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Matchings are frequently used to model RNA secondary structures; however, not all matchings can be realized as

RNA motifs. One class of matchings, called the L & P matchings, is the most restrictive model for RNA secondary

structures in the Largest Hairpin Family (LHF). The L & P matchings were enumerated in 2015 by Jefferson, and

they are equinumerous with the set of nesting-similarity classes of matchings, enumerated by Klazar. We provide

a bijection between these two sets. This bijection preserves noncrossing matchings, and preserves the sequence

obtained reading left to right of whether an edge begins or ends.
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Ribonucleic acid (RNA) is an essential molecule found in the cells of all living things. Usually, RNA

is formed by a string of nucleotides which folds over on itself, creating secondary bonds. The structure of

these secondary bonds is a topic of great interest and has been studied from a biological and mathematical

perspective [2, 3]. Mathematically, RNA secondary structures can be modeled by considering each nu-

cleotide as a vertex and bonds between nucleotides that are not part of the RNA backbone as edges. Each

vertex is incident to at most one edge and thus the graph obtained is a matching.

We represent these matchings as 2n points drawn along a horizontal line (the backbone) and arcs

drawn between pairs of points represent the nucleotide bonds. For simplicity, we assume all matchings

are complete (i.e., all vertices are incident to an edge), and therefore contain n edges. RNA often has

nucleotides that are not bonded, but these structures can be reconstructed by adding any number of isolated

vertices to a complete matching. We notate the set of complete matchings with n edges by M(n).

For a matching, M , we denote the set of edges E(M) and label these edges with [n] in increasing order

from left to right by their left endpoints. For the edge labeled i, we write i = (i1, i2) where i represents the

label of the edge and i1, i2 represent the position of the left and right endpoints of the edge, respectively.

A pair of edges i = (i1, i2) and j = (j1, j2) are said to be nested if i1 < j1 < j2 < i2 and crossing if

i1 < j1 < i2 < j2. For a matching M ∈ M(n), let ne(M) and cr(M) denote the number of pairs of

nested edges and crossing edges in M , respectively. Additionally, the edges i = (i1, i2) and j = (j1, j2)
are said to form a hairpin if j1 = i1 +1 and j2 = i2 +1 (Figure 1a). A nested sequence of edges that can

be drawn above the backbone is called a ladder (Figure 1b).
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Fig. 1: The left matching is a hairpin, the middle matching is a ladder of four edges, and the right matching

is an example of an L & P matching with edges labeled by left endpoint.

Matchings that contain no crossing pairs of edges are called noncrossing matchings. The number of

noncrossing matchings with n edges is well-known to be counted by the nth Catalan number, Cn =
1

n+1

(

2n
n

)

, and has been studied in several contexts, including pattern avoidance [1].

For each matching, we can examine the vertices from left to right and list whether vertices are left or

right endpoints of an edge. For example, for the matching in Figure 2a, this sequence is LLRLLRRRLR;

we call this the LR-sequence of a matching. LR-sequences are in bijection with Dyck paths, and each non-

crossing matching has a distinct LR-sequence. For any M ∈ M(n), define nc(M) to be the noncrossing

matching with the same LR-sequence as M .

In order to model RNA structures that contain crossings, different families of matchings have been

studied. In this paper, we focus on the family of L & P matchings. The L & P matchings were first rig-

orously defined by Condon et al. [2] and this definition was later refined by Jefferson [3]. Each matching

in the L & P family can be constructed inductively by starting from either a hairpin or a single edge, and

either a) inflating an edge by a ladder, or b) inserting a noncrossing matching into an L & P matching [3].

For an example of an L & P matching, see Figure 1c. The counting sequence for the number of L & P

matchings with n edges begins 1, 3, 12, 51, 218, 926, 16323, 67866, 280746 and is given by the formula

2 · 4n−1 − 3n−1

2n+2

(

2n

n

)

[3].

It was noted by Jefferson that L & P matchings with n edges, which we denote LPn, are equinumerous

to the equivalence classes on matchings with n edges determined by the nesting-similarity equivalence,

∼ne, defined by Klazar [4]. We say that two matchings M,N ∈ M(n) are nesting-similar, and write

M ∼ne N , if and only if ne(M) = ne(N) and M,N have the same LR-sequence. An example of this

equivalence is shown in Figure 2. Klazar showed that there are 2 · 4n−1 − 3n−1

2n+2

(

2n
n

)

nesting-similarity

equivalence classes for matchings in M(n); however, no explicit bijection was discovered connecting L

& P matchings to nesting-similarity classes. Our main result is to construct a bijective correspondence

between these two structures.

Klazar [4] utilized a different, but equivalent, definition for nesting-similarity in his work. He examined

the tree of matchings where the vertex set is the infinite set of matchings,
⋃

∞

n=0
M(n). Matchings are

(a) (b)

Fig. 2: Two nesting-similar matchings. Each matching has LR-sequence LLRLLRRRLR and two pairs of

nested edges.
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connected if one can be obtained from the other by inserting a new edge whose left endpoint occurs

earliest. With this construction, two matchings are said to be nesting-similar if we can record the number

of nestings for the children of each matching, which have one added edge, and obtain the same multiset.

It is straightforward to show that this definition is equivalent to the definition above.

In his paper, Klazar shows a correspondence between his nesting-similarity matchings and tunnel pairs

in Dyck paths. Our bijection between L & P matchings and the set of nesting-similarity classes will be

a composition of two bijections. The composed mapping will pass through the set of nestings in non-

crossing matchings, which correspond to tunnel pairs in Dyck paths. Define NCNn = {(M,a, b) | M ∈
M(n) noncrossing; a = b = 0 or edges a < b are nested in M}; so, NCN n is the set of noncrossing

matchings with a chosen nested pair of edges (a = b = 0 indicates no nested pair has been indicated).

In Section 1, we define a bijection between L & P matchings and NCNn, and in Section 2, we define

a bijection between nesting-similarity classes and NCNn.Thus We show that both L & P matchings and

nesting-similarity classes are equinumerous to NCN n.

1 L & P matchings and noncrossing matchings

The process of constructing an L & P matching implies that such a matching contains a crossing exactly

if the matching can be built inductively from a hairpin. As a result, any L & P matching that contains a

crossing will have all crossings occur in an inflated hairpin. Given a matching, M , we will label edges by

left endpoint, as in Figure 1c. In this Figure, edges 1, 2 crossing edges 4, 5 comprise an inflated hairpin.

Below we provide a precise definition of this structure.

Definition 1. A maximal inflated hairpin in an L & P matching is two sets of edges A = {a1, a2, . . . , ak}
and B = {b1, b2, . . . , bℓ} such that

1. every pair of edges in A and every pair of edges in B is nested,

2. for every ai ∈ A, ai crosses every edge in B, and

3. every crossing in M occurs between edges in A and B.

We let A be the set of edges with smaller labels (the left side of the inflated hairpin), and we say that M

contains the inflated hairpin (A,B).

Any L & P matching consists of a maximal inflated hairpin with noncrossing matchings inserted below

the hairpin as in Figure 3. It is possible for the inflated hairpin to be empty, yielding a noncrossing

matching. For example, the matching in Figure 2a is L & P: the first and third edges crossing the fourth

edge form an inflated hairpin. However, the matching in Figure 2b is not L & P, since the first four edges

are all involved in crossings, but these four edges do not form an inflated hairpin.

Notice that every edge not in the inflated hairpin of an L & P matching must begin and end between

two vertices that are adjacent in the inflated hairpin, otherwise it would be part of an inflated hairpin itself.

This fact will be used in our bijection.

Lemma 1. Let M ∈ LPn such that M contains an inflated hairpin (A,B). Then the right endpoints of

the inflated hairpin appear in the order (ak, ak − 1, . . . , a1, bℓ, bℓ − 1, . . . , b1) and can be rearranged to

(bℓ, bℓ − 1, . . . , b1, ak, ak − 1, . . . , a1) to construct nc(M). Additionally, every pair of edges in A ∪ B

are nested in nc(M).
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ak

b1
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Fig. 3: The structure of an L & P matching; Each ⋆ indicates a position where a noncrossing matching

may be inserted. The edges a1, a2, . . . , ak cross the edges b1, b2, . . . , bℓ to form the inflated hairpin.

Proof: Since we defined A to contain edges with smaller labels than B, the result that the right endpoints

are in the order (ak, ak − 1, . . . , a1, bℓ, bℓ − 1, . . . , b1) follows immediately. Now consider rearranging

the right endpoints such that they appear in the order (bℓ, bℓ − 1, . . . , b1, ak, ak − 1, . . . , a1). It is easy to

see that every pair of edges in A∪B is now nested and that no additional crossings can be created by this

rearrangement. Therefore the result is a noncrossing matching. Notice that, since noncrossing matchings

are in direct bijection with LR-sequences, the resulting matching is in fact nc(M).

For an example of this conversion of an L & P matching with an inflated hairpin into a noncrossing

matching, see Figure 4. The results of Lemma 1 will be useful as we define our bijection from LPn to

NCNn.

Definition 2. Define φ : LPn → NCN n where,

φ(M) =

{

(M, 0, 0), if M noncrossing,

(nc(M),max(A),max(B)), otherwise.

where (A,B) is the inflated hairpin of M .

The results of Lemma 1 imply that max(A),max(B) are a nested pair of edges in nc(M), and therefore

φ is well-defined. All that remains is to show that φ is in fact a bijection.

Theorem 1. The mapping φ : LPn → NCN n is a bijection.

Proof: We will construct the inverse of φ. First note that φ−1(M, 0, 0) = M .

Now consider some noncrossing matching M with nested pair of edges (a, b). Let A = {ai ∈
E(M) | (ai, a) are nested and ai ≤ a such that a1 < a2 < · · · < ak = a} and B = {bi ∈ E(M) |
(bi, b) are nested and a < bi ≤ b such that b1 < b2 < · · · < bℓ = b}. Then, since edges are labeled

by left endpoints and M is noncrossing, the right endpoints of A ∪ B appear in the order (bℓ, bℓ −
1, . . . , b1, ak, ak − 1, . . . , a1).

Let M ′ be the resulting matching when the right endpoints of A∪B are reordered to appear as (ak, ak−
1, . . . , a1, bℓ, bℓ − 1, . . . , b1). It is straightforward to show that M ′ is an L & P matching with inflated

hairpin (A,B) where (max(A),max(B)) = (a, b). It follows that φ−1(M,a, b) = M ′. Therefore φ is a

bijection, as desired.



A bijection between the set of nesting-similarity classes and L&P matchings 5
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Fig. 4: On the left is an L & P matching with labeled edges. In this matching, the inflated hairpin contains

edges 1, 2 crossing edges 4, 5. On the right is the corresponding noncrossing matching obtained by

swapping the right endpoints of edges in the inflated hairpin.

2 Nesting-Similarity Classes and Noncrossing Matchings

Recall that M ∼ne N if and only if ne(M) = ne(N) and M,N have the same LR-sequence. Klazar

showed that the nesting-similarity classes are equinumerous with tunnel pairs in Dyck Paths through the

use of transpositions that swap the endpoints of nestings with minimal width. Using this map iteratively,

for any LR-sequence, if M is the corresponding noncrossing matching, then for every i where 0 ≤ i ≤
ne(M), Klazar proved that there exists some matching with the same LR-sequence and i pairs of nested

edges. Notice that the noncrossing matchings contain the maximum possible number of nestings for a

particular LR-sequence, so Klazar’s result encompasses all the nesting-similarity classes.

We define a bijection between nesting-similarity classes and the set NCN n which explicitly defines

a representative for each equivalence class. Let nep(M) denote the list of nested pairs of edges in M

ordered lexicographically by prioritizing the second element. For example,

nep(M) = {(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (1, 5), (2, 5), (4, 5), (1, 6), (2, 6), (4, 6), (1, 7)}

for the noncrossing matching of Figure 4. Let rperm(M) be the order in which the right endpoints of

edges appear. For example, rperm(M) = 3564271. We define rperm for all matchings, not necessarily

noncrossing. However, when we have noncrossing matchings, rperm is useful for identifying nestings.

Lemma 2. In a noncrossing matching M , edges a, b are nested, with a < b, if and only if b appears

before a in rperm(M).

This follows quickly from the method of labeling edges and the definition of nestings.

Consider a noncrossing matching M with k pairs of nested edges. Given some i with 0 ≤ i ≤ k, we

define a process by which we rearrange the vertices in a noncrossing matching to obtain a matching with

the same LR-sequence and i pairs of nested edges. These matchings will be the representatives of the

nesting-similarity classes.

In the definition below, given edges a, b where 1 ≤ a, b ≤ n (a 6= b), let (a, b).M denote the matching

that results by swapping the left endpoints of edges a and b.

Definition 3. Let M be a noncrossing matching with k pairs of nested edges, and nep(M) = {(a1, b1),
(a2, b2), . . . , (ak, bk)}. Define the sequence of matchings M0,M1,M2, . . . ,Mk by M0 = M and Mi =
(ai, bi).Mi−1 for all i ∈ [k]. Additionally, let lperm(Mi) denote the order in which the left endpoints of

matching Mi appear.

For an example of this definition, see Figure 5. It is clear that each Mi has the same LR-sequence

as M . Our goal is to additionally show that ne(Mi) = k − i. This would imply that the matchings in
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{M0,M1, . . . ,Mk | M0 noncrossing} form a set of representatives of the k+1 distinct nesting-similarity

classes for matchings with the same LR-sequence as M .

1

2
3

4

M0 = M

lperm(M0) = 1234

ne(M0) = 4

1

2
3

4

M1 = (1, 2).M0

lperm(M1) = 2134

ne(M1) = 3

1

2

3

4

M2 = (1, 3).M1

lperm(M2) = 2314

ne(M2) = 2

1
2

3

4

M3 = (1, 4).M2

lperm(M3) = 2341

ne(M3) = 1

12 34

M4 = (3, 4).M3

lperm(M4) = 2431

ne(M4) = 0

Fig. 5: An example of the matching obtained by swapping left endpoints in a noncrossing matching, as

in Definition 3. Note the nep(M) = {(1, 2), (1, 3), (1, 4), (3, 4)}, which defines the order in which left

endpoints are swapped.

Lemma 3. Let M be a noncrossing matching, let M0,M1, . . . ,Mk be the sequence of matchings as

defined in Definition 3, and let nep(M) = {(a1, b1), (a2, b2), . . . , (ak, bk)}. Then for every i ∈ [k],
ai+1, bi+1 appear in order and are adjacent in lperm(Mi).

Proof: We use proof by induction. The result clearly holds for M0. Assume that aj+1, bj+1 are adjacent

and in order in lperm(Mj) for 0 ≤ j < i. First notice that this assumption immediately implies that

ai+1, bi+1 appear in order in lperm(Mi).

To obtain a contradiction, assume that ai+1, bi+1 are not adjacent in lperm(Mi). So, there exists some

c such that c appears between ai+1, bi+1. Notice that nestings in M0 that are lexicographically smaller

than (ai+1, bi+1) have had their left endpoints swapped to obtain Mi. This fact will allow us to obtain a

contradiction. We will consider three cases based on the size of the label c.

First assume that ai+1 < bi+1 < c. This implies that c and bi+1 appear out of order in lperm(Mi), and

must have been swapped. However, (bi+1, c) is lexicographically larger than (ai+1, bi+1), which gives a

contradiction.

Next assume that c < ai+1 < bi+1. In this case, c and ai+1 appear out of order in lperm(Mi). The

inductive assumption implies that at some step, (c, ai+1) must have been swapped and were a nesting in

M0. However, this would also imply that (c, bi+1) is a nesting in M0 that is lexicographically smaller

than (ai+1, bi+1); applying this swap would reverse the order of c, bi+1 as well. So, c could not appear

between ai+1 and bi+1 and we have a contradiction.
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Finally assume that ai+1 < c < bi+1. We need to consider two further subcases dependent on

rperm(M0). If c appears before bi+1 in rperm(M0), then c and bi+1 are not nested edges by Lemma 2.

However, ai+1 nests both c and bi+1 in this case. It follows that (ai+1, c) is a lexicographically smaller

nesting in nep(M0) and c, ai+1 must have already been swapped. As a result, they cannot appear in order

in Mi, giving a contradiction.

If instead bi+1 appears before c in rperm(M0), the condition on noncrossing edges in M0 and the fact

that ai+1 and bi+1 are nested implies that ai+1 and c are also nested. Again, this is a lexicographically

smaller nesting, which implies that ai+1 and c must appear out of order in Mi, giving a contradiction.

Lemma 4. Let M be a noncrossing matching, let M0,M1, . . . ,Mk be the sequence of matchings as de-

fined in Definition 3, and let nep(M) = {(a1, b1), (a2, b2), . . . , (ak, bk)}. Thennep(Mi) = {(ai+1, bi+1),
(ai+2, bi+2), . . . , (ak, bk)}; in particular, ne(Mi) = k − i.

Proof: We use proof by induction on i. It is straightforward to show that nep(M1) = {(a2, b2), . . .
, (ak, bk)}.

Now assume that nep(Mi−1) = {(ai, bi), . . . , (ak, bk)}. By definition, we know that (ai, bi) is no

longer a nesting in Mi = (ai, bi).Mi−1. Additionally, since (ai, bi) were adjacent in lperm(Mi−1) by

Lemma 3, we know that (ai+1, bi+1), (ai+2, bi+2), . . . , (ak, bk) are all still nestings in Mi and that no

additional nestings are created by swapping (ai, bi). Therefore nep(Mi) = {(ai+1, bi+1),
(ai+2, bi+2), . . . , (ak, bk)}.

It follows that the matchings we generate by the swaps in Definition 3 form a set of representatives

of the k + 1 distinct nesting-similarity classes for matchings with the same LR-sequence as M . Let

NSn be the set of representatives of the nesting-similarity classes; that is NSn = {N ∈ M(n) |
N = Mi for some noncrossing matching M with at least i nestings}. We can now define the other half

of our bijection.

Definition 4. Define τ : NCNn → NSn where, if M is a noncrossing matching with nep(M) =
{(a1, b1), (a2, b2), . . . , (ak, bk)}, then τ(M,ai, bi) = Mi and τ(M, 0, 0) = M .

So, τ will take the noncrossing matching M , which has the maximum number of nestings of any

matching with the same LR-sequence, and perform a sequence of left vertex swaps. Each swap converts

precisely one nesting pair of edges into a crossing pair of edges; these swaps continue until the associated

pair of edges is no longer nested. For an example of the mapping τ , see Figure 6.

Theorem 2. The mapping τ : NCNn → NSn is a bijection. Additionally, if M ∈ M(n) is noncrossing,

τ(M, 0, 0) = M .

Proof: Given some N ∈ NSn, consider M = nc(N). If N = M (implying that N is noncrossing), then

τ−1(N) = (N, 0, 0). Otherwise, by the definition of NSn, there exists some i such that N = Mi. If

nep(M) = {(a1, b1), (a2, b2), . . . , (ak, bk)}, set τ−1(N) = (M,ai, bi).

Now, combining Theorems 1 and 2, we immediately obtain our desired result.

Theorem 3. The map σ = τ ◦ φ : LPn → NSn is a bijection between L & P matchings and nesting-

similarity classes.
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Fig. 6: An example of the bijection τ , mapping from the noncrossing matching on the left, with chosen

nesting pair (2, 5) to the representative of the nesting-similarity class with 5 nestings and LR-sequence

LLLRLLRLRRRLRR on the right.
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τ
7→

Fig. 7: Above is the result of first applying φ to an L & P matching to obtain a noncrossing matching with

an indicated nesting pair. Then, we see the result of applying τ to the noncrossing matching with indicated

nesting pair to obtain a representative of a nesting equivalence class. Composed, this is the mapping σ.

An example of this composition can be seen in Figure 7.

The images under the map σ also form a set of representatives for the nesting similarity classes NSn.

Although Klazar proved that the classes exist, representatives of those classes were not explicitly provided,

and now we have done so.

Corollary 1. Since the bijection σ has an intermediate step at the noncrossing matching associated to a

matching M, σ has the following properties:

• If M is a noncrossing matching, then σ(M) = M .

• The LR-sequence of M is the LR-sequence of σ(M).

Other properties that are sometimes preserved in bijections between matchings, such as number of nest-

ings or number of crossings, are not preserved by σ. However these statistics all fail to be equidistributed

between the two sets LPn and NSn, so no other bijection exists that preserves them.

In the larger context, we note that none of the other Largest Hairpin Family matchings (LHF, D&P,

R&G, C&C) have closed forms for their enumeration sequences. However given that our map σ relates

an L & P matching to a noncrossing matching and a nesting edge pair, and the fact that all of these

families are constructed inductively, we believe it may be possible to find a similar mapping involving a

noncrossing matching and some other matching property. The authors hope to explore this possibility in

future work.
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