Let $x \in V(H)$ be a vertex of degree $d(x)=\Delta(H)$ and let S^{x} be the subgraph of H consisting of the star of order $\Delta(H)+1$ and center x. Remember that the product $G \square H$ contains $n=|V(G)|$ copies H_{1}, \ldots, H_{n} of H. Denote by S_{i}^{x} the copy of S^{x} in each copy H_{i} of H and let $S=\bigcup_{i=1}^{m} S_{i}^{x}$.

As each edge of a star S_{i}^{x} must be coloured with a different colour in any strong colouring of $G \square H$, and the colours on two adjacent stars S_{i}^{x} and $S_{i^{\prime}}^{x}$ must be distinct too, one can see that finding a strong edge colouring of S is equivalent to finding a $\Delta(H)$-tuple colouring of G. Assume that there exists a $\Delta(H)$-tuple k-colouring of G. Then,

$$
\chi_{s}^{\prime}(G \square H) \geq \chi_{s}^{\prime}(S) \geq k \geq \chi_{f}(G) \Delta(H)
$$

since by definition, $\chi_{f}(G) \leq \frac{k}{\Delta(H)}$.
In view of this theorem, we can deduce that Theorem 2 gives a upper bound close to the optimal if $\chi_{f}(G)$ is close to $\chi(G)$ and $\chi_{s}^{\prime}(H)$ is close to $\Delta(H)$. For instance, Theorem 2 gives the exact value of the strong chromatic index of the product of a star S_{n} on $n+1$ vertices by a K_{2}. For the product $K_{n} \square S_{m}$, with Theorem 2 and Theorem 3, we obtain $n m \leq \chi_{s}^{\prime}\left(K_{n} \square S_{m}\right) \leq n(m+n-1)$. Also, for the Cartesian product of a bipartite graph by itself, if $\chi_{s}^{\prime}(G) \leq \Delta(G)^{2}$ then $\chi_{s}^{\prime}(G \square G) \leq 4 \Delta(G)^{2}=\Delta(G \square G)^{2}$. Thus we obtain infinite families of bipartite graphs verifying the conjecture of Faudree et al..

Nevertheless, Theorem 2 is not optimal for many product graphs. For instance, for the product of two paths P_{m} and P_{n} where $m, n \geq 3$, with Theorem 1 and Theorem 2 we obtain $8 \leq \chi_{s}^{\prime}\left(P_{m} \square P_{n}\right) \leq 12$. In Corollary 4 of Section 3.3, we will determine the exact value of $\chi_{s}^{\prime}\left(P_{m} \square P_{n}\right)$, showing that the lower bound is tight in general.

2.2 Kronecker product

Theorem 4 Let G and H be two graphs different from K_{2}. For the Kronecker product $G \times H$ we have

$$
\chi_{s}^{\prime}(G \times H) \leq \chi_{s}^{\prime}(G) \chi_{s}^{\prime}(H)
$$

Proof: Let $G^{\prime}=G \times H$ and let $k_{G}=\chi_{s}^{\prime}(G)$ and $k_{H}=\chi_{s}^{\prime}(H)$. Denote by c_{G} a strong colouring of G with colours from $0,1, \ldots k_{G}-1$ and denote by c_{H} a strong colouring of H with colours from $0,1, \ldots k_{H}-1$.

A colouring c^{\prime} of G^{\prime} is defined as follows: for any edge $a b$ of G, for any edge $x y$ of H, set

$$
c^{\prime}((a, x)(b, y))=c_{G}(a b)+k_{G} c_{H}(x y)
$$

This colouring is clearly proper because c_{G} and c_{H} are both proper and for any edge e of $G, c_{G}(e)<$ k_{G}. We have $S_{c^{\prime}}((a, x))=\left\{\alpha+k_{G} \beta: \alpha \in S_{c_{G}}(a), \beta \in S_{c_{H}}(x)\right\}$ and $S_{c^{\prime}}((b, y))=\left\{\alpha+k_{G} \beta: \alpha \in\right.$ $\left.S_{c_{G}}(b), \beta \in S_{c_{H}}(y)\right\}$. Since c_{G} and c_{H} are strong, we have $S_{c_{G}}(a) \cap S_{c_{G}}(b)=\left\{c_{G}(a b)\right\}$ and $S_{c_{H}}(x) \cap$ $S_{c_{H}}(y)=\left\{c_{H}(x y)\right\}$. Hence $S_{c^{\prime}}((a, x)) \cap S_{c^{\prime}}((b, y))=\left\{c_{G}(a b)+k_{G} c_{H}(x y)\right\}=\left\{c^{\prime}((a, x)(b, y))\right\}$. Thus c^{\prime} is a strong colouring of $G \times H$.

This result is optimal for products of stars: If $G=S_{m}$ and $H=S_{n}$, then the product $G \times H$ contains a star $S_{m n}$ and since $\chi_{s}^{\prime}\left(S_{n}\right)=n$, Theorem 4 gives the exact value of $\chi_{s}^{\prime}\left(S_{m} \times S_{n}\right)$. Moreover, for the Kronecker product of a bipartite graph by itself, if $\chi_{s}^{\prime}(G) \leq \Delta(G)^{2}$ then this theorem gives $\chi_{s}^{\prime}(G \times G) \leq \Delta(G)^{4}=\Delta(G \times G)^{2}$. Thus we again obtain infinite families of bipartite graphs verifying the conjecture of Faudree et al.

2.3 Strong product

As the edge set of the strong product $G \boxtimes H$ is the union of the edge set of $G \square H$ and of $G \times H$, we shall construct a strong colouring of $G \boxtimes H$ by colouring the edges of the Cartesian product $G \square H$ using Theorem 2 and the edges of the Kronecker product $G \times H$ by a modified version of the colouring defined in proof of Theorem 4 The two next lemmas will ensure us that each of these two colourings remain strong in the final graph $G \boxtimes H$.

Lemma 1 For any graphs G and H, there exist a strong colouring $\operatorname{cof} G \square H$ in $\chi_{s}^{\prime}(G) \chi(H)+\chi_{s}^{\prime}(H) \chi(G)$ colours that verifies the following additional property: for any edge ab of G and for any edge xy of H, $S_{c}((a, x)) \cap S_{c}((b, y))=\emptyset$.

Proof: The colouring c of $G \square H$ is the same as the colouring c^{\prime} defined in the proof of Theorem 2 . Keeping the same notation as for the proof of Theorem 2 let us see that for any edge $a b$ of G and any edge $x y$ of H, the equality $S_{c}((a, x)) \cap S_{c}((b, y))=\emptyset$ holds; i-e. that any edge $(a, x)\left(a^{\prime}, x^{\prime}\right)$ incident to vertex (a, x) has a colour different from the colour of any edge $(b, y)\left(b^{\prime}, y^{\prime}\right)$ incident to vertex (b, y). We have four cases to consider:

1. $a a^{\prime} \in E(G)$ and $x=x^{\prime}, b b^{\prime} \in E(H)$ and $y=y^{\prime}$. Then $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right)=c_{G}\left(a a^{\prime}\right)+k_{G} v_{H}(x)$ and $c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)=c_{G}\left(b b^{\prime}\right)+k_{G} v_{H}(y)$. Since v_{H} is proper and $x y \in E(H), v_{H}(x) \neq v_{H}(y)$ and thus $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right) \neq c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)$.
2. $x x^{\prime} \in E(G)$ and $a=a^{\prime}, y y^{\prime} \in E(H)$ and $b=b^{\prime}$. Then $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right)=c_{H}\left(x x^{\prime}\right)+k_{H} v_{G}(a)+$ $k_{G} \chi(H)$ and $c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)=c_{H}\left(y y^{\prime}\right)+k_{H} v_{G}(b)+k_{G} \chi(H)$. Since v_{G} is proper and $a b \in E(G)$, $v_{G}(a) \neq v_{G}(b)$ and thus $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right) \neq c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)$.
3. $a a^{\prime} \in E(G)$ and $x=x^{\prime}, y y^{\prime} \in E(H)$ and $b=b^{\prime}$. Then $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right)=c_{G}\left(a a^{\prime}\right)+k_{G} v_{H}(x) \neq$ $c_{H}\left(y y^{\prime}\right)+k_{H} v_{G}(b)+k_{G} \chi(H)=c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)$.
4. $x x^{\prime} \in E(G)$ and $a=a^{\prime}, b b^{\prime} \in E(H)$ and $y=y^{\prime}$. Then $c^{\prime}\left((a, x)\left(a^{\prime}, x^{\prime}\right)\right)=c_{H}\left(x x^{\prime}\right)+k_{H} v_{G}(a)+$ $k_{G} \chi(H) \neq c_{G}\left(b b^{\prime}\right)+k_{G} v_{H}(y)=c^{\prime}\left((b, y)\left(b^{\prime}, y^{\prime}\right)\right)$.

Therefore, in all cases, $S_{c^{\prime}}((a, x)) \cap S_{c^{\prime}}((b, y))=\emptyset$, which proves the lemma.
Lemma 2 For any graphs G and H, there exist a strong colouring c of $G \times H$ in $2 \chi_{s}^{\prime}(G) \chi_{s}^{\prime}(H)$ colours that verifies the following additional property: for any edge ab of G and for any edge $x y$ of H,

$$
S_{c}((a, x)) \cap S_{c}((a, y))=\emptyset
$$

and

$$
S_{c}((a, x)) \cap S_{c}((b, x))=\emptyset
$$

Proof: The colouring c of $G \times H$ is obtained by modifying the strong colouring c^{\prime} given in the proof of Theorem 4 in this way: Let $k=\chi_{s}^{\prime}(G) \chi_{s}^{\prime}(H)$ and let \prec_{G} (resp. \prec_{H}) be any ordering of the vertices of G (resp. of \vec{H}). For any edge $a b$ of G with $a \prec_{G} b$ and any edge $x y$ of H with $x \prec_{H} y$, set

$$
c((a, x)(b, y))=c^{\prime}((a, x)(b, y))
$$

and

$$
c((b, x)(a, y))=c^{\prime}((b, x)(a, y))+k
$$

Keeping the same notation as for the proof of Theorem 4, let us see first that for any edge $a b$ of G and any edge $x y$ of H, the equality $S_{c}((a, x)) \cap S_{c}((a, y))=\emptyset$ holds; i-e. that any edge $(a, x)\left(a_{1}, x^{\prime}\right)$ incident to vertex (a, x) has a colour different from the colour of any edge $(a, y)\left(a_{2}, y^{\prime}\right)$ incident to vertex (b, y). Let $m_{1}=c_{G}\left(a a_{1}\right)+k_{G} c_{H}\left(x x^{\prime}\right)$ and let $m_{2}=c_{G}\left(a a_{2}\right)+k_{G} c_{H}\left(y y^{\prime}\right)$. To have $m_{1}=m_{2}$, one needs $c_{G}\left(a a_{1}\right)=c_{G}\left(a a_{2}\right)$ and $c_{H}\left(x x^{\prime}\right)=c_{H}\left(y y^{\prime}\right)$, which is impossible unless $a_{1}=a_{2}$ and $x^{\prime}=y$ and $y^{\prime}=x$. But in that case, we obtain $c^{\prime}\left((a, x)\left(a_{1}, x^{\prime}\right)\right)=m_{1}$ and $c^{\prime}\left((a, y)\left(a_{2}, y^{\prime}\right)\right)=m_{1}+k$ if $a \prec_{G} a_{1}$ and $x \prec_{H} y$, or else $c^{\prime}\left((a, x)\left(a_{1}, x^{\prime}\right)\right)=m_{1}+k$ and $c^{\prime}\left((a, y)\left(a_{2}, y^{\prime}\right)\right)=m_{1}$. Therefore, in all cases, $c^{\prime}\left((a, x)\left(a_{1}, x^{\prime}\right)\right) \neq c^{\prime}\left((a, y)\left(a_{2}, y^{\prime}\right)\right)$. Hence, $S_{c}((a, x)) \cap S_{c}((a, y))=\emptyset$.

Similarly, one can see that $S_{c}((a, x)) \cap S_{c}((b, x))=\emptyset$.
Theorem 5 Let G and H be two graphs. For the strong product $G \boxtimes H$ we have

$$
\chi_{s}^{\prime}(G \boxtimes H) \leq \chi_{s}^{\prime}(G) \chi(H)+\chi_{s}^{\prime}(H) \chi(G)+2 \chi_{s}^{\prime}(G) \chi_{s}^{\prime}(H)
$$

Proof: Remember that the edge set of $G \boxtimes H$ is the union of the edge set of $G \square H$ and of the edge set of $G \times H$. Colour the edges of $G \square H$ with a colouring c_{1} satisfying Lemma 1 using a set \mathcal{C} of $\chi_{s}^{\prime}(G) \chi(H)+$ $\chi_{s}^{\prime}(H) \chi(G)$ colours and colour the edges of $G \times H$ with a colouring c_{2} satisfying Lemma 2 and using a set \mathcal{C}^{\prime} disjoint with \mathcal{C} of $2 \chi_{s}^{\prime}(G) \chi_{s}^{\prime}(H)$ colours. This produces an edge-colouring of $G \boxtimes H$. Since \mathcal{C} and
\mathcal{C}^{\prime} are disjoint, this colouring is proper and since c_{1} verifies the additional property of Lemma 1 and c_{2} verifies the additional property of Lemma 2 this colouring is strong.

Notice that this theorem gives the exact value of the strong chromatic index of the strong product of two complete graphs: since $K_{m} \boxtimes K_{n}=K_{m n}$ then $\chi_{s}^{\prime}\left(K_{m n}\right)=\binom{m n}{2}=\chi_{s}^{\prime}\left(K_{m}\right) \chi\left(K_{n}\right)+\chi_{s}^{\prime}\left(K_{n}\right) \chi\left(K_{m}\right)+$ $2 \chi_{s}^{\prime}\left(K_{m}\right) \chi_{s}^{\prime}\left(K_{n}\right)$.

3 Cartesian products of paths, cycles and cliques

In this section, we define the notion of (k, t)-colourability that leads us to improved bounds for the product of paths, cycles and complete graphs. Optimal values of the strong chromatic index are found for some graphs.

$3.1(k, t)$-colourable graphs

Definition 1 Two strong colourings c_{1} and c_{2} of a graph G are compatible if for any vertex x of G, $S_{c_{1}}(x) \cap S_{c_{2}}(x)=\emptyset$.

Definition 2 A graph G is (k, t)-colourable if there exist t strong colourings $c_{i}, 1 \leq i \leq t, c_{i}: E(G) \rightarrow$ $\{1,2, \ldots, k\}$ that are pairwise compatible.

Fig. 1: Three compatible strong colourings of C_{6} in six colours showing that C_{6} is $(6,3)$-colourable.

Notice that a (k, t)-colourable graph is also $(\alpha k, \alpha t)$-colourable for any integer $\alpha \geq 1$. In particular, every graph G is $\left(t \chi_{s}^{\prime}(G), t\right)$-colourable for any integer $t \geq 1$.
For the path P_{n} on n vertices, it is known that $\chi_{s}^{\prime}\left(P_{n}\right)=3$ for any $n \geq 4$, thus P_{n} is $(3 t, t)$-colourable. This result can be strengthened as shown in the following proposition.
Proposition 1 For any integers $n \geq 2$ and $t \geq 1$, the path P_{n} is $(4 t, 2 t)$-colourable.
Proof: We only have to show that P_{n} is $(4,2)$-colourable, i-e. that there exist two compatible strong colourings of P_{n} with 4 colours. The first strong colouring c_{1} is defined by giving the colours $1,2,3,4,1$, $2,3,4, \ldots$ to the edges of P_{n}, starting from an end-vertex and going to the other end-vertex. The second colouring c_{2} is defined by giving the colours $3,4,1,2,3,4,1,2, \ldots$ to the edges of P_{n} starting from the same end-vertex than for the first colouring.

Proposition 2 For the cycle C_{n}, the following holds:

- for any $k \geq 3$ and for any $n \geq 1, C_{k n}$ is $\left(k t,\left\lfloor\frac{k}{2}\right\rfloor t\right)$-colourable,
- for any $n \geq 5, n \neq 6, C_{n}$ is (5t, $2 t$)-colourable.

Proof: First, observe that, given a strong colouring c of C_{n}, if for any colour i, any two edges of colour i are separated by at least $d-1$ edges along the shortest path (we call such a colouring d-distant), then there exist $\left\lfloor\frac{d}{2}\right\rfloor$ compatible strong colourings. These colourings can be obtained from the cycle C_{n} with its colouring c by a rotation of $\frac{4 k \pi}{n}$, for $k=0,1, \ldots,\left\lfloor\frac{d}{2}\right\rfloor-1$.

For the first assertion, a strong k-distant colouring is given by assigning cyclically the colours $1,2, \ldots, k$ to the edge of the cycle $C_{k n}$ (see Figure 1 for an example with $k=6$).

For the second assertion, observe first that C_{7} and C_{11} are $(5,2)$-colourable, as can be seen by the colourings $1,2,3,4,1,3,5$ and $3,4,1,2,5,4,2$ for C_{7} and $1,2,3,4,1,2,3,4,1,3,5$ and $3,4,1,2,3,4,1$, $2,5,4,2$ for C_{11}. Now, for the remaining cases, we have to find a 4 -distant colouring using at most 5 colours. Let $n=4 p+i, 0 \leq i \leq 3$. Observe that, as $n>7$ and $n \neq 11$, we have $p \geq i$. The colouring of C_{n} is obtained by repeating i times the pattern $1,2,3,4,5$ then $p-i$ times the pattern $1,2,3,4$ along the cycle.

Proposition 3 For any integers $n \geq 3$ and $t \geq 1$, the complete graph K_{n} is $\left(\frac{n(n-1)}{2} t,\left\lfloor\frac{n}{2}\right\rfloor t\right)$-colourable.
Proof: Consider first the case of even n and let $n=2 p . K_{2 p}$ is decomposable into $2 p-1$ perfect matchings $M_{i}, 0 \leq i \leq 2 p-2$. Order the edges of each matching M_{i} and denote by e_{i}^{j} the $j^{t h}$ edge of matching $M_{i}, 0 \leq j \leq p-1$. Then define the p strong colourings c_{k} of K_{n} as follows: for any edge e of K_{n}, for any $k, 0 \leq k \leq p-1$, set

$$
c_{k}\left(e_{i}^{j}\right)=(i+(j+k)(2 p-1)) \bmod p(2 p-1)
$$

We treat the case of odd n in a similar way. Let $n=2 p+1 . K_{2 p+1}$ is decomposable into $2 p+1$ matchings $M_{i}, 0 \leq i \leq 2 p$, each containing p edges $e_{i}^{0}, e_{i}^{1}, \ldots, e_{i}^{p-1}$. Then set

$$
c_{k}\left(e_{i}^{j}\right)=(i+(j+k)(2 p+1)) \bmod p(2 p+1)
$$

Because of the choice of the modulo in the definition of the colouring ($p(2 p-1$) for even n and $p(2 p+1)$ for odd n), any colour is always in the same matching in all the p strong colourings. This is the reason why the p colourings are pairwise compatible (details of this part of the proof are left to the reader).

3.2 Cartesian products of (k, t)-colourable graphs

Theorem 6 Let G be a $\left(k_{G}, t_{G}\right)$-colourable graph and let H be a $\left(k_{H}, t_{H}\right)$-colourable graph, with $t_{G} \geq$ $\chi(H)$ and $t_{H} \geq \chi(G)$. Then $G \square H$ is $\left(k_{G}+k_{H}, \min \left(t_{G}, t_{H}\right)\right)$-colourable.

Proof: Let $t^{\prime}=\min \left(t_{G}, t_{H}\right)$. As G is $\left(k_{G}, t_{G}\right)$-colourable, there exist t_{G} compatible strong colourings $c_{i}, 1 \leq i \leq t_{G}$ of $G ; c_{i}: E(G) \rightarrow\left\{0,1, \ldots, k_{G}-1\right\}$. Similarly, as H is $\left(k_{H}, t_{H}\right)$-colourable, there exist t_{H} compatible strong colourings $d_{i}, 1 \leq i \leq t_{H}$ of H. Assume moreover that these colourings d_{i} use different colours than the colourings of $G: d_{i}: E(H) \rightarrow\left\{k_{G}, k_{G}+1, \ldots, k_{G}+k_{H}-1\right\}$.

Let v_{G} be a proper vertex colouring of G using the $\chi(G)$ colours $0,1, \ldots \chi(G)-1$ and let v_{H} be a proper vertex colouring of H using the $\chi(H)$ colours $0,1, \ldots \chi(H)-1$.

We define the t^{\prime} colourings $c_{i}^{\prime}, 0 \leq i \leq t^{\prime}-1$ of G^{\prime} as follows:

For any edge $a b$ of G, for any vertex x of H, let $m(x)=\left(v_{H}(x)+i\right) \bmod t_{G}$ and set

$$
c_{i}^{\prime}((a, x)(b, x))=c_{m(x)}(a b),
$$

for any edge $x y$ of H, for any vertex a of G, let $p(a)=\left(v_{G}(a)+i\right) \bmod t_{H}$ and set

$$
c_{i}^{\prime}((a, x)(a, y))=d_{p(a)}(x y)
$$

Notice that each colouring c_{i}^{\prime} uses at most $k_{G}+k_{H}$ colours.
Let us show that each c_{i}^{\prime} is a strong colouring of G^{\prime} :
First, consider two adjacent vertices (a, x) and (b, x) of G^{\prime}. Then $S_{c_{i}^{\prime}}((a, x)) \cap S_{c_{i}^{\prime}}((b, x))=\left(S_{c_{m(x)}}(a) \cup\right.$ $\left.S_{d_{p(a)}}(x)\right) \cap\left(S_{c_{m(x)}}(b) \cup S_{d_{p(b)}}(x)\right)$. Since v_{G} is proper and $t_{G} \geq \chi(H)$, we have that $p(a) \neq p(b)$ and since $d_{p(a)}$ and $d_{p(b)}$ are compatible then we obtain $S_{d_{p(a)}}(x) \cap S_{d_{p(b)}}(x)=\emptyset$. Moreover, as $c_{m(x)}$ is strong, then we have $S_{c_{m(x)}}(a) \cap S_{c_{m(x)}}(b)=\left\{c_{m(x)}(a b)\right\}$. Consequently, $S_{c_{i}^{\prime}}((a, x)) \cap S_{c_{i}^{\prime}}((b, x))=$ $\left\{c_{m(x)}(a b)\right\}=\left\{c_{i}^{\prime}((a, x)(b, x))\right\}$.
Next, for two adjacent vertices (a, x) and (a, y) of G^{\prime}, a similar argument gives $S_{c_{i}^{\prime}}((a, x)) \cap S_{c_{i}^{\prime}}((a, y))=$ $\left\{d_{p(a)}(x y)\right\}=\left\{c_{i}^{\prime}((a, x)(a, y))\right\}$.

Now let us show that for any $i_{1}, i_{2}, 0 \leq i_{1}, i_{2} \leq t^{\prime}-1, i_{1} \neq i_{2}, c_{i_{1}}^{\prime}$ and $c_{i_{2}}^{\prime}$ are compatible: Let (a, x) be a vertex of G^{\prime}. We have
$S_{c_{i_{1}}^{\prime}}((a, x))=S_{c_{m_{1}}}(a) \cup S_{d_{p_{1}}}(x)$, with $m_{1}=\left(v_{H}(x)+i_{1}\right) \bmod t_{G}$ and $p_{1}=\left(v_{G}(a)+i_{1}\right) \bmod t_{H}$, and
$S_{c_{i_{2}}^{\prime}}((a, x))=S_{c_{m_{2}}}(a) \cup S_{d_{p_{2}}}(x)$, with $m_{2}=\left(v_{H}(x)+i_{2}\right) \bmod t_{G}$ and $p_{2}=\left(v_{G}(a)+i_{2}\right) \bmod t_{H}$.
We have $m_{1} \neq m_{2}$ and $p_{1} \neq p_{2}$, therefore $S_{c_{m_{1}}}(a) \cap S_{c_{m_{2}}}(a)=\emptyset$ and $S_{d_{p_{1}}}(x) \cap S_{d_{p_{2}}}(x)=\emptyset$. Moreover, since for any i and k, the colourings c_{i} and d_{k} do not use the same sets of colours, we conclude that $S_{c_{i_{1}}^{\prime}}((a, x)) \cap S_{c_{i_{2}}^{\prime}}((a, x))=\emptyset$.

Fig. 2: Two compatible optimal strong colourings of $P_{5} \square P_{7}$ in 8 colours.
An example of two compatible strong colourings of $P_{5} \square P_{7}$ as defined in the above proof is given in Figure 2 (the two compatible strong colourings of P_{5} and of P_{7} appear on each graph but the vertex colourings are not given).
Corollary 1 Let G be a $\left(k_{G}, t_{G}\right)$-colourable graph and let H be a $\left(k_{H}, t_{H}\right)$-colourable graph. Then $G \square H$ is $\left(k_{G}\left\lceil\frac{\chi(H)}{t_{G}}\right\rceil+k_{H}\left\lceil\frac{\chi(G)}{t_{H}}\right\rceil, \min (\chi(G), \chi(H))\right)$-colourable.

Proof: By definition, G is $\left(k_{G}\left\lceil\frac{\chi(H)}{t_{G}}\right\rceil, \chi(H)\right)$-colourable and H is $\left(k_{H}\left\lceil\frac{\chi(G)}{t_{H}}\right\rceil, \chi(G)\right)$-colourable. Theorem6 then gives the result.

Corollary 2 Let G be a $(k, 2)$-colourable graph. Then $G \square K_{2}$ is $(k+\chi(G), 2)$-colourable.

3.3 Products of paths, cycles and cliques

The d-dimensional grid $M_{l_{1}, l_{2}, \ldots, l_{d}}$ is the Cartesian product of d paths: $M_{l_{1}, l_{2}, \ldots, l_{d}}=P_{l_{1}} \square P_{l_{2}} \square \ldots \square P_{l_{d}}$. When all lengths are equal: $l_{1}=l_{2}=\ldots=l_{d}=n$, we denote the grid by M_{n}^{d}.
The d-dimensional toroidal grid $T M_{l_{1}, \ldots, l_{d}}$ is the Cartesian product of d cycles: $T M_{l_{1}, \ldots, l_{d}}=C_{l_{1}} \square \ldots \square C_{l_{d}}$. When all cycle lengths are equal: $l_{1}=l_{2}=\ldots=l_{d}=n$, we denote the toroidal grid by $T M_{n}^{d}$.
The d-dimensional generalized hypercube (also known as Hamming graph) K_{n}^{d} is the Cartesian product of K_{n} by itself d times: $K_{n}^{d}=K_{n} \square K_{n} \square \ldots \square K_{n}$. The hypercube H_{d} is the graph K_{2}^{d}.
By Proposition 1 and Proposition 2, P_{n} and $C_{4 n}$ are (4,2)-colourable and $C_{2 n}$ is $(5,2)$-colourable for $n \neq 3$. By Proposition $3, K_{2 p}$ is $(2 p(2 p-1), 2 p)$-colourable and $K_{2 p+1}$ is $(3 p(2 p+1), 2 p+1)$-colourable. Therefore, Theorem 6 and Corollary 2 give the following results:

Corollary 3 For any $d \geq 2$,

- the d-dimensional hypercube H_{d} is (2d, 2)-colourable,
- the d-dimensional grid $M_{l_{1}, l_{2}, \ldots, l_{d}}$ and toroidal grid $T M_{4 n}^{d}$ are $(4 d, 2)$-colourable,
- the d-dimensional toroidal grid $T M_{2 l_{1}, 2 l_{2}, \ldots, 2 l_{d}}$ is ($5 d, 2$)-colourable for $l_{i} \neq 3$,
- the d-dimensional generalized hypercube $K_{2 p}^{d}$ is $(2 d p(2 p-1), 2 p)$-colourable,
- the d-dimensional generalized hypercube $K_{2 p+1}^{d}$ is $(3 d p(2 p+1), 2 p+1)$-colourable.

With Theorem 1, we obtain exact or approximate values for the strong chromatic index of some Cartesian products:

Corollary 4 For any $d \geq 2$,

- $\chi_{s}^{\prime}\left(H_{d}\right)=2 d$,
- $\chi_{s}^{\prime}\left(M_{l_{1}, l_{2}, \ldots, l_{d}}\right)=\chi_{s}^{\prime}\left(T M_{4 n}^{d}\right)=4 d$, for $l_{i} \geq 3$,
- $4 d \leq \chi_{s}^{\prime}\left(T M_{2 l_{1}, 2 l_{2}, \ldots, 2 l_{d}}\right) \leq 5 d$, for $l_{i} \neq 3$,
- $2 p(d-1)(2 p-1) \leq \chi_{s}^{\prime}\left(K_{2 p}^{d}\right) \leq 2 d p(2 p-1)$,
- $2 p(d-1)(2 p+1) \leq \chi_{s}^{\prime}\left(K_{2 p+1}^{d}\right) \leq 3 d p(2 p+1)$.

Note that the exact value of the strong chromatic index of hypercubes was known before [2].

References

[1] L. D. Andersen. The strong chromatic index of a cubic graph is at most 10. Discrete Math., 108(1-3):231-252, 1992. Topological, algebraical and combinatorial structures. Frolík's memorial volume.
[2] R. J. Faudree, R. H. Schelp, A. Gyárfás, and Zs. Tuza. The strong chromatic index of graphs. Ars Combin., 29(B):205-211, 1990. Twelfth British Combinatorial Conference (Norwich, 1989).
[3] P. Gvozdjak, P. Horák, M. Meszka, and Z. Skupień. Strong chromatic index for multigraphs. Util. Math., 57:21-32, 2000.
[4] J. Janssen and L. Narayanan. Approximation algorithms for channel assignment with constraints. Theoret. Comput. Sci., 262(1-2):649-667, 2001.
[5] M. Mahdian. The strong chromatic index of C_{4}-free graphs. In Proceedings of the Ninth International Conference "Random Structures and Algorithms" (Poznan, 1999), volume 17(3-4), pages 357-375, 2000.
[6] M. Mahdian. On the computational complexity of strong edge coloring. Discrete Appl. Math., 118(3):239-248, 2002.
[7] M. Molloy and B. Reed. A bound on the strong chromatic index of a graph. J. Combin. Theory Ser. B, 69(2):103-109, 1997.
[8] J. J. Quinn and A. T. Benjamin. Strong chromatic index of subset graphs. J. Graph Theory, 24(3):267-273, 1997.
[9] J. J. Quinn and E. L. Sundberg. Strong chromatic index in subset graphs. Ars Combin., 49:155-159, 1998.
[10] H. Tamura, K. Watanabe, M. Sengoku, and S. Shinoda. Graph theoretical considerations of a channel assignment problem on multihop wireless networks. In Proceedings of ITC-CSCC conference (Phuket, Thailand), 2002.

