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Given a tree and a set P of non-trivial simple paths on it, VPT(P) is the VPT graph (i.e. the vertex intersection graph) of the
paths P , and EPT(P) is the EPT graph (i.e. the edge intersection graph) of P . These graphs have been extensively studied
in the literature. Given two (edge) intersecting paths in a graph, their split vertices is the set of vertices having degree at least
3 in their union. A pair of (edge) intersecting paths is termed non-splitting if they do not have split vertices (namely if their
union is a path). We define the graph ENPT(P) of edge intersecting non-splitting paths of a tree, termed the ENPT graph,
as the graph having a vertex for each path in P , and an edge between every pair of vertices representing two paths that are
both edge-intersecting and non-splitting. A graph G is an ENPT graph if there is a tree T and a set of paths P of T such that
G = ENPT(P), and we say that 〈T,P〉 is a representation of G.

Our work follows Golumbic and Jamison’s research, in which they defined the EPT graph class, and characterized the repre-
sentations of chordless cycles (holes). Our main goal is the characterization of the representations of chordless ENPT cycles.
To achieve this goal, we assume that the EPT graph induced by the vertices of an ENPT hole is given. We use the results
of that research as building blocks in order to discover this characterisation, which turn out to have a more complex structure
than in the case of EPT holes. In the first part of this work we have shown that cycles, trees and complete graphs are ENPT
graphs. We also introduced three assumptions (P1), (P2), (P3) defined on EPT, ENPT pairs of graphs, and characterized
the representations of ENPT holes that satisfy (P1), (P2), (P3). In this work we relax two of these three assumptions and
characterize the representations of ENPT holes satisfying (P3). These two results are achieved by providing polynomial-time
algorithms. Last we show that the problem of finding such a representation is NP-Hard in general, i.e. without assumption
(P3). This result extends in some sense the NP-Hardness of EPT graph recognition shown in Golumbic and Jamison’s work.
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1 Introduction
1.1 Background
Given a tree T and a set P of non-trivial simple paths in T , the Vertex Intersection Graph of Paths in a Tree
(VPT) and the Edge Intersection Graph of Paths in a Tree (EPT) of P are denoted by VPT(P) and EPT(P),
respectively. Both graphs have P as vertex set. VPT(P) (resp. EPT(P)) contains an edge between two vertices if
the corresponding two paths intersect in at least one vertex (resp. edge). A graph G is VPT (resp. EPT) if there
exist a tree T and a set P of non-trivial simple path in T such that G is isomorphic to VPT(P) (resp. EPT(P)). In
this case we say that 〈T,P〉 is a VPT (resp. an EPT) representation of G.

In this work we focus on edge intersections of paths, therefore whenever we are concerned with intersection
of paths we omit the word ”edge” and simply write that two paths intersect. The graph of edge intersecting and
non-splitting paths of a tree (ENPT) of a given representation 〈T,P〉 as described above, denoted by ENPT(P),
has a vertex v for each path Pv of P and two vertices u, v of ENPT(P) are adjacent if the paths Pu and Pv intersect
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and do not split (that is, their union is a path). A graph G is an ENPT graph if there is a tree T and a set of paths
P of T such that G is isomorphic to ENPT(P). We note that EPT(P) = ENPT(P) is an interval graph whenever
T is a path. Therefore, the class ENPT includes all interval graphs.

EPT and VPT graphs have applications in communication networks. Consider a communication network of a
tree topology T . The message routes to be delivered in this communication network are paths on T . Two paths
conflict if they both require to use the same link (node). This conflict model is equivalent to an EPT (a VPT) graph.
Suppose we try to find a schedule for the messages such that no two messages sharing a link (node) are scheduled
in the same time interval. Then a vertex coloring of the EPT (VPT) graph corresponds a feasible schedule on this
network.

EPT graphs also appear in all-optical telecommunication networks. The so-called Wavelength Division Multi-
plexing (WDM) technology can multiplex different signals onto a single optical fiber by using different wavelength
ranges of the laser beam (Chlamtac et al. (1992); Ramaswami (1993)). WDM is a promising technology enabling
us to deal with the massive growth of traffic in telecommunication networks, due to applications such as video-
conferencing, cloud computing and distributed computing (Du and Vetter (1993)). A stream of signals traveling
from its source to its destination in optical form is termed a lightpath. A lightpath is realized by signals traveling
through a series of fibers, on a certain wavelength. Specifically, Wavelength Assignment problems (WLA) are a
family of path coloring problems that aim to assign wavelengths (i.e. colors) to lightpaths, so that no two lightpaths
with a common edge receive the same wavelength and a certain objective function (depending on the problem) is
minimized. Traffic Grooming is the term used for combination of several low-capacity requests into one lightpath
using Time Division Multiplexing (TDM) technology (Gerstel et al. (1998)). In this context a set of paths can be
combined into one lightpath, thus receiving the same color, as long as they satisfy the following two conditions:

• The load condition: at most g lightpaths using the same fiber may receive the same color, where g is an
integer termed the grooming factor.

• The union of the paths receiving the same color should constitute a path or a set of disjoint paths.

It follows that a feasible solution of the traffic grooming problem is a vertex coloring of the graph EPT(P) \
ENPT(P) where each color class induces a sub-graph of EPT(P) with clique number at most g. Therefore, it
makes sense to analyze the structure of these graph pairs, i.e. the two graphs EPT(P) and ENPT(P) defined on the
same set of vertices.

1.2 Related Work
EPT and VPT graphs have been extensively studied in the literature. Although VPT graphs can be characterized
by a fixed number of forbidden subgraphs (Lévêque et al. (2009)), Golumbic and Jamison (1985b) showed that
EPT graph recognition is NP-Complete. Edge intersection and vertex intersection give rise to identical graph
classes in the case of paths in a line and in the case of subtrees of a tree. However, VPT graphs and EPT
graphs are incomparable in general; neither VPT nor EPT contains the other. Main optimization and decision
problems such as recognition, maximum clique, minimum vertex coloring and the maximum stable set are shown
to be polynomial-time solvable for VPT graphs by Gavril (1978), Gavril (2000), Golumbic (2004) and Spinrad
and Sritharan (1995), respectively. The recognition and minimum vertex coloring problems are shown to remain
NP-Complete for EPT graphs by Golumbic and Jamison (1985b,a). In contrast, one can solve in polynomial time
the maximum clique and the maximum stable set problems in EPT graphs (Golumbic and Jamison (1985a) and
Tarjan (1985), respectively).

After these works on EPT and VPT graphs in the early 80’s, this topic did not attract much further study until
very recently. Current research on intersection graphs is concentrated on the comparison of various intersection
graphs of paths in a tree and their relation to chordal and weakly chordal graphs (Golumbic et al. (2008a,c)). Also,
a tolerance model is studied in Golumbic et al. (2008b) via k-edge intersection graphs where two vertices are
adjacent if their corresponding paths intersect on at least k edges . Besides, several recent papers consider the edge
intersection graphs of paths on a grid (e.g. Biedl and Stern (2010)).

Another related line of research is subsets of EPG (i.e., edge-intersection of paths in a grid) graphs. Since
every graph is an EPG graph, research in this field focuses on subsets of this class of graphs that are obtained by
imposing some restrictions on the paths in their representation. The most researched such restriction is an upper
bound on the number of bends on every single path (e.g. Golumbic et al. (2009), Heldt et al. (2014), Epstein et al.
(2013)). The recent work of Cameron et al. (2016) considers the subsets of one bend path obtained by restricting
their orientation in the plane. Pergel and Rzażewski (2016) focus on graphs admitting EPG representations by
paths with at most 2 bends and show that their recognition along with some subclasses of them is NP-Complete.
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1.3 Our Contribution
In the first part of this work (Boyacı et al. (2016)), we define the family of ENPT graphs, and investigate its
basic properties. We show that trees, cliques and cycles are ENPT graphs. In the same work we started the
study of the characterization of ENPT representations of holes. To achieve this goal we assume that the input is
augmented by the underlying EPT graph. More particularly, we study pairs (G,C) of graphs where G = EPT(P)
and C = ENPT(P) for some representation 〈T,P〉. For any given such pair of graphs (G,C) that satisfy three
assumptions (P1), (P2), (P3) and C is a Hamiltonian cycle of G, we characterize the minimal representation of
(G,C) as a planar tour of the weak dual of G. In this work we extend these results. Namely a) we provide an
algorithm that returns the minimal representation of a given pair of graphs (G,C) that satisfy (P3) and C is a
Hamiltonian cycle of G, b) using this algorithm we characterize the representations of such pairs, and c) we show
that for a given pair (G,C) in general, i.e. when (G,C) does not necessarily satisfy (P3), it is NP-Hard to decide
whether (G,C) has a representation.

Our approach can be summarized as follows. Given a pair (G,C), we first remove (K4, P4) pairs and contract all
contactable ENPT edges. A contraction operation corresponds to a union of two paths in the representation. Then
we study the reverse operations of contractions (union in the representation) and characterization of representations
of (K4, P4)s. In Section 2 we give definitions and preliminaries. In Section 3 we present basic results related to
contraction, describe an algorithm returning minimal representations of pairs satisfying assumptions (P2) and
(P3). Using this algorithm we characterize these representations. In Section 4 we characterize the representations
of (K4, P4) pairs, we define an aggressive contraction operation and we present an algorithm that returns the
minimal representation of a given pair (G,C) satisfying (P3), through which we characterize the representations.
In Section 5 we show that when (P3) does not hold, there does not exist a polynomial-time algorithm to find a
representation of a given pair (G,C), unless P = NP.

2 Preliminaries
In this section we provide definitions used in the paper, present known results related to our work, and develop
basic results. The section is organized as follows: Section 2.1 is devoted to basic definitions. In Section 2.2 we
present known results on EPT graphs that are closely related to our work. Section 2.3 summarizes known results
related to ENPT graphs and pairs.

2.1 Definitions

Notation:
Given a graph G and a vertex v of G, we denote by δG(v) the set of edges of G incident to v, by NG(v) the set
consisting of v and its neighbors in G, and by dG(v) = |δG(v)| the degree of v in G. A vertex is called a leaf
(resp. intermediate vertex, junction) if dG(v) = 1 (resp. = 2, ≥ 3). Whenever there is no ambiguity we omit the
subscript G and write δ(v), d(v), and N(v).

Given a graph G, V̄ ⊆ V (G) and Ē ⊆ E(G) we denote by G[V̄ ] and G[Ē] the subgraphs of G induced by V̄
and by Ē, respectively.

The union of two graphs G,G′ is the graph G ∪G′ def= (V (G) ∪ V (G′), E(G) ∪ E(G′)). The join G + G′ of

two disjoint graphs G,G′ is the graph G∪G′ together with all the edges joining V (G) and V (G′), i.e. G+G′
def
=

(V (G) ∪ V (G′), E(G) ∪ E(G′) ∪ (V (G)× V (G′))).
Given a (simple) graph G and e ∈ E(G), we denote by G/e the (simple) graph obtained by contracting the edge

e of G, i.e. by coinciding the two endpoints of e = {p, q} to a single vertex p.q, and then removing self loops and
parallel edges. Let Ē = {e1, e2, . . . ek} ⊆ E(G). We denote by G/e1,...,ek the graph obtained from G/e1,...,ek−1

by contracting the (image of the) edge ek. The effect of such a sequence of contractions is equivalent to contracting
every connected component of G[{e1, . . . , ek}] to a vertex. Therefore, the order of contractions is not important,
i.e. for any permutation π of {1, . . . , k} we have G/e1,...,ek−1

= G/eπ(1),...,eπ(k−1)
. Based on this fact, we denote

by G/Ē the graph obtained by contracting the edges of Ē (in any order).
For two vertices u, v of a tree T we denote by pT (u, v) the unique path between u and v in T . A vertex w of a

path P that is not an endpoint of P is termed an internal vertex of P . We also say that P crosses w. A cherry of a
tree T is a connected subgraph of T consisting of two leaves of T adjacent to an internal vertex of T .
Intersections and union of paths:
Given two paths P, P ′ in a graph, we write P ‖ P ′ to denote that P and P ′ are non-intersecting, i.e. edge-disjoint.
The split vertices of P and P ′ is the set of junctions in their union P ∪P ′ and is denoted by split(P, P ′). Whenever
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P and P ′ intersect and split(P, P ′) = ∅ we say that P and P ′ are non-splitting and denote this by P ∼ P ′. In this
case P ∪ P ′ is a path or a cycle. When P and P ′ intersect and split(P, P ′) 6= ∅ we say that they are splitting and
denote this by P � P ′. Clearly, for any two paths P and P ′ exactly one of the following holds: P ‖ P ′, P ∼ P ′,
P � P ′.

When the graph G is a tree, the union P ∪ P ′ of two intersecting paths P, P ′ on G is a tree with at most two
junctions, i.e. |split(P, P ′)| ≤ 2 and P ∪ P ′ is a path whenever P ∼ P ′.
The VPT, EPT and ENPT graphs:
LetP be a set of paths in a tree T . The graphs VPT(P), EPT(P) and ENPT(P) are graphs such that V (ENPT(P)) =
V (EPT(P)) = V (VPT(P)) = {p|Pp ∈ P}. Given two distinct paths Pp, Pq ∈ P , {p, q} is an edge of ENPT(P)
if Pp ∼ Pq , and {p, q} is an edge of EPT(P) (resp. VPT(P)) if Pp and Pq have a common edge (resp. vertex) in
T . See Figure 1 for an example. From these definitions it follows that

Observation 2.1 E(ENPT(P)) ⊆ E(EPT(P)) ⊆ E(VPT(P)).
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Fig. 1: A host tree T , a collection of paths P = {P1, P2, P3, P4, P5} defined on T and the corresponding graphs
VPT(P), EPT(P) and ENPT(P). The last sub-figure shows the graphs EPT(P) and ENPT(P) where their common edge is
depicted as a solid line.

Two graphs G and G′ such that V (G) = V (G′) and E(G′) ⊆ E(G) are termed a pair (of graphs) denoted as
(G,G′). If EPT(P) = G (resp. ENPT(P) = G) we say that 〈T,P〉 is an EPT (resp. ENPT) representation for
G. If EPT(P) = G and ENPT(P) = G′ we say that 〈T,P〉 is a representation for the pair (G,G′). Given a pair
(G,G′) the sub-pair induced by V̄ ⊆ V (G) is the pair (G[V̄ ], G′[V̄ ]). Clearly, any representation of a pair induces
representations for its induced sub-pairs, i.e. the pairs have the hereditary property.

A cherry of a representation 〈T,P〉 is a cherry of T with leaves v, v′ such that v (resp. v′) is an endpoint of
exactly one path P (resp. P ′) of P , and P 6= P ′.

Throughout this work, in all figures, the edges of the tree T of a representation 〈T,P〉 are drawn as solid edges
whereas the paths on the tree are shown by dashed, dotted, etc. edges. Similarly, edges of ENPT(P) are drawn
with solid or blue lines whereas edges in E(EPT(P)) \ E(ENPT(P)) are dashed or red. We sometimes refer to
them as blue and red edges respectively. For an edge e = {p, q} we use split(e) as a shorthand for split(Pp, Pq).
We note that e is a red edge if and only if split(e) 6= ∅.
Cycles, Chords, Holes, Outerplanar graphs, Weak dual trees:
Given a graph G and a cycle C of it, a chord of C in G is an edge of E(G) \ E(C) connecting two vertices of
V (C). The length of a chord connecting the vertices i,j is the length of a shortest path between i and j on C. C is
a hole (chordless cycle) of G if G does not contain any chord of C. This is equivalent to saying that the subgraph
G[V (C)] of G induced by the vertices of C is a cycle. For this reason a chordless cycle is also called an induced
cycle.

An outerplanar graph is a planar graph that can be embedded in the plane such that all its vertices are on the
unbounded face of the embedding. An outerplanar graph is Hamiltonian if and only if it is biconnected; in this case
the unbounded face forms the unique Hamiltonian cycle. The weak dual graph of a planar graph G is the graph
obtained from its dual graph, by removing the vertex corresponding to the unbounded face of G. The weak dual
graph of an outerplanar graph is a forest, and in particular the weak dual graph of a Hamiltonian outerplanar graph
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Fig. 2: The EPT representation of cycle graph on n vertices: a pie.

is a tree (Chartrand and Harary (1967)). When working with outerplanar graphs we use the term face to mean a
bounded face.

2.2 EPT Graphs
We now present definitions and results from the work of Golumbic and Jamison (1985a) that we use throughout
this work.

A pie of a representation 〈T,P〉 of an EPT graph is an induced star K1,k of T with k leaves v0, v1, . . . , vk−1 ∈
V (T ), and k paths P0, P1, . . . Pk−1 ∈ P , such that for every 0 ≤ i ≤ k − 1 both vi and v(i+1) mod k are vertices
of Pi. We term the central vertex of the star as the center of the pie (See Figure 2). It is easy to see that the EPT
graph of a pie with k leaves is the hole Ck on k vertices. Moreover, this is the only possible EPT representation of
Ck when k ≥ 4.

Theorem 2.1 Golumbic and Jamison (1985a) If an EPT graph contains a hole with k ≥ 4 vertices, then every
representation of it contains a pie with k paths.

Let Pe
def
= {p ∈ P| e ∈ p} be the set of paths in P containing the edge e. A star K1,3 is termed a claw.

For a claw K of a tree T , P[K]
def
= {p ∈ P| p uses two edges of K}. It is easy to see that both EPT(Pe) and

EPT(P[K]) are cliques. These cliques are termed edge-clique and claw-clique, respectively. Moreover, these are
the only possible representations of cliques.

Theorem 2.2 Golumbic and Jamison (1985a) Any maximal clique of an EPT graph with representation 〈T,P〉
corresponds to a subcollection Pe of paths for some edge e of T , or to a subcollection P[K] of paths for some
claw K of T .

Note that a claw-clique is a pie with 3 leaves.

2.3 ENPT Graphs and EPT,ENPT Graph Pairs
In this section we present definitions and results from Boyacı et al. (2016) that we use throughout this work,
introduce new terms, and prove basic results.
Equivalent and minimal representations:
We say that the representations 〈T1,P1〉 and 〈T2,P2〉 are equivalent, and denote by 〈T1,P1〉 u 〈T2,P2〉, if
their corresponding EPT and ENPT graphs are isomorphic under the same isomorphism (in other words, if they
constitute representations of the same pair of graphs (G,G′)).

We write 〈T1,P1〉 & 〈T2,P2〉 or equivalently 〈T2,P2〉 . 〈T1,P1〉 if 〈T2,P2〉 can be obtained from 〈T1,P1〉 by
zero or more of the following two operations that we term as minifying operations.

• Contraction of an edge e of T1 (and of all the paths in P1 using e). We denote this operation as contract(e).

• Removal of an initial edge (tail) e of a path P of P1. We denote this operation as tr(P, e).

We say that 〈T,P〉 is a minimal representation, if it is minimal in the partial order . defined over all the
representations representing the same pair as 〈T,P〉. Throughout the work we aim at characterizing minimal
representations. Whenever a sequence of minifying operations contains two operations tr(P, e) and contract(e)
in this order, the first operation can be deleted from the sequence, to obtain a shorter and equivalent sequence.
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A sequence that can not be shortened in this way and contains the biggest number of contract(e) operations is
termed a minimal sequence. Whenever 〈T1,P1〉 & 〈T2,P2〉 we consider only minimal sequences of minifying
operations that transform 〈T1,P1〉 to 〈T2,P2〉. We observe two properties of such sequences.

Lemma 2.1 Let 〈T1,P1〉 & 〈T2,P2〉, and s be a minimal sequence of minifying operations transforming 〈T1,P1〉
to 〈T2,P2〉. Then every permutation of s also transforms 〈T1,P1〉 to 〈T2,P2〉.

Proof: If contract(e) is an operation of s then there is no other operation in s involving e. This is because such
an operation is impossible after contract(e), and if it appears before contract(e) it contradicts the minimality of
s. To conclude the result, we observe that any two successive operations in s are interchangeable. Indeed, for two
distinct edges e, e′ the operations contract(e), contract(e′) (resp. contract(e), tr(P, e′)) are interchangeable,
and for two not necessarily distinct edges e, e′ the operations tr(P, e), tr(P ′, e′) are interchangeable. 2

Lemma 2.2 If 〈T1,P1〉 & · · · & 〈Tn,Pn〉 and 〈T1,P1〉 u 〈Tn,Pn〉, then 〈T1,P1〉 u · · · u 〈Tn,Pn〉.

Proof: Let Gi = EPT(Pi) and G′i = ENPT(Pi). We observe that both minifying operations are monotonic in the
sense that they neither introduce neither new intersections, nor new splits. Namely, for 1 ≤ i < n, E(Gi+1) ⊆
E(Gi) and E(Gi+1) \ E(G′i+1) ⊆ E(Gi) \ E(G′i). As 〈T1,P1〉 u 〈Tn,Pn〉 we have (G1, G

′
1) = (Gn, G

′
n),

i.e. E(Gn) = E(G1) and E(Gn) \ E(G′n) = E(G1) \ E(G′1). Therefore, E(G1) = · · · = E(Gn) and
E(G1) \ E(G′1) = · · · = E(Gn) \ E(G′n), concluding (G1, G

′
1) = · · · = (Gn, G

′
n). 2

EPT holes:

Lemma 2.3 A hole of size at least 4 of an EPT graph does not contain blue (i.e. ENPT) edges.

Proof: Consider the pie representation of some hole of an EPT graph. For any two paths Pp, Pq of this pie, we
have either Pp � Pq or Pp ‖ Pq , therefore {p, q} is not an ENPT edge. 2

Combining Lemma 2.3 with Theorem 2.1, we obtain the following characterization of pairs (Ck, G
′). For a pair

(Ck, G′), exactly one of the following holds:

• k > 3. In this case Ck is represented by a pie. Therefore, G′ is an independent set. In other words, Ck

consists of red edges. We term such a cycle, a red hole.

• k = 3 and Ck consists of red edges. G′ is an independent set. We term such a cycle a red triangle.

• k = 3 and Ck contains exactly one ENPT (blue) edge. We term such a cycle a BRR triangle, and its
representation is an edge-clique.

• k = 3 andCk contains two ENPT (blue) edges. We term such a cycle aBBR triangle, and its representation
is an edge-clique.

• k = 3 and Ck consists of blue edges (G′ = C3). We term such a cycle a blue triangle, and its representation
is an edge-clique.

EPT contraction:
Let 〈T,P〉 be a representation and Pp, Pq ∈ P such that Pp ∼ Pq . We denote by 〈T,P〉/Pp,Pq the representa-

tion that is obtained from 〈T,P〉 by replacing the two paths Pp, Pq by the path Pp ∪ Pq , i.e. 〈T,P〉/Pp,Pq
def
=

〈T,P \ {Pp, Pq} ∪ {Pp ∪ Pq}〉. We term this operation a union. Lemma 2.4 follows from the below observation.

Observation 2.2 For every Pp, Pq, Pr ∈ P such that Pp ∼ Pq , split(Pp ∪Pq, Pr) = split(Pp, Pr)∪ split(Pq, Pr).

Lemma 2.4 Boyacı et al. (2016) Let 〈T,P〉 be a representation for the pair (G,G′), and let e = {p, q} ∈ E(G′).
Then G/e is an EPT graph. Moreover, G/e = EPT(〈T,P〉/Pp,Pq ).

Contraction of pairs:
The definition of the contraction operation extends to pairs: The contraction of an ENPT edge does not necessarily
correspond to the union operation in the ENPT representation. For example, let Pp,Pq and Pq′ be such that
Pp ∼ Pq , Pp ∼ Pq′ and Pq � Pq′ . Then G′/{p,q} is not isomorphic to ENPT(〈T,P〉/Pp,Pq ) as {q′, p.q} /∈
E(ENPT(〈T,P〉/Pp,Pq )). Let (G,G′) be a pair and e ∈ E(G′). If for every edge e′ ∈ E(G′) incident to e, the



Graphs of Edge-Intersecting Non-Splitting Paths in a Tree: Representations of Holes-Part II 7

edge e′′ = e4e′ (forming a triangle together with e and e′) is not an edge of G then (G,G′)/e
def
= (G/e, G

′
/e),

otherwise (G,G′)/e is undefined. Whenever (G,G′)/e is defined we say that (G,G′) is contractable on e, or
when there is no ambiguity about the pair under consideration we say that e is contractable. We say that a pair is
contractable if it is contractable on some ENPT edge. Clearly, (G,G′) is not contractable if and only if every edge
of G′ is contained in at least one BBR triangle.
Weak Dual Trees:
The definition of weak dual tree is extended from Hamiltonian outerplanar graphs to any Hamiltonian graph as
follows. Given a pair (G,C) where C is a Hamiltonian cycle of G, a weak dual tree of (G,C) is the weak dual
treeW(G,C) of an arbitrary Hamiltonian maximal outerplanar subgraph O(G,C) of G. O(G,C) can be built by
starting from C and adding to it arbitrarily chosen chords from G as long as such chords exist and the resulting
graph is planar.

By definition of a dual graph, vertices ofW(G,C) correspond to faces of O(G,C). By maximality, the faces
of O(G,C) correspond to holes of G. The degree of a vertex of W(G,C) is the number of red edges in the
corresponding face of O(G,C). To emphasize the difference, for an outerplanar graph G we will say the weak
dual tree of G, whereas for a (not necessarily outerplanar) graph G we will say a weak dual tree of G.

The following lemma describes the effect of contraction on weak dual trees.

Lemma 2.5 Boyacı et al. (2016) Let (G,C) be a pair satisfying (P2), (P3) and let W(G,C) be a weak dual
tree of (G,C). (i) There is a bijection between the contractable edges of (G,C) and the intermediate vertices
of W(G,C). (ii) The tree obtained from W(G,C) by smoothing out the intermediate vertex corresponding to a
contractable edge e is a possible weak dual tree of (G,C)/e.

Representations of ENPT holes:
Our goal in this work is to characterize the representations of ENPT holes. More precisely we characterize
representations of pairs (G,Cn) where Cn is a Hamiltonian cycle of G. For this purpose we define the following
problem.

HAMILTONIANPAIRREC
Input: A pair (G,Cn) where Cn is a Hamiltonian cycle of G
Output: A minimal representation 〈T,P〉 of (G,Cn) if such a representation exists,
“NO” otherwise.

For n = 3 the only possible pair is (C3, C3) whose unique minimal representation is by 3 identical paths
consisting of one edge each.

Let T be a tree with k leaves and π = (π0, . . . , πk−1) a cyclic permutation of the leaves. The tour (T, π)
is the following set of 2k paths: (T, π) contains k long paths, each of which connecting two consecutive leaves
πi, πi+1 mod k. (T, π) contains k short paths, each of which connecting a leaf πi and its unique neighbor in T .

A planar embedding of a tour is a planar embedding of the underlying tree such that any two paths of the tour
do not cross each other. A tour is planar if it has a planar embedding. Note that a tour (T, π) is planar if and only
if π corresponds to the order in which the leaves are encountered by some DFS traversal of T .

Consider the following three properties

• (P1): (G,Cn) is not contractable.

• (P2): (G,Cn) is (K4, P4)-free, i.e., it does not contain an induced sub-pair isomorphic to a (K4, P4).

• (P3): Every red triangle of (G,Cn) is a claw-clique, i.e. corresponds to a pie of 〈T,P〉.

Note that (P1) and (P2) are properties of pairs and (P3) is a property of representations. We say that (P3)
holds for a pair (G,C) whenever it has a representation 〈T,P〉 satisfying (P3). It is convenient to define the
following problem.

P3-HAMILTONIANPAIRREC
Input: A pair (G,Cn) where Cn is a Hamiltonian cycle of G and n ≥ 4.
Output: A minimal representation 〈T,P〉 of (G,Cn) that satisfies (P3) if such a
representation exists, “NO ” otherwise.

In this work we extend the following results of Boyacı et al. (2016).
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Theorem 2.3 Boyacı et al. (2016) Instances of P3-HAMILTONIANPAIRREC satisfying properties (P1), (P2) can
be solved in polynomial time. YES instances have a unique solution, and whenever n ≥ 5 this solution is a planar
tour.

Theorem 2.4 Boyacı et al. (2016) If n > 4 the following statements are equivalent:
(i) (G,Cn) satisfies assumptions (P1− 3).
(ii) (G,Cn) has a unique minimal representation satisfying (P3) which is a planar tour of a weak dual tree of G.
(iii) G is Hamiltonian outerplanar and every face adjacent to the unbounded face F is a triangle having two edges
in common with F , (i.e. a BBR triangle).

For n = 4 there are two possible pairs, namely (K4, P4) and (K4 − e, C4), each of which satisfies (P1), (P2)
and has a unique minimal representation. Therefore, in this work we assume n ≥ 5.

The opposite of a sequence of union operations that create one path is termed breaking apart. Namely, breaking
apart a path P is to replace it with paths P1, . . . , Pk such that ∪ki=1Pi = P , ∀1 ≤ i < k, Pi ∩ Pi+1 6= ∅, and
Pi ⊆ Pj if and only if i = j. A broken tour is a representation obtained from a tour by subdividing edges and
breaking apart long paths of the tour. Clearly, if the tour is planar the broken tour is also planar, i.e. has a planar
embedding.

3 Pairs (G,C) Satisfying (P2) and (P3)

In this section our goal is to get rid of the assumption that (P1) holds, so that to characterize representation of pairs
that satisfy only (P2) and (P3). Recall that property (P1) states that the pair is uncontractable. We therefore,
consider contractable pairs and examine the effects of the contraction on the representation. In this way we reduce
the problem to the base case of uncontractable pairs where all assumptions hold for which the representations are
already known. In Section 3.1 we investigate the basic properties of the contraction operation. In Section 3.2 we
investigate the case of small cycles (i.e., those of size at most 6) that require special handling due to the nature
of the base case (recall that Theorems 2.4 and 2.3 do not hold for a cycle of length 4). Finally, in Section 3.3 we
develop an algorithm for the general case, i.e. cycles bigger than 6.

3.1 Contraction of Pairs
In this section we investigate properties of the contraction operation in our goal to extend Theorem 2.4 to con-
tractable pairs. More specifically, we characterize representations of pairs (G,C) satisfying (P2), (P3). We show
that (i) the contraction operation preserves ENPT edges, (ii) the order of contractions is irrelevant and (iii) the
contraction operation preserves properties (P2) and (P3).

Lemma 3.1 Let 〈T,P〉 be a representation for the pair (G,G′), and let e = {p, q} ∈ E(G′). If (G,G′)/e is
defined then 〈T,P〉/Pp,Pq is a representation for the pair (G,G′)/e.

Proof: By Lemma 2.4 〈T,P〉/Pp,Pq is an EPT representation for G/e. It remains to show that it is an ENPT rep-
resentation for G′/e, i.e. that for any two paths Pp′ , Pq′ ∈ 〈T,P〉/Pp,Pq , the edge e′ = {p′, q′} is in E(G′/e) ⇐⇒
Pp′ ∼ Pq′ . Let Ps = Pp∪Pq and s be the vertex obtained by the contraction. We assume first that Ps /∈ {Pp′ , Pq′}.
Then e′ ∈ E(G′/e) ⇐⇒ e′ ∈ E(G′) ⇐⇒ Pp′ ∼ Pq′ as required. Now we assume without loss of gener-
ality that Pp′ = Ps and we recall that e = {p, q} ∈ E(G′) is the contracted edge. We have to show that
e′ = {s, q′} ∈ E(G′/e) ⇐⇒ Ps ∼ Pq′ . We observe that

{s, q′} ∈ E(G′/e) ⇐⇒ {p, q′} ∈ E(G′) ∨ {q, q′} ∈ E(G′)

⇐⇒ Pp ∼ Pq′ ∨ Pq ∼ Pq′ (1)

and

Ps ∼ Pq′ ⇐⇒ (Pp ∪ Pq) ∩ Pq′ 6= ∅ ∧ split(Pp ∪ Pq, Pq′) = ∅
⇐⇒ (Pp ∩ Pq′ 6= ∅ ∨ Pq ∩ Pq′ 6= ∅) ∧ split(Pp, Pq′) = ∅ ∧ split(Pq, Pq′) = ∅. (2)

Clearly, (2) implies (1). To conclude the proof, assume that (1) holds. Then Pp ∩ Pq′ 6= ∅ ∨ Pq ∩ Pq′ 6= ∅. Now
assume, by way of contradiction, that (2) does not hold. Then split(Pp, Pq′) 6= ∅ ∨ split(Pq, Pq′) 6= ∅ implying
Pp � Pq′ ∨ Pq � Pq′ . Combining with (1) this implies that exactly one of Pp ∼ Pq′ and Pq ∼ Pq′ holds.
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Therefore, without loss of generality Pp ∼ Pq′ , Pq � Pq′ . Then e′ = {p, q′} ∈ E(G′) and e4e′ ∈ E(G),
therefore (G,G′)/e is undefined, thus constituting a contradiction to the assumption of the lemma. 2

Let Ē = {e1, e2, . . . , ek} ⊆ E(G′). For every k > 1 we define (G,G′)/e1,...,ek
def
= (G,G′)/e1,...,ek−1/ek

provided that both contractions on the right hand side are defined, otherwise it is undefined. The following Lemma
follows from Lemma 3.1 and states that the order of contraction of the edges is irrelevant.

Lemma 3.2 Let (G,G′) be a pair, Ē = {e1, e2, . . . , ek} ⊆ E(G), and π a permutation of the integers {1, . . . , k}.
Then (G,G′)/e1,...,ek is defined if and only if (G,G′)/eπ(1),...,eπ(k)

is defined. Moreover, whenever they are defined,
we have (G,G′)/e1,...,ek = (G,G′)/eπ(1),...,eπ(k)

.

Proof: Assume that (G,G′)/e1,...,ek is defined. By k − 1 successive applications of Lemma 3.1 we conclude
that a representation of (G,G′)/e1,...,ek can be obtained from a representation of (G,G′) by applying a sequence
of k − 1 union operations. The result of k − 1 union operations is a set of paths. As the union operation is
commutative and associative, this set of paths is independent of the order of the union operations. On the other
hand as union preserves split vertices, and the result does not contain split vertices, there are no split vertices
at any given step of new sequence of union operations. We conclude that (G,G′)/eπ(1),...,eπ(k)

is defined. The
other direction holds by symmetry. Whenever both (G,G′)/e1,...,ek and (G,G′)/eπ(1),...,eπ(k)

are defined we have
(G,G′)/e1,...,ek=(G/e1,...,ek , G

′
/e1,...,ek)= (G/eπ(1),...,eπ(k), G

′
/eπ(1),...,eπ(k)) = (G,G′)/eπ(1),...,eπ(k)

. 2

Based on this result, we denote the contracted pair as (G,G′)/Ē and say that Ē is contractable.
We write 〈T1,P1〉 &U 〈T2,P2〉, or equivalently 〈T2,P2〉 .U 〈T1,P1〉 the fact that the representation 〈T2,P2〉

can be obtained from 〈T1,P1〉 by applying zero or more union operations. Similarly, we write (G1, G
′
1) &C

(G2, G
′
2) if the pair (G2, G

′
2) can be obtained from (G1, G

′
1) by applying zero or more (valid) edge contraction

operations. By Lemma 3.1, .U is homomorphic to .C . Following the above definitions, a non-contractable pair
of graphs is said to be contraction-minimal, because it is minimal in the partial order .C .

We proceed by showing that the contraction operation preserves assumptions (P2), (P3).

Lemma 3.3 Let {p, q, r} be a BBR triangle of (G,G′)/e where {p, r} is the red edge. Then q ∈ V (G), i.e. q is
not the vertex obtained by the contraction.

Proof: Assume, by contradiction that e = {q′, q′′} and q is the vertex obtained by the contraction of e. Assume
without loss of generality that {p, q′} and {q′′, r} are edges of G′. Then both {p, q′′} and {r, q′} are non-edges of
G, because otherwise e is not contractable. Then {p, q′, q′′, r} is a hole of size 4 with blues edges, a contradiction.
2

Lemma 3.4 (i) If (P2) holds for (G,G′) then (P2) holds for (G,G′)/e.
(ii) If (P3) holds for (G,G′) then (P3) holds for (G,G′)/e.

Proof: (i) Assume, by contradiction, that (G,G′) does not have an induced sub-pair isomorphic to (K4, P4) and
without loss of generality (G,G′)/e has a sub-pair isomorphic to (K4, P4) induced by the vertices U = {p, q, r, s}
where p and s are the endpoints of the subgraph isomorphic to P4. Let v be the vertex created by the contraction of
e. If v /∈ U then the sub-pair induced by U is also a sub-pair of (G,G′), contradicting our assumption. Therefore,
v ∈ U . By Lemma 3.3 we have that v /∈ {q, r}. Therefore, let without loss of generality v = p, e = {p′, p′′}
and p′′ is adjacent to q in G′. {p′, q} is a non-edge of G, because e is contractable. As {p, s} and {p, r} are edges
of G/e, {p′, s} or {p′′, s} is an edge of G, and {p′, r} or {p′′, r} is an edge of G. If {p′′, s} is an edge of G
then {p′′, r} is a non-edge of G since otherwise {p′′, q, r, s} induce a sub-pair isomorphic to (K4, P4) in (G,G′).
Therefore, {p′, r} is an edge of G. Then {p′, p′′, q, r} induces a hole of size 4 with blue edges, a contradiction.
Thus {p′, s} is an edge of G, since {p′, q} and {p′′, s} are non-edges of G, {p′, p′′, q, s} induce a hole of length 4
with blue edges, a contradiction.

(ii) Assume, by contradiction, that (G,G′) has a representation 〈T,P〉 satisfying (P3) and that no representation
of (G,G′)/e satisfies (P3). Let v be the vertex created by the contraction of e = {v′, v′′}. Then by Lemma 2.4
〈T,P〉/Pv′ ,Pv′′ is a representation of (G,G′)/e and it contains a red edge-clique {p, q, r}. If v /∈ {p, q, r} then
{p, q, r} is an edge-clique of 〈T,P〉, contradicting our assumption. Assume without loss of generality that v = p.
Let e0 be an edge of T defining the edge-clique {v, q, r}. Since e0 ∈ Pv′ ∪ Pv′′ , without loss of generality
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e0 ∈ Pv′ . Then {v′, q, r} induces an edge-clique on e0. This is clearly a red edge-clique since e is contractable, a
contradiction. 2

We now describe how minimal representations of (G,G′)/e can be obtained from minimal representations of
(G,G′).

Lemma 3.5 Let 〈T,P〉 be a minimal representation, 〈T ′,P ′〉 a representation such that 〈T ′,P ′〉 . 〈T,P〉/Pp,Pq
and 〈T ′,P ′〉 u 〈T,P〉/Pp,Pq . Let e be an edge of T involved in a minimal sequence of minifying operations s that
obtains 〈T ′,P ′〉 from 〈T,P〉/Pp,Pq . There is an operation of s and a path P such that the operation removes e
from P (i.e., s is either tr(P, e) or contract(e), and e ∈ P ) where at least one of the following holds:
(i) e is a tail of Pp ∩ Pq , P ∩ Pp ∩ Pq = {e} and P ∩ (Pp ∪ Pq) ) {e}.
(ii) e is incident to an internal vertex u of Pp ∪ Pq , e is a tail of P , P is not in a pie with center u.

Proof: Let G = EPT(P) and G′ = ENPT(P) and consider an operation op of s. Without loss of generality we can
assume that op is the first operation of s, by Lemma 2.1. Furthermore, by Lemma 2.2, the representation obtained
by applying op is also equivalent to 〈T,P〉/Pp,Pq . Therefore, without loss of generality op is the only operation of
s. Note that op is defined on 〈T,P〉/Pp,Pq except when op is tr(Pp ∪ Pq, e). In this case e is a tail of Pp or Pq (or
both). In the following discussion, whenever we apply op to 〈T,P〉, we mean that we apply tr(Pp, e) or tr(Pq, e)
one of which is well defined on 〈T,P〉.

By the minimality of 〈T,P〉, op cannot be applied to 〈T,P〉. More precisely, if op is applied, either an edge of
G becomes a non-edge, or a red edge of (G,G′) becomes a blue edge. We term such an edge of (G,G′) an affected
edge and the corresponding paths of 〈T,P〉 affected pair of paths. Let {r, s} be an affected edge of (G,G′). If
{Pr, Ps} ∩ {Pp, Pq} = ∅ then Pr, Ps is a pair of affected paths in 〈T,P〉/Pp,Pq , contradicting the fact that op can
be applied to 〈T,P〉/Pp,Pq . We conclude that {Pr, Ps} ∩ {Pp, Pq} 6= ∅. Assume without loss of generality that
Ps = Pp, i.e. Pr, Pp is an affected pair of paths. We consider two disjoint cases:

Case 1) {r, p} becomes a non-edge after applying op. Then Pr ∩ Pp = {e} for some edge e of T , and after the
removal of e the intersection becomes empty. On the other hand Pr ∩ (Pp ∪Pq) ) {e}, because otherwise Pr and
Pp ∪ Pq constitute an affected pair of paths in 〈T,P〉/Pp,Pq . Then e is a tail of Pp ∩ Pq (see Figure 3 a) and Pr is
the claimed path P (note that possibly r = q as opposed to the figure). In this case i) holds.

Case 2) {r, p} is a red edge, and it becomes a blue edge after applying op. Then Pr � Pp (therefore r 6= q) and
Pr, Pp do not split after applying op. Therefore, split(Pr, Pp) = {u} for an endpoint u of e, e is a tail of exactly
one of Pr, Pp, and u is an internal vertex of Pp thus of Pp ∪ Pq . Let {P, P ′} = {Pr, Pp} such that e is a tail of
P , and e /∈ P ′. If P is not in a pie with center u then ii) holds. Otherwise P has two neighbors {P ′, P ′′} in this
pie. e ∈ P ′′ because e /∈ P and e is an edge incident to u, the center of the pie. Recalling that e is a tail of P we
conclude that after the removal of e from P , its intersection with P ′′ becomes empty. Therefore, i) holds. 2
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b bb
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Pq

b b
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b
b

b

b

u v

Fig. 3: Possible minifying operations on 〈T,P〉/Pp,Pq .

Lemma 3.6 Every split vertex of a path P of a broken planar tour is a center of a pie containing P .

Proof: By construction, every split vertex of a path P of a tour is a center of a pie containing P . We will show that
the same holds for a broken planar tour. Let P ′1, P

′
2 be two paths of a broken planar tour such that v ∈ split(P ′1, P

′
2).

These paths are sub-paths of two paths P1, P2 of a tour and v ∈ split(P1, P2). Then v is a center of a pie containing
P1, P2 and also other paths. Each one of the other paths has at least one sub-path in the broken planar tour that
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crosses v. These paths, together with P ′1, P
′
2 constitute a pie with center v of the broken planar tour. We conclude

that every split vertex of P is a center of a pie. 2

We notice that by Lemma 3.6 it follows that the case (ii) of Lemma 3.5 is impossible.

3.2 Small Cycles: the pairs (G,C5) and (G,C6)

We now return to the study of the representations of pairs (G′, C ′) satisfying (P2), (P3). Without loss of generality
we let V (G′) = V (C ′) = {0, 1, . . . , n− 1}, n ≥ 5 and note that all arithmetic operations on vertex numbers are
done modulo n.

In this Section we analyze the special cases of n = 5 and n = 6. These cases are special because our technique
for the general case is based on contraction of cycles to smaller ones and assumes that the representation of a
non-contractable pair is a planar tour (Theorem 2.4). However this theorem does not hold when n = 4. The
following lemma analyzes the case n = 5. We note that in this case (P3) holds vacuously, since it can be easily
seen that such a pair does not contain a red triangle. In Lemma 3.8 we analyze the case n = 6 for which we show
that whenever (P2) and (P3) hold, (P1) holds too, implying that the only representations for this case are those
implied by Theorem 2.3.

Lemma 3.7 If (G′, C5) satisfies (P2) then (i) G′ is the graph depicted in Figure 4, and (ii) (G′, C5) has a unique
minimal representation also depicted in Figure 4.

Proof: (i) G′ contains at least two non-crossing red edges, because otherwise there is a hole of size 4 with blue
edges. Without loss of generality, let these edges be {1, 3} and {1, 4}. If one of {2, 4} or {0, 3} is a red edge, then
we have a (K4, P4), contradicting our assumption. If {0, 2} is a red edge, then we have a hole of size 4 containing
blue edges, contradicting Lemma 2.3. Therefore, {1, 3} and {1, 4} are the only red edges in this pair.

(ii) We contract {3, 4} of (G′, C5) and obtain the pair (G,C4) with one red edge {1, 3.4}. This pair has a unique
minimal representation 〈T ′,P ′〉 characterized in Boyacı et al. (2016). Any representation of (G′, C5) is obtained
by splitting the path P ′3.4 of 〈T ′,P ′〉 into two overlapping paths and making sure that both of them split from P1.
This leads to the minimal representation depicted in Figure 4. 2

P1

P0 P2

P4

P3

1

4 3

0 2

b

b

b b

b

b

b bu v

(a) (b)

Fig. 4: (a) The unique ENPT representation of C5 satisfying (P2) and (b) corresponding pair (G,C5).

Lemma 3.8 If (G′, C6) satisfies (P2) and (P3) then it is not contractable, i.e. it satisfies (P1) too.

Proof: Assume, by way of contradiction, that (G′, C6) satisfies (P2) (P3) and the edge e = {0, 1} is contractable.
Therefore, {0, 2} and {5, 1} are non-edges of G′. {2, 5} is also a non-edge, because otherwise {0, 1, 2, 5} is a hole
of size 4 with blue edges. Then {0, 1} must be in a BRR triangle. From the two possible options remaining,
assume without loss of generality that this triangle is {0, 1, 4}. At least one of {2, 4} and {1, 3} is an edge of G′

because otherwise {1, 2, 3, 4} is a hole of size 4 with blue edges. On the other hand, if both of them are edges then
{1, 2, 3, 4} is a (K4, P4), a contradiction. Therefore, exactly one of them is an edge of G′. We analyze these cases
separately.

• {2, 4} is an edge of G′, {1, 3} is not an edge of G′: In this case {0, 3} is not an edge, because otherwise
{0, 1, 2, 3} is a hole of size 4 with blue edges. Then {3, 5} is not an edge, because otherwise {0, 1, 2, 3, 5}
is a hole of size 5 with blue edges. Then {5, 0, 1, 2, 3} induces a path on 4 vertices in G′. Since none
of the paths P0, P1, P2, P3, P5 split from another, their union is a graph with maximum degree two, i.e.
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every representation of them is an interval representation where no three paths intersect at one edge. Now
P4 ∼ P5 and P4 ∼ P3. Therefore, P4 intersects all of P0, P1 and P2 and does not split from them. Then
{4, 0} , {4, 1} , {4, 2} are blue edges, a contradiction.

• {1, 3} is an edge ofG′, {2, 4} is not an edge ofG′: Assume by way of contradiction {0, 1} is contracted, the
contracted pair is the same as the pair in Figure 4 (b) where contracted edge {0, 1} corresponds to vertex 1
of (G,C5). We will show that 1 can not be a vertex obtained by a contraction. Let {1′, 1′′} be the contracted
edge. For the following discussion consult Figure 4 (a). One endpoint of each one of P1′ , P1′′ is the same
as the endpoints of P1 since P1 = P1′ ∪ P1′′ . P1′ (resp. P1′′ ) can not cross v since otherwise {1′, 2}
(resp. {0, 1′′}) is a blue chord. P1′ ∼ P1′′ , therefore there exist some edge e such that P1′ ∩ P1′′ 3 e and
e ∈ pT (u, v). But e ∈ pT (u, v) ⊆ P3 ∪ P4 then either {1′, 3} or {1′′, 4} (or both) is a blue chord.

2

3.3 The General Case
Algorithm 1 is a recursive description of FINDMINIMALREPRESENTATION-P2-P3. It follows the paradigm of
obtaining a non-contractable pair by successive contractions, and then reversing the corresponding union opera-
tions in the representation. The reversal of the union operation, i.e. the breaking apart of a path is done by a)
duplicating the path, then b) moving one endpoint of each path to a properly chosen internal vertex of the original
path, and possibly c)subdividing an edge. The key to the correctness of the algorithm is the following lemma that
among others enables us to consider only one minifying operation.

Lemma 3.9 Let 〈T,P〉 be a minimal representation of (G,C), 〈T ′,P ′〉 a broken planar tour representation such
that 〈T ′,P ′〉 . 〈T,P〉/Pp,Pq and 〈T ′,P ′〉 u 〈T,P〉/Pp,Pq . Every operation in a minimal sequence of operations
that obtains 〈T ′,P ′〉 from 〈T,P〉/Pp,Pq is a contract(e) operation, where e is a tail of Pp ∩ Pq .

Proof: Consider an operation in a minimal sequence of minifying operations as in the statement of the lemma.
Let e be the edge involved in the operation, and let Pr be a path whose existence is guaranteed by Lemma 3.5.
By Lemma 3.6, case (ii) of Lemma 3.5 is impossible. Then case (i) of the lemma holds, i.e. there is a path Pr

such that a) the minifying operation removes e from Pr, b) e is a tail of Pp ∩ Pq , c) Pr ∩ Pp ∩ Pq = {e}, and d)
Pr ∩ (Pp ∪ Pq) ) {e}.

The minifying operation is either contract(e) or tr(Pr, e). We will show that if tr(Pr, e) can be applied, i.e.
there is no affected pair after applying tr(Pr, e), then contract(e) can also be applied. For the following discussion
consult Figure 3 a) where split(Pr, Pp) = ∅, i.e. the dotted part of Pr adjacent to e in the figure, is empty.

Without loss of generality we assume that e is a tail of Pp. Since e is not a tail of Pp ∪ Pq , we have r 6= p.q. e
divides T into two subtrees T1, T2. As e is a tail of Pp, Pp can not intersect both subtrees. We assume without loss
of generality that T2 ∩ Pp = ∅. Let P̄ denote the set of paths of 〈T,P〉/Pp,Pq , i.e. P̄ = P \ {Pp, Pq} ∪ {Pp ∪ Pq}
and e′ be the edge adjacent to e in Pr ∩ (Pp ∪ Pq). Every path of P ∈ P̄ that contains e contains also e′,
because otherwise P ∩ Pr = {e} and (P, Pr) would constitute an affected pair of tr(Pr, e). For k ∈ {1, 2}, let
Pk =

{
P ∈ P̄| P ∩ Tk 6= ∅ ∧ e is a tail of P

}
. Note that by definition, P1 ∩ P2 = ∅. As e′ ∈ T2 ∩ Pr, we have

Pr ∈ P2. We note that for every path Ps ∈ P2, Pp ∼ Ps, i.e. {p, s} is an edge of C. As the degree of p is 2 in
C and both of q and r neighbors of p in C, we conclude that P2 = {Pr}. On the other hand, P1 = ∅ because for
every path Ps ∈ P1, {s, r} is an affected pair of tr(Pr, e) (as Ps ∩ Pr = {e}). Therefore, P1 ∪ P2 = {Pr}, i.e.
the only path with tail e is Pr.

Assume by way of contradiction that there exists an affected pair {s, t} of contract(e). As e′ ∈ Ps ∩ Pt, they
intersect after the contraction. Therefore, {s, t} is a red-edge that becomes blue after the contraction. This can
happen only if e is a tail of exactly one of Ps, Pt. Therefore, r ∈ {s, t} from the above discussion. But then {s, t}
constitute an affected pair of tr(Pr, e), contradicting to our initial assumption. We conclude that contract(e) has
no affected pairs. 2

Theorem 3.1 Instances of P3-HAMILTONIANPAIRREC satisfying property (P2) can be solved in polynomial
time. YES instances have a unique solution, and whenever n ≥ 6 this solution is a broken planar tour.

Proof: If n = 5 the result follows from Lemma 3.7. If (G′, C ′) is a ”NO” instance, then FINDMINIMALREPRESENTATION-P2-P3
returns “NO” in the validation phase. Therefore, we assume that n ≥ 6, and that (G′, C ′) is a ”YES” instance,
i.e. it has at least one representation satisfying (P3). We will show that for any pair (G′, C ′) satisfying (P2),
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Algorithm 1 FINDMINIMALREPRESENTATION-P2-P3(G′, C ′)

Require: C ′ = {0, 1, . . . , |V (G′)| − 1} is an Hamiltonian cycle of G′ and |V (G′)| > 5
Ensure: A minimal representation

〈
T̄ ′, P̄ ′

〉
of (G′, C ′) satisfying (P3) if any

1: if (G′, C ′) is contraction-minimal then
2: if G′ is outerplanar then
3: return BUILDPLANARTOUR(G′, C ′)
4: else
5: return “NO”
6:

Contract:
7: Pick an arbitrary contractable edge e = {i, i+ 1} of C ′

8: (G,C)← (G′, C ′)/e
9: Let j be the vertex of (G,C) created by the contraction of the edge e

10:
Recurse:

11:
〈
T̄ , P̄

〉
← FINDMINIMALREPRESENTATION-P2-P3(G,C).

12:
Uncontract:

13:
〈
T̄ ′, P̄ ′

〉
←
〈
T̄ , P̄

〉

14: Let u and v be the endpoints of Pj such that
15: u (resp. v) is contained in Pi−1 (resp. Pi+2)
16: Replace Pj ∈ P̄ ′ by two copies Pi and Pi+1 of itself
17: ADJUSTENDPOINT(

〈
T̄ ′, P̄ ′

〉
, G, i, u)

18: ADJUSTENDPOINT(
〈
T̄ ′, P̄ ′

〉
, G, i+ 1, v)

19:
Validate:

20: if EPT(P̄ ′) = G′ and
〈
T̄ ′, P̄ ′

〉
satisfies (P3) then

21: return
〈
T̄ ′, P̄ ′

〉

22: else
23: return “NO”
24:
25: function ADJUSTENDPOINT(

〈
T̄ , P̄

〉
, G, p, w) . w is the endpoint of Pp to be adjusted

26: ew denotes the tail of Pp incident to w
27: Xw denotes {Px : ew ∈ Px and {p, x} /∈ E(G)}
28: Yw denotes {Py : Pp ∩ Py = {ew} and {p, y} ∈ E(G)}
29: while Yw = ∅ and Xw 6= ∅ do
30: tr(Pp, ew)

31: if Xw 6= ∅ then . Also Yw 6= ∅ as the while loop terminated
32: Subdivide ew into two edges ew, e′w . Revert the minifying operation
33: for Px ∈ Xw do
34: tr(Pw, ew′)

35: tr(Pp, ew)
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Fig. 5: The effect of union and minifying operations, and the reversal of this effect by Procedure ADJUSTENDPOINT (invoked
with p = i).

and a minimal representation 〈T ′,P ′〉 of (G′, C ′) that satisfies (P3), the representation
〈
T̄ ′, P̄ ′

〉
returned by

FINDMINIMALREPRESENTATION-P2-P3 is a broken planar tour and
〈
T̄ ′, P̄ ′

〉 ∼= 〈T ′,P ′〉 and
〈
T̄ ′, P̄ ′

〉
. 〈T ′,P ′〉 .

We will prove by induction on the number k of contractable edges of (G′, C ′). If k = 0 then (G′, C ′) is
not contractable, therefore satisfies (P1). In this case the algorithm invokes BUILDPLANARTOUR and the claim
follows from Theorem 2.3.

Otherwise k > 0. We assume that the claim holds for k − 1 and prove that it holds for k. As (G′, C ′) contains
at least one contractable edge, one such edge {i, i+ 1} is chosen arbitrarily by the algorithm and contracted. The
resulting pair (G,C) = (G′, C ′)/{i,i+1} has the following properties:

• Satisfies (P2), (P3). (By Lemma 3.4)

• The number of contractable edges is k − 1.

• |V (G)| ≥ 6. This is because |V (G)| = |V (G′)| − 1 and |V (G′)| > 6. Indeed, if |V (G′)| = 6, we have
k = 0 by Lemma 3.8.

Therefore, (G,C) satisfies the assumptions of the inductive hypothesis. Let 〈T ′,P ′〉 be a minimal representation
of (G′, C ′) satisfying (P3). Then 〈T ′,P ′〉/Pi,Pi+1

is a representation of (G,C) = (G′, C ′)/{i,i+1}. By the
inductive hypothesis,

〈
T̄ , P̄

〉
is a broken planar tour that satisfies

〈
T̄ , P̄

〉 ∼= 〈T ′,P ′〉/Pi,Pi+1
and

〈
T̄ , P̄

〉
. 〈T ′,P ′〉/Pi,Pi+1

.

In other words
〈
T̄ , P̄

〉
is obtained from 〈T ′,P ′〉 by replacing the two paths Pi, Pi+1 with the path Pi ∪ Pi+1,

then applying a (possibly empty) sequence of minifying operations. By Lemma 3.9, these minifying operations are
contract(e) for a tail e of Pi∩Pi+1. In the Uncontract phase, FINDMINIMALREPRESENTATION-P2-P3 performs
a reversal of these transformations. See Figure 5 for the following discussion. One endpoint of each one of Pi and
Pi+1 is an endpoint of Pi ∪ Pi+1. Therefore, one needs to determine only one endpoint of each one of Pi and
Pi+1. First Pi ∩ Pi+1 is duplicated and the so obtained paths are called Pi, Pi+1.

For p ∈ {i, i+ 1}, let w be the endpoint of Pp to be adjusted. ew denotes the tail of Pp incident to w. We denote
by Xw the set of paths containing ew such that vertices of G′ corresponding to these paths are not adjacent to p.
We denote by Yw the set of paths intersecting Pp only on ew and whose corresponding vertices in G′ are adjacent
to p. If Yw is empty (that is, every path that intersects Pp also intersects Pp \ {ew}), ew can be safely removed
from Pp without losing intersections. If Xw is non-empty this removal is a necessary operation. The algorithm
performs these tail removals as long as they are necessary and safe. If at the end of this loop, Xw is empty then
we are done. Otherwise Xw and Yw are non-empty, then ew can not be safely removed from Pp. In this case
ADJUSTENDPOINT subdivides ew (thus reversing the minifying operation contract(e)) and removes one tail from
Pp and one tail from every path X ∈ Xw, so that Pp does not intersect X but still intersects every path Y ∈ Yw.
2
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4 Pairs (G,C) Satisfying (P3)

In the previous section we relaxed assumption (P1). In this section we relax assumption (P2), i.e. we allow
sub-pairs isomorphic to (K4, P4). In Section 4.1 we investigate the basic properties of the representations of such
sub-pairs, and characterize the representations of pairs (G,C) with at most 6 vertices. In Section 4.2 we show that
in bigger cycles such pairs can intersect only in a particular way, and we define the aggressive contraction operation
that transforms a pair (G′′, C ′′) with a (K4, P4) to a pair (G′, C ′) with one less vertex and at least one (K4, P4)
less. Using these results, in Section 4.3 we present an algorithm that finds the unique minimal representation of a
given pair (G,C) satisfying (P3) with more than 6 vertices.

We denote a set of 4 vertices inducing a sub-pair isomorphic to (K4, P4) as an ordered quadruple where the
first vertex is one of the endpoints of the the induced P4, the second vertex is its neighbor and so on. The
quadruple (p, q, r, s) is a (K4, P4) of (G,G′) whenever {p, q, r, s} induces a sub-pair (K4, P4) of (G,G′) and
{p, q} , {q, r} , {r, s} are the edges of G′. Clearly, (p, q, r, s) = (s, r, q, p).

4.1 Representations of (K4, P4) and Small Cycles
In this section we investigate representations of induced (K4, P4) pairs and characterize the unique minimal repre-
sentations of (G,Cn) pairs containing an induced (K4, P4). We start with Lemma 4.1 that characterizes represen-
tations of (K4, P4) pairs. Using this lemma we prove Theorem 4.1 that presents the unique minimal representation
of (G,C5) pairs containing a (K4, P4). Together with Lemma 3.7 this completes the characterization of all the
(G,C5) pairs because a (G,C5) satisfies (P3) vacuously. We continue by proving Lemma 4.3 more properties of
minimal representations of induced (K4, P4) sub-pairs of pairs (G,C) with at least 6 vertices. Using these results
we show that a (G,C6) satisfying (P3) does not contain sub-pairs isomorphic to (K4, P4).

Lemma 4.1 Let K = (i, i + 1, i + 2, i + 3) be a (K4, P4), 〈T,P〉 be a representation of K, and
⋂PK

def
=

Pi ∩ Pi+1 ∩ Pi+2 ∩ Pi+3. There is a path core(K) of T with endpoints u, v such that:
(i) split(Pi, Pi+2) = {u}, split(Pi+1, Pi+3) = {v}, Pi+1 (resp. Pi+2) does not cross u (resp. v).
(ii) ∅ 6= ⋂PK ⊆ (Pi+1 ∩ Pi+2) ⊆ core(K). In particular u 6= v.
(iii) At least one of Pi, Pi+3 crosses both endpoints of core(K) and ∅ 6= split(Pi, Pi+3) ⊆ {u, v}.
(iv) Pi+1 ∪ Pi+2 crosses both endpoints of core(K).
(v) The removal of the edges of Pi+1 ∪ Pi+2 from T disconnects Pi from Pi+3.

Proof: (i) Assume, by way of contradiction, that |split(Pi, Pi+2)| = {w,w′} where w and w′ are distinct vertices
of T . As Pi+1 ∼ Pi and Pi+1 ∼ Pi+2 we conclude that Pi+1 ⊆ pT (w,w′). Since Pi+3 � Pi+1, Pi+3 splits
from Pi+1 in at least one vertex w′′ that is an intermediate vertex of pT (w,w′). Then Pi+3 splits from Pi+2 at
w′′ contradicting the fact that {i+ 2, i+ 3} is an ENPT edge. Therefore, |split(Pi, Pi+2)| = 1 and by symmetry,
|split(Pi+1, Pi+3)| = 1. Let split(Pi, Pi+2) = {u} and split(Pi+1, Pi+3) = {v}. We define core(K) = pT (u, v).
For the rest of the claim, assume by contradiction that Pi+1 crosses u. Then either Pi+1 � Pi or Pi+1 � Pi+2,
contradicting the the fact that {i, i+ 1} and {i+ 1, i+ 2} are ENPT edges.

At this point we can uniquely define the following edges that will be used in the rest of the proof: ei (resp. ei+2)
is the edge of Pi \ Pi+2 (resp. Pi+2 \ Pi) incident to split(Pi, Pi+2) (= {u}). We define ei+1 and ei+3 similarly.
Note that ei 6= ei+2 and ei+1 6= ei+3.

(ii) A claw-clique of size 4 contains exactly one ENPT edge, however a path isomorphic to P4 contains three
edges. Therefore, the representation of K4 is an edge-clique. Let e be an edge defining this edge-clique, i.e.
e ∈ ⋂PK . The removal of e from T disconnects it into two subtrees. In order to prove that

⋂PK ⊆ core(K) it
suffices to show that u and v are in different subtrees. Assume, by way of contradiction that u, v are in the same
subtree Tr with root r where r is an endpoint of e. Let r′ be the least common ancestor of u, v in Tr (possibly u = v
in which case r′ = u = v). All the 4 paths contain e and cross r′ (so that each one crosses at least one of u, v),
i.e. they “enter” r′ from the same edge e′ (where possibly r′ = r and e′ = e). If r′ /∈ {u, v} then as Pi+1 crosses
v and Pi+2 crosses u, r′ ∈ split(Pi+1, Pi+2), contradicting Pi+1 ∼ Pi+2. Therefore, we can assume without loss
of generality that r′ = u. Then the edges ei and ei+2 are incident to r′. Then Pi+1 (resp. Pi+3) contains ei (resp.
ei+2) because Pi+1 ∼ Pi (resp. Pi+3 ∼ Pi+2). Therefore, r′ ∈ split(Pi+1, Pi+2), contradicting Pi+1 ∼ Pi+2.
Therefore, u and v are in different subtrees, i.e. e ∈ pT (u, v) = core(K). Since e is chosen as an arbitrary edge
defining the edge-clique this implies that

⋂PK ⊆ core(K). It remains to prove that Pi+1 ∩ Pi+2 ⊆ core(K).
For this purpose, it is sufficient to show that both of Pi+1 and Pi+2 have one endpoint in core(K). Indeed, assume
without loss of generality that Pi+1 does not have an endpoint in core(K). Then Pi+1 crosses u, a contradiction.

Consult Figure 6 for the rest of the proof.
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(iii) By the above discussion, u (resp. v) is an intermediate vertex of Pi and Pi+2 (resp. Pi+1 and Pi+3), and
they all intersect in at least one edge e ∈ core(K). In order to see the first part of the claim assume, by way
of contradiction, that both of Pi and Pi+3 have an endpoint in core(K), in this case

⋂PK is between these two
endpoints. Therefore, Pi ∼ Pi+3, a contradiction.

We now proceed to show the rest of the claim: Let w ∈ split(Pi, Pi+3). ei /∈ Pi+3 because otherwise Pi+3 �
Pi+2, and by symmetry ei+3 /∈ Pi. Therefore, w is on core(K). On the other hand w is not an intermediate vertex
of core(K). Indeed, consider the two sub-paths obtained by removing e from core(K). If w is an intermediate
vertex of core(K), then at least one of Pi+3 � Pi+2, Pi � Pi+1 holds, depending on the sub-path w belongs. We
conclude w ∈ {u, v}. Together with Pi � Pi+3, this implies the claim. Note that split(Pi, Pi+3) = {u, v} if and
only if both of Pi and Pi+3 cross both endpoints u, v of core(K).

(iv) As {i+ 1, i+ 2} is an ENPT edge, Q
def
= Pi+1 ∪Pi+2 is a path. Moreover, ei+1 ∈ Pi+1 and ei+2 ∈ Pi+2,

therefore {ei+1, ei+2} ⊆ Q, implying the claim.
(v) It suffices to show that core(K) separates Pi and Pi+3. Suppose that after the removal of core(K) the two

paths still intersect. This is possible only if ei+3 ∈ Pi or ei ∈ Pi+3. Assume without loss of generality that
ei+3 ∈ Pi. Then Pi � Pi+1, a contradiction. 2

b

b

Pi Pi+1

Pi+3Pi+2

b b
e

ei+2

ei ei+1

ei+3

b

b

split(Pi, Pi+3) = {u, v}

vu b b

b

b

Pi Pi+1

Pi+3Pi+2

b b
e

ei+2

ei ei+1

ei+3

b

b

split(Pi, Pi+3) ( {u, v}

vu b b

Fig. 6: Representations of (K4, P4) pairs where split(Pi, Pi + 3) = {u, v} and split(Pi, Pi + 3) ( {u, v}, respectively.

Pairs (G,C5) with induced (K4, P4) pairs turn out to be different than bigger cycles. One difference is that a
C5 contains a vertex incident to two distinct vertices of a P4 whereas this clearly does not hold for a bigger cycle.
Therefore, we analyse this case separately. We recall that a pair (G,C5) satisfies (P3) vacuously, and that in
Section 3.2 we found the unique minimal representation of a pair (G,C5) that satisfies (P2). We now investigate
the representation of a pair (G,C5) that does not satisfy (P2).

Theorem 4.1 If (G,C5) does not satisfy (P2) then (i) G is isomorphic to the graph depicted in Figure 7, and (ii)
(G,C5) has a unique minimal representation also depicted in Figure 7.

Proof: Assume without loss of generality K = (0, 1, 2, 3) is a (K4, P4) of (G,C5), and let core(K) = pT (u, v).
If split(P0, P3) = {u, v} then P4 ⊆ core(K), implying that P4 ∼ P1 or P4 ∼ P2, i.e. at least one of {1, 4} or
{2, 4} is an ENPT edge, a contradiction.

Assume without loss of generality split(P0, P3) = {u}, and that P3 crosses both u and v. Then P0 has one
endpoint u′ in core(K), and P0 ∩ P3 = pT (u, u′).

As P4 ∼ P0 and P4 ∼ P3, we have P4 ∼ pT (u, u′) and P4 does cross u. Therefore, P4 intersects core(K). By
Lemma 4.1 (iv) core(K) ⊆ P1 ∪ P2. We conclude that P4 ∩ (P1 ∪ P2) 6= ∅, i.e. P4 ∩ P1 6= ∅ or P4 ∩ P2 6= ∅. As
{4, 1} and {4, 2} are not ENPT edges, we have that P4 � P1 or P4 � P2. On the other hand P4 does not cross u
and by Lemma 4.1 (i), P2 does not cross v, thus split(P2, P4) = ∅. Therefore, P4 � P1 and P4 ‖ P2. Moreover,
split(P4, P1) = {v}, i.e. P4 crosses v. Therefore, one endpoint u′′ of P4 is in pT (u, u′), and must be between u′

and the endpoint of P1 in core(K).
It is easy to see that the path

⋂PK can be contracted to one edge e without affecting the relationships between
the paths. Similarly, any edge between u and e, and any edge between e and u′′ can be contracted. The path
pT (u′, u′′) can be contracted to one edge, and the path pT (u′, v) can be contracted to a single vertex v. This leads
to the representation depicted in Figure 7. 2

We now observe a property of the representations of (G,C5) in order to demonstrate the first family of non-
ENPT graphs.
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Fig. 7: The unique (G,C5) pair that does not satisfy (P2) and its unique minimal representation.

Lemma 4.2 G+ C5 is not an ENPT graph whenever G is not a complete graph.

Proof: A pair (G′, C5) satisfies (P3) vacuously. If (G′, C5) satisfies (P2) then by Lemma 3.7, its unique minimal
representation is the one depicted in Figure 4. Otherwise, by Theorem 4.1, its unique minimal representation is the
one depicted in Figure 7. Let i ∈ V (G). i is adjacent to every vertex of C5. We observe that in both cases above
a) Pi is a sub-path of pT (u, v), and b) there is a specific edge e of pT (u, v) that is also in Pi. Therefore, for any
two vertices i, j ∈ V (G) Pi and Pj are intersecting sub-paths of pT (u, v), thus Pi ∼ Pj . We conclude that G is a
complete graph. 2

We now extend Lemma 4.1. As opposed to Lemma 4.1 that investigates the structure of a (K4, P4) regardless of
any specific context, the following lemma provides us with more properties of minimal representations satisfying
(P3) of pairs (G,C).

Lemma 4.3 Let K = (i, i+ 1, i+ 2, i+ 3) be a (K4, P4) of a pair (G,C) satisfying (P3) on at least 6 vertices.
Let 〈T,P〉 be a minimal representation of (G,C) and let PK = {Pi : i ∈ K}.
(i)
⋂PK = {e} for some edge e which is used exclusively by the paths of PK , i.e. e ∈ Pj ⇒ j ∈ K.

(ii) e divides T into two subtrees T1, T2 such that T1 is a cherry of 〈T,PK〉 with center w1. We denote this subtree
as cherry(K).
(iii) split(Pi, Pi+3) = {w2} ⊆ V (T2).
(iv)NG(j) = K if and only if split(Pj , Pi)∪ split(Pj , Pi+3) = {w1}. The unique vertex j satisfying this condition
is one of i+ 1, i+ 2.

Proof: Consult Figure 8 for this proof.
(i) Let without loss of generality i = 0. By Lemma 4.1,

⋂PK is not empty. By contradiction assume that a
path Pj /∈ PK intersects

⋂PK . Then K ∪ {j} is an edge-clique of G. We claim that this K5 contains at least
one red triangle, contradicting (P3). Indeed, as C has at least 6 vertices, j is adjacent in C to at most one vertex
k ∈ {0, 3}. K \{k} contains one red edge. The endpoints of this edge together with j constitute a red edge-clique.
Therefore, no path of P \ PK intersects

⋂PK . Then no intermediate vertex of
⋂PK is a split vertex. By the

minimality of 〈T,P〉,⋂PK consists of one edge, say e.
(ii) Let T1, T2 be the subtrees obtained by the removal of e from T . As V (G) \K is a connected component of

G, the union of the paths P \ PK is a subtree T ′ of T . T ′ is a subtree of T1 or a subtree of T2, because otherwise
there is at least one path of P \ PK using e, contradicting (i). Without loss of generality let T2 be the subtree
containing T ′, and T1 be the subtree that intersects only paths of PK . By Lemma 4.1 (ii), T1 contains exactly one
endpoint of core(K). For i ∈ {1, 2}, let wi be the endpoint of core(K) that is in Ti. w1 is the only split vertex in
T1 because it contains only paths of PK . As the representation is minimal, there are no edges between e and w1,
as otherwise they could be contracted. Any subtree of T1 starting with an edge incident to w1 can be contracted
to one path because the subtree does not contain split vertices. Moreover, this path can be contracted to one edge,
because all the paths entering the subtree intersect in its first edge. Since there are only two such subtrees, T1 is
isomorphic to a P3 and w1 is its center.

(iii) Assume that |split(P0, P3)| = 2. Then by Lemma 4.1, split(P0, P3) = {w1, w2}, i.e. w1 is an internal
vertex of both P0 and P3. In this case, one can remove from P0 its unique edge in T1 without affecting the
relationships between the paths. This contradicts the minimality of 〈T,P〉. Indeed, a) any change in T1 affects
relationships between paths of PK only, b)

⋂PK is not affected, therefore all the paths of PK still intersect, c)
{w1} = split(P0, P3) = split(P0, P2) and {w2} = split(P1, P3) hold after the tail removal.
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Now assume that split(P0, P3) = {w1}. P0 crosses w2 because split(P0, P2) = {w2}. Then P3 does not cross
w2. As P4 ∼ P3, P4, P2, P0 intersect in the last edge of P3, and thus constitute a red edge-clique, contradicting
(P3). We conclude that split(P0, P3) = {w2}.

(iv) First assume j /∈ {i+ 1, i+ 2}. Clearly, NG(j) 6= K. Moreover, we have split(Pj , Pi)∪ split(Pj , Pi+3) 6=
{w1}. Indeed, if j /∈ K then w1 is not a vertex of Pj and if j ∈ {i, i+ 3} the condition holds because (iii).

We now assume j ∈ {i+ 1, i+ 2}. By Lemma 4.1 (v), the removal of P1 ∪ P2 disconnects P0 from P3. Then
the tree T ′ intersects P1 ∪ P2. Therefore, at least one of P1, P2 intersects T ′. By Lemma 4.1 i) one of P1, P2 does
not cross w2, i.e. does not intersect T2 which in turn includes T ′, a contradiction. We conclude that exactly one
of P1, P2 intersects T ′. In other words exactly one of 1, 2 is adjacent to V (G) \ K. Assume NG(i + 1) = K.
Then Pi+1 ∩T1 6= ∅, therefore split(Pi+1, Pi) = ∅, i.e. split(Pi+1, Pi+3) = {w1}, concluding the claim. The case
NG(i+ 2) = K is symmetric. 2
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Fig. 8: A minimal representation of a pair (G,C) with an induced (K4, P4) with NG(i+ 1) = K.

We term, as isolated, the vertex j ∈ {i+ 1, i+ 2} of K = (i, i+ 1, i+ 2, i+ 3) satisfying NG(j) = K whose
existence and uniqueness are guaranteed by Lemma 4.3 (iv). We recall that (i, i + 1, i + 2, i + 3) = (i + 3, i +
2, i + 1, i), and in view of this result, we introduce an alternative notation: We denote K as [i, i + 1, i + 2, i + 3]
if i+ 1 is its isolated vertex, and as [i+ 3, i+ 2, i+ 1, i] otherwise.

Lemma 4.4 Let K = [i, i+ 1, i+ 2, i+ 3] a (K4, P4) of a pair (G,C) with at least 6 vertices, 〈T,P〉 a minimal
representation of (G,C) satisfying (P3). If there is a path Pj /∈ PK intersecting core(K), then j = i − 1 and
|core(K)| = 2, otherwise |core(K)| = 1.

Proof: Let
⋂PK = {e}, and assume that j /∈ K and Pj ∩ core(K) 6= ∅. Recall that e /∈ Pj . If Pj splits from

core(K) then it splits from each one of Pi, Pi+2, Pi+3. In particular {j, i, i+ 2} constitutes a red edge-clique, thus
violating (P3). If Pj ⊆ core(K) then Pj ∼ Pi+2 implying j ∈ {i+ 1, i+ 3} ⊂ K, contradicting our assumption.
Therefore, Pj crosses the endpoint w2 of core(K). Then Pj intersects with each one of Pi, Pi+2, Pi+3 in the last
edge of core(K). Therefore, a) Pj � Pi+2 because j /∈ {i+ 1, i+ 3}, and b) Pi � Pi+2. If Pj � Pi then
{j, i, i+ 2} constitutes a red edge-clique, violating (P3). Therefore, Pj ∼ Pi, implying j = i − 1. Note that
Pi+1 ∩ Pi−1 = ∅ because i+ 1 is isolated. Pi−1 ∩ core(K) consists of a single edge e′(6= e), because otherwise
they can be contracted to a single edge without affecting the relationships between the paths Pi−1, Pi, Pi+2, Pi+3

that are the only paths that intersect the contracted edges. Then core(K) consists of the two edges e, e′. If Pi−1

does not intersect core(K) then PK are the only paths that intersect core(K). Therefore, all the edges of core(K)
can be contracted to one edge. 2

Lemma 4.5 A pair (G,C) with 6 vertices satisfying (P3) does not contain an induced (K4, P4).

Proof: Assume without loss of generality that [0, 1, 2, 3] is a (K4, P4) of (G,C). Let 〈T,P〉 be a representation of
(G,C) satisfying (P3). For i ∈ {0, 3} let Ti be the unique connected component of T \ core(K) intersecting Pi.
By Lemma 4.4, P4 does not cross w2. Therefore, P4 is completely in T3. As P4 ∩ P5 6= ∅, P5 intersects T3. If P5

is completely in T3 then P5 ‖ P0, otherwise P5 � P0. Both cases contradict the fact that {5, 0} is an edge of C. 2
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4.2 Intersection of (K4, P4) pairs and Aggressive Contraction
We now focus on pairs with at least 7 vertices. We start by analyzing the intersection of their (K4, P4) sub-pairs.

Lemma 4.6 Let (G,C) be a pair with at least 7 vertices satisfying (P3), andK = [i, i+1, i+2, i+3] a (K4, P4)
of (G,C). Then
(i) there is at most one (K4, P4), K ′ 6= K such that E(C[K]) ∩ E(C[K ′]) 6= ∅ and if such a (K4, P4) exists then
K ′ = [i+ 5, i+ 4, i+ 3, i+ 2] (and therefore {i+ 2, i+ 4} is an edge of G),
(ii) if {i+ 2, i+ 4} is an edge of G then K ′ = [i+ 5, i+ 4, i+ 3, i+ 2] induces a (K4, P4) of (G,C).

Proof: Let without loss of generality i = 0.
(i) Since 1 is isolated, we have 1 /∈ K ′. Therefore, if E(C[K]) ∩ E(C[K ′]) 6= ∅ for some (K4, P4) K ′ then

E(C[K])∩E(C[K ′]) = {{2, i}}, i.e. K ′ = (2, 3, 4, 5). Since 3 is adjacent to 1, 3 is not isolated inK ′. Therefore,
K ′ = [5, 4, 3, 2].

(ii) Assume {2, 4} is an edge of G and that, by way of contradiction, K ′ = {2, 3, 4, 5} is not a (K4, P4).
Consult Figure 9 for the following discussion. For j ∈ {0, 3} let Tj be the connected component of T \ core(K)
intersecting Pj . As P4 ∼ P3, Lemma 4.4 implies that P4 is completely in T3. P4 � P2, by our assumption. Let w3

be the endpoint of P3 in T3 and w4 be the split vertex of P2 and P4. Then w3 ∈ pT (w2, w4) (possibly w3 = w4).
P5 does not intersect at least one of P2 and P3, because otherwise K ′ is a (K4, P4). Then it does not intersect
P3. The union of the paths P6, . . . Pn−1 constitutes a subtree T ′ of T that intersects both P0 and P5. Therefore,
there is at least one path Pj ∈ {P6, . . . Pn−1} crossing the last edge of P3 (incident to w3). Then {2, 4, j} is an
edge-clique defined by this edge. Moreover, a) P2 � P4, b) Pj � P2 because j /∈ {1, 3}, Pj � P4 because
j /∈ {3, 5}. Therefore, {2, 4, j} is a red edge-clique, contradicting the assumption that (P3) is satisfied. 2
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Fig. 9: Proof of Lemma 4.6.

By the above lemma (K4, P4) sub-pairs may intersect only in pairs. We term two intersecting (K4, P4) pairs as
twins, and a (K4, P4) not intersecting with another as a single (K4, P4).

Given a (K4, P4) K = [i, i + 1, i + 2, i + 3] of a pair (G′′, C ′′) satisfying (P3), the aggressive contraction
operation is the replacement of the vertices i+2, i+3 by a single vertex (i+2).(i+3). We denote by (G′′/e, C ′′/e)
the resulting pair (where e = {i+ 2, i+ 3}) as (G′′, C ′′)/K . The following lemma characterizes the aggressive
contraction operation in the representation domain.

Lemma 4.7 Let (G′′, C ′′) be a pair with at least 7 vertices, 〈T ′′,P ′′〉 be a representation of it satisfying (P3),
and K = [i, i+ 1, i+ 2, i+ 3] be a (K4, P4) of (G′′, C ′′). Then:
(G′′, C ′′)/K is a pair satisfying (P3) and a representation 〈T ′,P ′〉 of (G′, C ′) = (G′′, C ′′)/K satisfying (P3)

is obtained from 〈T ′′,P ′′〉 by first removing cherry(K) and also cherry(K ′) if K and K ′ are twins, and then
applying the union operation to Pi+2 and Pi+3.

Proof: Let without loss of generality i = 0. Recall that by Lemma 4.6, {2, 4} is an edge of G′′, if and only if K is
a twin. Figure 10 illustrates the following two steps in the case that K is a single.



20 Arman Boyacı , Tınaz Ekim , Mordechai Shalom , Shmuel Zaks

(Step 1) We remove cherry(K) (and also cherry(K ′) when K and K ′ are twins) from T ′′. By Lemma 4.3 we
know that by removing cherries we don’t lose any edge intersection, and we lose exactly one split vertex per cherry,
namely the center of the cherry. This vertex (or vertices) is split(P1, P3) (and also split(P2, P4) when K is a twin).
Thus the edge {1, 3} (and also {2, 4} when K is a twin) becomes blue. As no new red edges are introduced, the
resulting representation does not contain red edge-cliques, i.e. satisfies (P3).

(Step 2) We contract the resulting graph on the edge {2, 3}. We claim that this contraction is defined. Indeed
assume by contradiction that {2, 3} participates in a BBR triangle. This BBR triangle is one of {1, 2, 3} and
{2, 3, 4}. Then one of {1, 3} and {2, 4} is a red edge, contradicting the fact that these edges (if exist) becomes
blue after step 1. This contraction corresponds to the union operation on the paths P2, P3, and by Lemma 3.4 the
resulting graph satisfies (P3). 2
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Fig. 10: Aggressive contraction of a single (K4, P4).

Lemma 4.7 implies an algorithm for finding the unique minimal representation of pairs satisfying (P3). Algo-
rithm FINDMINIMALREPRESENTATION-P3 is a recursive algorithm that processes a single (K4, P4) or a twin of
(K4, P4)s at every invocation. The processing is done by applying aggressive contraction to convert the involved
(K4, P4)(s) to (K3, P3) (s), solving the problem recursively, and finally transforming the representation of the
(K3, P3) to a representation of a (K4, P4). In the Build Representation phase, Algorithm FINDMINIMALREPRESENTATION-
P3 performs the reversal of steps 1 and 2 described in Lemma 4.7, (see Figures 10, 11).

A broken tour with cherries is a representation obtained by adding cherries to a broken tour. See Figure 12 for
an example of a broken planar tour with cherries and the graph pair induced by it.

Theorem 4.2 P3-HAMILTONIANPAIRREC can be solved in polynomial time. YES instances have a unique solu-
tion, and whenever n ≥ 6 this solution is a broken planar tour with cherries.

Proof: As the case |V (G′′)| < 6 is already solved, we will show that for any given pair (G′′, C ′′) with |V (G′′)| ≥
6, FINDMINIMALREPRESENTATION-P3 solves P3-HAMILTONIANPAIRREC. If (G′′, C ′′) is a ”NO” instance,
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Algorithm 2 FINDMINIMALREPRESENTATION-P3(G′′, C ′′)

Require: C ′′ = {0, 1, . . . , |V (G′′)| − 1} is an Hamiltonian cycle of G′′ and |V (G′′)| ≥ 6
Ensure: A minimal representation

〈
T̄ , P̄

〉
of (G′′, C ′′) satisfying (P3) if any

1: if (G′′, C ′′) is (K4, P4)-free then
2: return FINDMINIMALREPRESENTATION-P2-P3(G′′, C ′′,W(G′′, C ′′))

3:
Aggressive Contraction:

4: Pick a (K4, P4), K = [i, i+ 1, i+ 2, i+ 3] of (G′′, C ′′). . Renumber vertices if necessary.
5: (G′, C ′)← (G′′, C ′′)/K .
6:

Recurse:
7:
〈
T̄ ′, P̄ ′

〉
← FINDMINIMALREPRESENTATION-P3(G′, C ′).

8:
Build Representation:

9:
〈
T̄ , P̄

〉
←
〈
T̄ ′, P̄ ′

〉
.

10: Replace P(i+2).(i+3) by two copies Pi+2 and Pi+3 of itself.
11: if i+ 2 is adjacent to i+ 4 in G′′ then
12: . K ′ = [i+ 5, i+ 4, i+ 3, i+ 2] is the twin of K in (G′′, C ′′)
13: MAKECHERRY(

〈
T̄ , P̄

〉
, i+ 4, i+ 2).

14: else . K is a single
15: w ← the endpoint of Pi+2 which is not in core(K).
16: ADJUSTENDPOINT(

〈
T̄ , P̄

〉
, G′′, Pi+2, w).

17: MAKECHERRY(
〈
T̄ , P̄

〉
, i+ 1, i+ 3).

18:
Validate:

19: if EPT(P̄) = G′′ and P̄ satisfies (P3) then
20: return

〈
T̄ , P̄

〉

21: else
22: return “NO”
23: function MAKECHERRY(

〈
T̄ , P̄

〉
, p, q)

24: Let v ∈ V (T̄ ) be the common endpoint of Pp, Pq .
25: Add two new vertices v′, v′′ and two edges {v, v′} , {v, v′′} to T̄ .
26: Extend Pp so that the endpoint v is moved to v′.
27: Extend Pq so that the endpoint v is moved to v′′.
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then the instance has no representation satisfying (P3). In this case then the algorithm returns “NO” at the vali-
dation phase. Therefore, we assume that (G′′, C ′′) is a ”YES” instance, and prove the claim by induction on the
number k of induced (K4, P4) pairs of (G′′, C ′′).

If k = 0 then (G′′, C ′′) does not contain any (K4, P4) pairs, therefore satisfies (P2). In this case the algorithm
invokes FINDMINIMALREPRESENTATION-P2-P3 and the claim follows from Theorem 3.1.

Otherwise k > 0. We assume that the claim holds for any k′ < k and prove that it holds for k. In this case,
as the pair contains at least one (K4, P4), one such pair K is chosen arbitrarily by the algorithm and aggressively
contracted. The resulting pair (G′, C ′) = (G′′, C ′′)/K has the following properties:

• Satisfies (P3). (By Lemma 4.7)

• The number of (K4, P4) pairs is strictly less than k.

• |V (G′)| ≥ 6. This is because |V (G′)| = |V (G′′)| − 1 and |V (G′′)| > 6. Indeed, if |V (G′′)| = 6, we have
k = 0 by Lemma 4.5.

Therefore, (G′, C ′) satisfies the assumptions of the inductive hypothesis. Then,
〈
T̄ ′, P̄ ′

〉
is the unique minimal

representation of (G′′, C ′′)/K satisfying (P3). It remains to show that the representation
〈
T̄ ′, P̄ ′

〉
is obtained from

the representation
〈
T̄ , P̄

〉
returned by the algorithm, by applying the steps described in Lemma 4.7.

Let without loss of generalityK = [i, i+1, i+2, i+3]. By Lemma 4.6,K has a twinK ′ = [i+5, i+4, i+3, i+3]
if and only if {i+ 2, i+ 4} is an edge of G′′. The algorithm checks the existence of this edge and takes two
different actions, accordingly.

If K is not a twin then step 2, i.e. the union operation is reversed by breaking apart the path P(i+2).(i+3) into
two paths Pi+2 and Pi+3. Then step 1 is reversed by invoking procedure MAKECHERRY (see Figure 10).

If K is a twin, then cherry(K) and cherry(K ′) are uniquely determined by Lemma 4.3 (ii) and procedure
MAKECHERRY acts accordingly. This determines all the endpoints of Pi, Pi+1, Pi+2, Pi+3, Pi+4, Pi+5 that are
different from the representation

〈
T̄ ′, P̄ ′

〉
(see Figure 11). 2
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Fig. 12: (a) A pair (G,C) with a contractable edge {8′, 8′′} and a subgraph (K4, P4) induced by {1, 2, 3, 4} (b) A representa-
tion of (G,C): a broken planar tour with a cherry.

5 General Pairs (G,C)

In this section we show that it is impossible to generalize the algorithms presented in the previous sections to the
case where (P3) does not hold, unless P = NP.
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We start with a definition and a related lemma that are central to this section. Given a pair (G,G′) and a subset S
of V (G), the component graph comp(G,G′, S) is a graph whose vertices correspond to the connected components
G1, G2, . . . of G \ S and two vertices corresponding to components Gi, Gj are connected by an edge if and only
if there is a vertex v ∈ S adjacent to both of Gi and Gj in G′ (see Figure 14 for an example). Whenever G′ is a
cycle, we term a connected component of G′ \S an arc of G′ separated by S. Clearly, whenever |S| ≥ 2 every arc
is adjacent to exactly 2 vertices of S.

Lemma 5.1 Let (G,C) be a pair where C is a Hamiltonian cycle of G, and K be a maximal clique of G \ C. If
there is a representation 〈T,P〉 of G where ∆(T ) ≤ 3, then comp(G,C,K) is 3-colorable.

Proof: If |K| ≤ 3, G \ K has at most 3 connected components, thus comp(G,C,K) is 3-colorable. Therefore,
we assume |K| > 3. If K is an edge-clique defined by an edge e then the paths PK = {Pv : v ∈ K} are exactly
the paths in P that contain e. The edge e divides T into two subtrees T1, T2 rooted at the endpoints r1, r2 of e.
Similarly, if K is a claw-clique defined by a claw {e1, e2, e3}, as T has maximum degree 3, the claw divides the
tree into three subtrees T1, T2, T3, rooted at the center r1 = r2 = r3 = r of the claw. In both cases the following
two statements hold: a) every path of P \ PK is contained in one of these subtrees, b) every path of PK that
intersects a subtree Ti crosses its root ri.

All the vertices of a connected component Gi are represented by paths that are in the same subtree Tj (j ∈
{1, 2, 3}). This is because otherwise there are at least two adjacent vertices in Gi that are in two different subtrees,
a contradiction. We color every vertex Gi of comp(G,C,K) with color j ∈ {1, 2, 3} depending on the subtree on
which the paths representing its vertices reside. It remains to show that if two connected components are adjacent
in comp(G,C,K) they are colored with different colors.

Assume by contradiction that two components G1, G2 of G \ K which are adjacent in comp(G,C,K) are
colored with the same color i. Then, there is a vertex v ∈ K and two vertices v1 ∈ G1, v2 ∈ G2 adjacent to v
in C. Moreover, v1 and v2 are not adjacent in G, because they are in different connected components. Therefore,
(i) Pv ∼ Pv1 , Pv ∼ Pv2 , (ii) Pv1 ‖ Pv2 , (iii) Pv1 and Pv2 are in Ti, (iv) Pv intersects Ti and crosses its root ri.
Furthermore, we assume without loss of generality that Pv1 is closer to ri than Pv2 (see Figure 13). Consider the
subtree T ′ = ∪u∈G2

Pu of Ti. Pv1 ∩ T ′ = ∅, because otherwise there is a path Pu representing a vertex u ∈ G2

that intersects Pv1 , in other words u ∈ G2 is adjacent to v1 ∈ G1, a contradiction. Let {v, v′} be the vertices of
K adjacent to the arc v2 belongs to. Pv′ intersects Ti and crosses its root ri. Moreover, Pv′ intersects T ′, as it is
adjacent to at least one vertex of G2. We conclude that Pv′ contains Pv1 . Then v1 ∼ v′, i.e. v′ and v1 are adjacent
in C. Therefore, K = {v, v′}, contradicting |K| > 3. 2

Lemma 5.2 It is NP-Hard to determine whether a given pair (G,C) where C is a Hamiltonian cycle of G has
representation 〈T,P〉 with ∆(T ) ≤ 3.

Proof: The proof is by reduction from the 3-colorability problem. Given a graph H , we transform it to a pair
(G,C) such that (G,C) has a representation on a tree with maximum degree 3 if and only if H is 3-colorable.

Consult Figure 14 for the following construction. Let V (H) = {v0, . . . , vn−1}, E(H) = {e0, . . . , em−1}, and
let di = dH(vi). The pair (G,C) consists of 6m vertices. For every edge ek = {vi, vj} we construct a path
Sk = (ui,k−u′i,k−uj,k−u′j,k−uk−u′k) with 6 vertices. The graph C is a cycle obtained by concatenating these
m paths, in the order S0, S1, . . . , Sm−1, S0, i.e. u′k is connected to ui′,k+1 where ek+1 = {vi′ , vj′}. K is a clique

of all the vertices in the even positions of the paths, i.e. K =
{
u′i,k, u

′
k : 0 < k < m, i ∈ ek

}
(most of the edges

induced by K are not shown in the figure). For every i < n, Qi is a path (ui,k1 − · · ·−ui,kdi ) where ek1 , . . . , ekdi
are the edges incident to vi in H . The set EKQ

i of edges connects vertices of Qi with vertices of K. Specifically,

EKQ
i =

{{
ui,kj , u

′
i,kj′

}
| 1 ≤ j′ < j ≤ di

}
. Finally, G = C ∪K ∪ (∪i<nQi) ∪

(
∪i<nE

KQ
i

)
.

We claim that the vertices of the graph H ′ = comp(G,C,K) can be partitioned into two sets A,B such that
a) H ′[A] is isomorphic to H , b) H ′[B] is an independent set, c) dH′(v) ≤ 2 for every vertex v ∈ B. Indeed,
G \ K contains the vertices {ui,k, uk : k < m, i ∈ ek} where each uk is an isolated vertex and the rest is the
disjoint union of the paths Qi. Therefore, the component graph H ′ consists of the vertices A = {Qi : i < n} and
B = {uk : k < m}. For two vertices vi, vj of H , Qi and Qj are connected by the vertex u′i,k ∈ V (K) if and only
if ek = {vi, vj} is an edge of H . Therefore, H ′[A] is isomorphic to H . Moreover, a vertex uk of G is connected
to at most two paths Qi via its two neighbors in C. Therefore, H ′[B] is an independent set and every vertex of
B has degree at most 2 in H ′. We conclude that H is 3-colorable if and only if H ′ is 3-colorable. If (G,C) has
a representation 〈T,P〉 with ∆(T ) ≤ 3 then, by Lemma 5.1, H ′ is 3-colorable. It remains to show that if H ′
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Fig. 13: Proof of Lemma 5.1.

is 3-colorable then (G,C) has such a representation. Given a 3-coloring of H ′, in the sequel we present such a
representation 〈T,P〉 (see Figure 15).

We start with the construction of the tree T . T has a vertex r of degree at most 3 that divides it into at most
3 subtrees T1, T2, T3, each of which with maximum degree 3. Each Ti corresponds to one color of the given 3-
coloring of H ′. We describe in detail the subtree T1, assuming without loss of generality that the vertices of H ′

colored with color 1 areQ1, Q2, . . . , Qn′ and u1, u2, . . . , um′ . T1 contains a path (r−e1−· · ·−em′−v1−· · ·−vn′).
Each vertex ek starts a path (ek − `k) of length 1. Each vertex vi starts a path (vi − wi − wi,k1

− · · · − wi,kdi
)

where ek1 , . . . , ekdi are the edges incident to vi in G. Each vertex wi,k starts a path (wi,k − `i,k) of length 1.
We proceed with the construction of the paths P . Every vertex uk of G is represented by a path Pk of length

1 starting at vertex `k. Each vertex ui,k of G is represented by a path Pi,k of length 3 starting at `i,k and towards
r. It remains to describe the representation of the vertices of K. Every vertex u′ of K is adjacent to two vertices
of V (C) \ K in C. We represent u′ by a path between two leaves of T (not all of them shown in the figure).
These leaves are exactly the leaves that constitute endpoints of the paths corresponding to the two neighbors of u′.
Specifically:

• A vertex u′i,k of Sk that is between two vertices ui,k and uj,k of Sk is represented by a path P ′i,k between
the two leaves `i,k and `j,k.

• A vertex u′j,k of Sk that is between two vertices uj,k and uk of Sk is represented by a path P ′j,k between the
two leaves `j,k and `k.

• A vertex u′k of Sk that is between two vertices uk of Sk and ui,k+1 of Sk+1 is represented by a path P ′k
between the two leaves `k and `i,k+1.

The vertices ui,k and uj,k are in the connected components Qi and Qj respectively, which in turn are adjacent
in H ′ (by the existence of u′i,k ∈ K between them). They are therefore assigned different colors, i.e. the leaves
`i,k and `j,k are in different subtrees of T . Therefore, P ′i,k crosses r. It can be verified that this holds for the other
two cases too. We conclude that the vertices of K are represented by paths that cross r. If H ′ is 2-colorable then
they constitute an edge-clique, otherwise they constitute a claw-clique. We leave to the reader to verify that 〈T,P〉
is a representation of (G,C). 2
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Theorem 5.1 HAMILTONIANPAIRREC is NP-Hard.

Proof: We claim that the decision version of the problem is NP-Hard even when G is restricted to the family
of VPT graphs. If the instance is a “YES” instance, then G is both a VPT and an EPT graph. In this case, by
Theorem 2 of Golumbic and Jamison (1985b), (G,C) has a representation on a tree with maximum degree 3. If
the instance is a “NO” instance then, clearly, (G,C) does not have a representation on a tree with maximum degree
3. By Lemma 5.2 it is NP-Hard to decide whether (G,C) has a representation on a tree with maximum degree 3.
2

6 Conclusions and Future Work
In this study, we considered the characterization of minimal representations of ENPT cycles. We described an
algorithm finding the unique minimal representation of a pair of ENPT and EPT graphs that satisfy assumption
(P3), i.e. every red clique is represented by a claw-clique. Through this algorithm we characterized the represen-
tations of ENPT cycles as broken planar tours with cherries. We have shown that there is no efficient algorithm to
achieve this goal in general (i.e. without this assumption) unless P = NP.

Note that if we allow red edge-cliques, the representation is not necessarily a planar tour. The first such rep-
resentation is a non-planar tour whose ENPT graph is a cycle. Another example is depicted in Figure 16. This
representation is not a tour since the set of its “long” paths does not define a cyclic permutation of the leaves of the
tree.

Another direction of research would be to investigate the relation of ENPT graphs with other graph classes. It
is easy to see that ENPT \ EPT 6= ∅; for example consider the wheel W5,1 = C5 + K1: it is not EPT graph but
is an ENPT graph. Golumbic and Jamison (1985b) characterized the graphs in VPT ∩ EPT. Another interesting
research topic could be the characterization of the graphs in EPT ∩ ENPT.

Last but not least, restriction to EPT graphs of decision/optimization problems known to be NP-Hard in general
graphs, such as minimum vertex coloring, maximum stable set, and hardness of recognition of ENPT graphs seem
to be major problems to investigate on these graphs.
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Fig. 16: A representation of C10 which is not a tour.
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M. Pergel and P. Rzażewski. On edge intersection graphs of paths with 2 bends. In Graph-Theoretic Concepts in Computer
Science - 42nd International Workshop, WG 2016, Istanbul, Turkey, June 22-24, 2016, Revised Selected Papers, Lecture
Notes in Computer Science, pages 207–219, 2016.

R. Ramaswami. Multi-wavelength lightwave networks for computer communication. IEEE Communications Magazine, 31:
78–88, 1993.

J. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete Applied Mathematics, 59(2):181 – 191, 1995.

R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221 – 232, 1985.


	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 Definitions
	2.2 EPT Graphs
	2.3 ENPT Graphs and EPT,ENPT Graph Pairs

	3 Pairs (G,C) Satisfying (P2) and (P3)
	3.1 Contraction of Pairs
	3.2 Small Cycles: the pairs (G,C5) and (G,C6)
	3.3 The General Case

	4 Pairs (G,C) Satisfying (P3)
	4.1 Representations of (K4,P4) and Small Cycles
	4.2 Intersection of (K4,P4) pairs and Aggressive Contraction 
	4.3 Algorithm

	5 General Pairs (G,C)
	6 Conclusions and Future Work

