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Recently, Kitaev and Remmel refined the well-known permutation statistic “descent” by fixing parity of one of the

descent’s numbers which was extended and generalized in several ways in the literature. In this paper, we shall fix

a set partition of the natural numbers N, (N1, . . . , Ns), and we study the distribution of descents, levels, and rises

according to whether the first letter of the descent, rise, or level lies in Ni over the set of words over the alphabet

[k] = {1, . . . , k}. In particular, we refine and generalize some of the results by Burstein and Mansour.
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1 Introduction

The descent set of a permutation π = π1 · · ·πn ∈ Sn is the set of indices i for which πi > πi+1. This

statistic was first studied by MacMahon [13] almost a hundred years ago and it still plays an important role

in the field of permutation statistics. The number of permutations of length n with exactly m descents is

counted by the Eulerian number Am(n). The Eulerian numbers are the coefficients of the Eulerian poly-

nomials An(t) =
∑

π∈Sn
t1+des(π). It is well-known that the Eulerian polynomials satisfy the identity

∑

m≥0 mntm = An(t)
(1−t)n+1 . For more properties of the Eulerian polynomials see [5].

Recently, Kitaev and Remmel [9] studied the distribution of a refined “descent” statistic on the set of

permutations by fixing parity of (exactly) one of the descent’s numbers. For example, they showed that

the number of permutations in S2n (resp. S2n+1) with exactly k descents such that the first entry of the

descent is an even number is given by
(

n
k

)2
n!2 (resp. 1

k+1

(

n
k

)2
(n + 1)!2). In [10], the authors generalized

results of [9] by studying descents according to whether the first or the second element in a descent pair

is congruent to 0 mod k ≥ 2.
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Subsequently, Hall and Remmel [7] generalized results of [10] by considering “X, Y -descents,” which

are descents whose “top” (first element) is in X and whose “bottom” (second element) is in Y where X

and Y are any subsets of the natural numbers N. In particular, Hall and Remmel [7] showed that one can

reduce the problem of counting the number of permutations σ with k X, Y -descents to the problem of

computing the k-th hit number of a Ferrers board in many cases. Liese [11] also considered the situation

of fixing equivalence classes of both descent numbers simultaneously. Also, papers [6] and [12] discuss

q-analogues of some of the results in [7, 9, 10, 11].

Hall and Remmel [7] extended their results on counting permutations with a given number of X, Y -

descents to words. That is, let R(ρ) be the rearrangement class of the word 1ρ12ρ2 · · ·mρm (i.e., ρ1 copies

of 1, ρ2 copies of 2, etc.) where ρ1 + · · ·+ ρm = n. For any set X ⊆ N and any set [m] = {1, 2, . . . ,m},
we let Xm = X ∩ [m] and Xc

m = [m] −X . Then given X, Y ⊆ N and a word w = w1 · · ·wn ∈ R(ρ),
define

DesX,Y (w) = {i : wi > wi+1 & wi ∈ X & wi+1 ∈ Y },

desX,Y (w) = |DesX,Y (w)|, and

PX,Y
ρ,s = |{w ∈ R(ρ) : desX,Y (w) = s}| .

Hall and Remmel [7] proved the following theorem by purely combinatorial means.

Theorem 1.1

PX,Y
ρ,s =

(

a

ρv1 , ρv2 , . . . , ρvb

) s
∑

r=0

(−1)s−r

(

a + r

r

)(

n + 1

s− r

)

∏

x∈X

(

ρx + r + αX,ρ,x + βY,ρ,x

ρx

)

, (1.1)

where Xc
m = {v1, v2, . . . , vb}, a =

b
∑

i=1

ρvi
, and for any x ∈ Xm,

αX,ρ,x =
∑

z /∈ X
x < z ≤ m

ρz, and

βY,ρ,x =
∑

z /∈ Y
1 ≤ z < x

ρz.

In this paper, we shall study similar statistics over the set [k]n of n-letter words over a fixed finite alpha-

bet [k] = {1, 2, . . . , k}. In what follows, E = {2, 4, 6, . . .} and O = {1, 3, 5, . . .} are the sets of even and

odd numbers respectively. Also, we let x[t] = (x1, . . . , xt). Then given a word π = π1π2 . . . πn ∈ [k]n

and a set X ⊆ N, we define the following statistics:

•
←−−
DesX(π) = {i : πi > πi+1 and πi ∈ X} and

←−
desX(π) = |

←−−
DesX(π)|,

•
←−
RisX(π) = {i : πi < πi+1 and πi ∈ X} and

←−
risX(π) = |

←−
RisX(π)|,

• LevX(π) = {i : πi = πi+1 and πi ∈ X} and levX(π) = |LevX(π)|.
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Let (N1, . . . , Ns) be a set partition of the natural numbers N, i.e. N = N1 ∪ N2 ∪ . . . ∪ Ns, Ni 6= ∅ for

all i, and Ni ∩ Nj = ∅ for i 6= j. Then the main goal of this paper is to study the following multivariate

generating function (MGF)

Ak = Ak(x[s];y[s]; z[s];q[s]) =
∑

π

s
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i q
i(π)
i (1.2)

where i(π) is the number of letters from Ni in π and the sum is over all words over [k].

The outline of this paper is as follows. In Section 2, we shall develop some general methods to compute

(1.2). In Section 3, we shall concentrate on computing generating functions for the distribution of the

number of levels. That is, we shall study Ak where set xi = yi = 1 for all i. In Section 4, we shall

find formulas for the number of words in [k]n that have s descents that start with an element less than or

equal to t (greater than t) for any t ≤ k. Note that if we replace a word w = w1 · · ·wn ∈ [k]n by its

complement wc = (k+1−w1) · · · (k+1−wn), then it is easy to see that
←−
des[t](w) =

←−
ris{k+1−t,...,k}(w)

and
←−
des{t+1,...,k}(w) =

←−
ris[k−t](w). Thus we will also obtain formulas for the number of words in [k]n

that have s rises that start with an element less than or equal to t (greater than t) for any t ≤ k. In

Section 5, we shall apply our results to study the problem of counting the number of words in [k]n with p

descents (rises) that start with an element which is congruent to i mod s for any s ≥ 2 and i = 1, . . . , s.

In particular, if s ≥ 2 and (N1, . . . , Ns) is the set partition of N where Ni = {x ∈ N : x ≡ i mod s} for

i = 1, . . . , s, then we shall study the generating functions

A
(s)
k (x[s];y[s]; z[s];q[s]) =

∑

π

s
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i q
i(π)
i (1.3)

and

A
(s)
k (x[s];y[s]; z[s]; q) =

∑

π

q|π|
s
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i . (1.4)

Our general results in Section 2 allow us to derive an explicit formula for A
(s)
k (x[s];y[s]; z[s];q[s]) de-

pending on the equivalence class of k mod s.

For example, in the case where s = 2, our general result implies that

A
(2)
2k (q1, q2) = Ak(x1, x2, y1, y2, z1, z2, q1, q2) = (1.5)

=
∑

π

x
←−
desO(π)
1 x

←−
desE(π)
2 y

←−
risO(π)
1 y

←−
risE(π)
2 z

levO(π)
1 z

levE(π)
2 q

odd(π)
1 q

even(π)
2

=
1 + (λ1µ2 + λ2)

1−µk
1µk

2

1−µ1µ2

1− (ν1µ2 + ν2)
1−µk

1µk
2

1−µ1µ2

where the sum is over all words over [2k], even(π) (resp. odd(π)) is the number of even (resp. odd)

numbers in π, λj =
qj(1−yj)

1−qj(zj−yj)
, µi = qi(zi−xi)

1−qi(zi−yi)
, and νj =

qjyj

1−qj(zj−yj)
for j = 1, 2. Then by

specializing the variables appropriately, we will find explicit formulas for the number of words w ∈ [2k]n
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such that
←−
desE(π) = p,

←−
desO(π) = p,

←−
risE(π) = p,

←−
risO(π) = p, etc. For example, we prove that the

number of n-letter words π on [2k] having
←−
desO(π) = p (resp.

←−
risE(π) = p) is given by

n−p
∑

j=0

j
∑

i=0

(−1)n+p+i2j

(

j

ki

)(

i

n

)(

n− j

p

)

.

In fact, we shall show that similar formulas hold for the number of words π ∈ [k]n with p descents (rises,

levels) whose first element is congruent to t mod s for any s ≥ 2 and 0 ≤ t ≤ s− 1. Our results refine

and generalize the results in [4] related to the distribution of descents, levels, and rises in words. Finally,

in Section 6, we shall discuss some open questions and further research.

2 The general case

We need the following notation:

Ak(i1, . . . , im) = Ak(x[t];y[t]; z[t];q[t]; i[m]) =
∑

π

t
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i q
i(π)
i

where the sum is taken over all words π = π1π2 · · · over [k] such that π1 · · ·πm = i1 · · · im.

From our definitions, we have that

Ak = 1 +

k
∑

i=1

Ak(i). (2.1)

Thus, to find a formula for Ak, it is sufficient to find a formula for Ak(i) for each i = 1, 2, . . . , k. First let

us find a recurrence relation for the generating function Ak(i).

Lemma 2.1 For each s ∈ Ni, 1 ≤ s ≤ k and 1 ≤ i ≤ t, we have

Ak(s) =
qiyi

1− qi(zi − yi)
Ak +

qi(1− yi)

1− qi(zi − yi)
+

qi(xi − yi)

1− qi(zi − yi)

s−1
∑

j=1

Ak(j). (2.2)

Proof: From the definitions we have that

Ak(s) = qi +
k
∑

j=1

Ak(s, j)

= qi +
s−1
∑

j=1

Ak(s, j) + Ak(s, s) +
k
∑

j=s+1

Ak(s, j).

Let π be any n-letter word over [k] where n ≥ 2 and π1 = s > π2 = j. If we let π′ = π2π3 . . . πn, then

it is easy to see that
←−
desNi(π) = 1 +

←−
desNi(π

′), i(π) = 1 + i(π′).

It is also easy to see that remaining 4t− 2 statistics of interest take the same value on π and π′.
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This implies that Ak(s, j) = qixiAk(j) for each 1 ≤ j < s. Similarly, Ak(s, s) = qiziAk(s) and

Ak(s, j) = qiyiAk(j) for s < j ≤ k. Therefore,

Ak(s) = qi + qixi

s−1
∑

j=1

Ak(j) + qiziAk(s) + qiyi

k
∑

j=s+1

Ak(j).

Using (2.1), we have
∑k

j=s+1 Ak(j) = Ak −
∑s−1

j=1 Ak(j)−Ak(s)− 1, and thus

Ak(s) =
qiyi

1− qi(zi − yi)
Ak +

qi(1− yi)

1− qi(zi − yi)
+

qi(xi − yi)

1− qi(zi − yi)

s−1
∑

j=1

Ak(j),

as desired. ✷

Lemma 2.2 For each k ≥ 1 and s ∈ [k],

s
∑

j=1

Ak(j) =

s
∑

j=1

γj

s
∏

i=j+1

(1− αi) (2.3)

where, for i ∈ Nm and i ≥ 1, γi = qmym

1−qm(zm−ym)Ak + qm(1−ym)
1−qm(zm−ym) and αi = qm(ym−xm)

1−qm(zm−ym) .

Proof: We proceed by induction on s. Note, that given our definitions of γi and αi, we can rewrite (2.2)

as

Ak(s) = γs − αs

s−1
∑

j=1

Ak(j). (2.4)

It follows that

Ak(1) = γ1

so that (2.3) holds for s = 1. Thus the base case of our induction holds. Now assume that (2.3) holds for

s where 1 ≤ s < k. Then using our induction hypothesis and (2.4), it follows that

Ak(1) + · · ·+ Ak(s) + Ak(s + 1)

=

s
∑

j=1

γj

s
∏

i=j+1

(1− αi) + γs+1 − αs+1





s
∑

j=1

γj

s
∏

i=j+1

(1− αi)





= γs+1 −
s
∑

j=1

γj

s+1
∏

i=j+1

(1− αi)

=
s+1
∑

j=1

γj

s+1
∏

i=j+1

(1− αi).

Thus the induction step also holds so that (2.3) must hold in general. ✷
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Lemma 2.1 gives that the Ak(i)’s, for 1 ≤ i ≤ k, are the solution to the following matrix equation



















1 0 0 0 0 . . . 0
α2 1 0 0 0 . . . 0
α3 α3 1 0 0 . . . 0
α4 α4 α4 1 0 . . . 0
...

...
...

αk αk αk αk αk . . . 1



















·











Ak(1)
Ak(2)
...

Ak(k)











=











γ1

γ2

...

γk











, (2.5)

where, for i ∈ Nm and i ≥ 1, γi = qmym

1−qm(zm−ym)Ak + qm(1−ym)
1−qm(zm−ym) , and, for i ∈ Nm and i ≥ 2,

αi = qm(ym−xm)
1−qm(zm−ym) . Notice that αi = αj and γi = γj whenever i and j are from the same set Nm for

some m. In fact, it is easy to see that (2.2) and (2.3) imply that

Ak(i) = γi − αi

i−1
∑

j=1

γj

i−1
∏

i=j+1

(1− αi) (2.6)

holds for i = 1, . . . , k so that (2.5) has an explicit solution. By combining (2.1) and (2.6), we can obtain

the following result.

Theorem 2.3 For αi and γi as above (defined in Lemma 2.2), we have

Ak = 1 +

k
∑

j=1

γj

k
∏

i=j+1

(1− αi)

solving which for Ak gives

Ak =
1 +

∑k
j=1

qj(1−yj)
1−qj(zj−yj)

∏k
i=j+1

1−qi(zi−xi)
1−qi(zi−yi)

1−
∑k

j=1
qjyj

1−qj(zj−yj)

∏k
i=j+1

1−qi(zi−xi)
1−qi(zi−yi)

(2.7)

where for each variable a ∈ {x, y, z, q} we have ai = am if i ∈ Nm.

Even though we state Theorem 2.3 as the main theorem in this paper, its statement can be (easily)

generalized if one considers compositions instead of words (see [8]). Indeed, let

Bk = Bk(x[t];y[t]; z[t];q[t]; v) =
∑

π

v|π|
t
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i q
i(π)
i

where the sum is taken over all compositions π = π1π2 · · · with parts in [k] and |π| = π1 + π2 + · · · is

the weight of the composition π. Also, we let

Bk(i1, . . . , im) = Bk(x[t];y[t]; z[t];q[t]; i[m]; v) =
∑

π

v|π|
t
∏

i=1

x
←−
desNi

(π)

i y
←−
risNi

(π)

i z
levNi

(π)

i q
i(π)
i

where again the sum is taken over all compositions π = π1π2 · · · with parts in [k].
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Next, one can copy the arguments of Lemma 2.1 substituting qi by vsqi to obtain the following gener-

alization of Lemma 2.1:

Bk(s) =
vsqiyi

1− qi(zi − yi)
Bk +

vsqi(1− yi)

1− qi(zi − yi)
+

vsqi(xi − yi)

1− qi(zi − yi)

s−1
∑

j=1

Bk(j).

One can then prove the obvious analogue of Lemma 2.1 by induction and apply it to prove the following

theorem.

Theorem 2.4 We have

Bk = 1 +

k
∑

j=1

γj

k
∏

i=j+1

(1− αi)

where γi = viqmym

1−qm(zm−ym)Bk + viqm(1−ym)
1−qm(zm−ym) , and αi = viqm(ym−xm)

1−qm(zm−ym) if i belongs to Nm. Thus,

Bk =
1 +

∑k
j=1

vjqj(1−yj)
1−qj(zj−yj)

∏k
i=j+1

1−qi(zi−yi+vi(yi−xi))
1−qi(zi−yi)

1−
∑k

j=1
vjqjyj

1−qj(zj−yj)

∏k
i=j+1

1−qi(zi−yi+vi(yi−xi))
1−qi(zi−yi)

where for each variable a ∈ {x, y, z, q} we have ai = am if i ∈ Nm.

Theorem 2.4 can be viewed as a q-analogue of Theorem 2.3. (Set v = 1 in Theorem 2.4 to get Theo-

rem 2.3.)

3 Counting words by the types of levels

Suppose we are given a set partition N = N1∪N2∪ · · ·∪Ns. First observe that for any fixed i, if we want

the distribution of words in [k]n according to the number of levels which involve elements in Ni, then it

is easy to see by symmetry that the distribution will depend only on the cardinality of Ni ∩ [k]. Thus we

only need to consider the case where s = 2 and N1 = {1, . . . , t} for some t ≤ k.

Let

λj =
qj(1− yj)

1− qj(zj − yj)
, (3.1)

νj =
qjyj

1− qj(zj − yj)
, and (3.2)

µi =
1− qi(zi − xi)

1− qi(zi − yi)
. (3.3)

Then we can rewrite (2.7) for any arbitrary set partition N = N1 ∪ N2 ∪ · · · ∪ Ns as

Ak =
1 +

∑k
j=1 λj

∏k
i=j+1 µi

1−
∑k

j=1 νj

∏k
i=j+1 µi

(3.4)

where for each variable a ∈ {x, y, z, q}, we have ai = am if i ∈ Nm.
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Suppose we set x1 = x2 = y1 = y2 = z2 = 1 and q1 = q2 = q in (3.4) in the special case where s = 2
and N1 = [t] for some t ≤ k. Then λ1 = λ2 = 0, ν1 = q

1−q(z1−1) , ν2 = q, and µ1 = µ2 = 1. It follows

in this case that

Ak =
1

1−
(

tq
1−q(z1−1) + q(k − t)

)

=
∑

m≥0

qm

(

t

1− q(z1 − 1)
+ (k − t)

)m

=
∑

m≥0

qm

m
∑

i=0

(

m

i

)

(k − t)m−iti
(

1

1− q(z1 − 1)

)i

.

Since
(

1

1− q(z1 − 1)

)i

=
∑

a≥0

(i)a

a!
qa(z1 − 1)a

=
∑

a≥0

(

i + a− 1

a

)

qa(z1 − 1)a, (3.5)

it follows that

Ak =
∑

n≥0

qn

n
∑

m=0

m
∑

i=0

(

m

i

)(

i + n−m− 1

n−m

)

(k − t)m−iti(z1 − 1)n−m. (3.6)

Thus taking the coefficient of zs
1 on both sides of (3.6), we obtain the following result.

Theorem 3.1 Let N = N1 ∪ N2 where N1 = [t] and N2 = N − N1. Then if t ≤ k, the number of words

in [k]n with s levels that start with elements in N1 is

n
∑

m=0

m
∑

i=0

(−1)n−m−s

(

m

i

)(

i + n−m− 1

n−m

)(

n−m

s

)

(k − t)m−iti. (3.7)

Going back to the general set partition N = N1∪N2∪· · ·∪Ns, we can obtain a general formula for the

number of words in [k]n for which there are ti levels which start with an element of Ni for i = 1, . . . , s

as follows. Let ni = |Ni ∩ [k]| for i = 1, . . . , n. Then if set xj = yj = 1 and qj = q for all j, then it will

be the case that λj = 0 and µj = 1 and νj = q
1−q(zj−1) for all j. It easy follows that in this case,

Ak =
1

1−
(

∑s
i=1

niq
1−q(zi−1)

)

=
∑

m≥0

qm

(

s
∑

i=1

ni

1− q(zi − 1)

)m

=
∑

m≥0

qm
∑

a1+···as=m

a1,...,as≥0

(

m

a1, . . . , am

) s
∏

i=1

(

ni

1− q(zi − 1)

)ai

.
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Then using (3.5), we see that

Ak =
∑

m≥0

qm
∑

a1+···+as=m

a1,...,as≥0

(

m

a1, . . . , am

)

na1
1 · · ·n

as
s

s
∏

i=1

∑

bi≥0

(ai)bi

bi!
qbi(z1 − 1)bi

=
∑

n≥0

qn

n
∑

m=0

∑

a1+···+as=m

a1,...,as≥0

∑

b1+···+bs=n−m

b1,...,bs≥0

(

m

a1, . . . , am

)

na1
1 · · ·n

as
s

s
∏

i=1

(

ai + bi − 1

bi

)

(zi − 1)bi .(3.8)

Taking the coefficient of zt1
1 · · · z

ts
s on both sides of (3.8), we obtain the following result.

Theorem 3.2 Let N = N1 ∪ · · · ∪ Ns be a set partition of N. Let ni = |Ni ∩ [k]| for i = 1, . . . , s. Then

the number of words in [k]n with ti levels that start with elements in Ni for i = 1, . . . , s is

n
∑

m=0

∑

a1+···+as=m

a1,...,as≥0

∑

b1+···+bs=n−m

b1,...,bs≥0

(

m

a1, . . . , am

)

na1
1 · · ·n

as
s

s
∏

i=1

(

ai + bi − 1

bi

)(

bi

ti

)

. (3.9)

4 Classifying words by the number of descents that start with el-

ements ≤ t (≥ t + 1).

In this section, we shall consider the set partition N = N1 ∪ N2 where N1 = [t]. Now if t ≤ k, then it is

easy to see that we can rewrite (2.7) as

Ak =
1 +

∑k
j=1 λj

∏k
i=j+1 µi

1−
∑k

j=1 νj

∏k
i=j+1 µi

(4.1)

where

λj =
q1(1− y1)

1− q1(z1 − y1)
, νj =

q1y1

1− q1(z1 − y1)
, and µj =

1− q1(z1 − x1)

1− q1(z1 − y1)
if j ≤ t

and

λj =
q2(1− y2)

1− q2(z2 − y2)
, νj =

q2y2

1− q2(z2 − y2)
, and µj =

1− q2(z2 − x2)

1− q2(z2 − y2)
if j > t.

Now if we want to find formulas for the number of words in [k]n with s descents that start with an element

less than or equal to t, then we need to set x2 = y1 = y2 = z1 = z2 = 1 and q1 = q2 = q in (4.1). In that

case, we will have λj = 0 and νj = q for all j, µj = 1 + q(x1 − 1) for j ≤ t, and µj = 1 for j > t. It
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follows that

Ak =
1

1−
(

∑k
j=t+1 q +

∑t
j=1 q

∏t
i=j+1(1 + q(x1 − 1))

)

=
1

1−
(

(k − t)q + q
(1+q(x1−1))t−1
(1+q(x1−1))−1

)

=
1

1− 1
(x1−1) ((k − t)q(x1 − 1)− 1 + (1 + q(x1 − 1))t)

=
∑

m≥0

1

(x1 − 1)m

(

(k − t)q(x1 − 1)− 1 + (1 + q(x1 − 1))t
)m

=
∑

m≥0

1

(x1 − 1)m

m
∑

a=0

(

m

a

)

((k − t)q(x1 − 1)− 1)m−a(1 + q(x1 − 1))ta

=
∑

m≥0

1

(x1 − 1)m

m
∑

a=0

m−a
∑

b=0

ta
∑

c=0

(

m

a

)(

m− a

b

)(

ta

c

)

(−1)m−a−bqb(k − t)b(x1 − 1)bqc(x1 − 1)c.

If we want to take the coefficient of qn, then we must have b + c = n or c = n− b. Thus

Ak =
∑

n≥0

qn
∑

m≥0

m
∑

a=0

m−a
∑

b=0

(

m

a

)(

m− a

b

)(

ta

n− b

)

(−1)m−a−b(k − t)b(x1 − 1)n−m. (4.2)

Taking the coefficient of qn of both sides of (4.2), we see that

∑

π∈[k]n

x
←−
des[t](π)
1 =

∑

m≥0

m
∑

a=0

m−a
∑

b=0

(

m

a

)(

m− a

b

)(

ta

n− b

)

(−1)m−a−b(k − t)b(x1 − 1)n−m (4.3)

for all n. However, if we replace x1 by z + 1 in (4.3), we see that the polynomial

∑

π∈[k]n

(z + 1)
←−
des[t](π)

has the Laurent expansion

∑

m≥0

m
∑

a=0

m−a
∑

b=0

(

m

a

)(

m− a

b

)(

ta

n− b

)

(−1)m−a−b(k − t)bzn−m.

It follows that it must be the case that

∑

m≥n+1

m
∑

a=0

m−a
∑

b=0

(

m

a

)(

m− a

b

)(

ta

n− b

)

(−1)m−a−b(k − t)bzn−m = 0,
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so that

Ak =
∑

n≥0

qn

n
∑

m=0

m
∑

a=0

m−a
∑

b=0

(−1)m−a−b

(

m

a

)(

m− a

b

)(

ta

n− b

)

(k − t)b(x1 − 1)n−m. (4.4)

Thus if we take the coefficient of xs
1 on both sides of (4.4) and we use the remark in the introduction that

←−
des[t](w) =

←−
ris{k+1−t,...,k}(w) for all w ∈ [k]n, then we see that the number of words w ∈ [k]n such that

←−
des[t](w) = s (

←−
ris{k+1−t,...,k}(w) = s) is equal to

n−s
∑

m=0

m
∑

a=0

m−a
∑

b=0

(−1)n−a−b−s

(

m

a

)(

m− a

b

)(

ta

n− b

)(

n−m

s

)

(k − t)b. (4.5)

Reordering the summands, we see that (4.5) is equal to

n−s
∑

b=0

(k − t)b

n−s
∑

a=b

(−1)n−a−b−s

(

ta

n− b

) n−s
∑

m=a+b

(

m

a

)(

m− a

b

)(

n−m

s

)

. (4.6)

However it is the case that

n−s
∑

m=a+b

(

m

a

)(

m− a

b

)(

n−m

s

)

=

(

n + 1

a + b + s + 1

)(

a + b

a

)

. (4.7)

This is easy to see combinatorially. That is, we can interpret the RHS of (4.7) as the number of ways

of choosing a + b + 1 + s points, 1 ≤ x1 < x2 < · · · < xa+b+1+s ≤ n + 1, from the set [n + 1]
and then circling a of the points from x1 < · · · < xa+b. However if we classify our choices by the

value m + 1 of xa+b+1, then we see that
(

m
a

)

can be viewed as the number of ways to pick the circled

points from [m],
(

m−a
b

)

can be viewed as the number of ways to pick the non-circled chosen points

from [m], and the binomial coefficient
(

n−m
s

)

can be viewed as the number of ways to pick the points

xa+b+2 < · · · < xa+b+1+s from the interval {m + 2, . . . , n + 1}.

Thus we have proved the following theorem.

Theorem 4.1 If t ≤ k, then the number of words w ∈ [k]n such that
←−
des[t](w) = s (

←−
ris{k+1−t,...,k}(w) =

s) is equal to

n−s
∑

b=0

(k − t)b

n−s
∑

a=b

(−1)n−a−b−s

(

ta

n− b

)(

n + 1

a + b + s + 1

)(

a + b

a

)

. (4.8)

If we want to find formulas for the number of words in [k]n with s descents that start with an element

greater than t, then we need to set x1 = y1 = y2 = z1 = z2 = 1 and q1 = q2 = q in (4.1). In that case,

we will have λj = 0 and νj = q for all j, µj = 1 + q(x2 − 1) for j > t, and µj = 1 for j ≤ t. It follows
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that

Ak =
1

1−
(

∑t
j=0 q(1 + q(x2 − 1))k−t +

∑k
j=t+1 q

∏k
i=j+1(1 + q(x2 − 1))

)

=
1

1−
(

qt(1 + q(x2 − 1))k−t + q
(1+q(x2−1))k−t−1

(1+q(x2−1))−1

)

=
1

1− 1
(x2−1) (qt(x2 − 1)(1 + q(x2 − 1))k−t + (1 + q(x1 − 1))k−t − 1)

=
1

1− 1
(x2−1) ((qt(x2 − 1) + 1)(1 + q(x2 − 1))k−t − 1)

=
∑

m≥0

1

(x2 − 1)m

(

(qt(x2 − 1) + 1)(1 + q(x2 − 1))k−t − 1
)m

=
∑

m≥0

1

(x2 − 1)m

m
∑

a=0

(

m

a

)

(−1)m−a(qt(x2 − 1) + 1)a(1 + q(x2 − 1))(k−t)a

=
∑

m≥0

1

(x2 − 1)m

m
∑

a=0

a
∑

b=0

(k−t)a
∑

c=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

c

)

qbtb(x2 − 1)bqc(x2 − 1)c.

Again, if we want to take the coefficient of qn, then we must have b + c = n or c = n− b. Thus

Ak =
∑

n≥0

qn
∑

m≥0

m
∑

a=0

a
∑

b=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

n− b

)

tb(x2 − 1)n. (4.9)

Taking the coefficient of qn of both sides of (4.9), we see that

∑

π∈[k]n

x
←−
des{t+1,...k}(π)
2 =

∑

m≥0

m
∑

a=0

a
∑

b=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

n− b

)

tb(x2 − 1)n−m (4.10)

for all n. However, if we replace x2 by z + 1 in (4.3), we see that the polynomial

∑

π∈[k]n

(z + 1)
←−
des{t+1,...,k}(π)

has the Laurent expansion

∑

m≥0

m
∑

a=0

a
∑

b=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

n− b

)

tbzn−m.

It follows that it must be the case that

∑

m≥n+1

m
∑

a=0

a
∑

b=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

n− b

)

tbzn−m = 0,
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so that

Ak =
∑

n≥0

qn

n
∑

m=0

m
∑

a=0

a
∑

b=0

(−1)m−a

(

m

a

)(

a

b

)(

(k − t)a

n− b

)

tb(x1 − 1)n−m. (4.11)

Thus if we take the coefficient of xs
2 on both sides of (4.11) and we use the remark in the introduction that

←−
des{t+1,...,k}(w) =

←−
ris[k−t](w) for all w ∈ [k]n, then we have that the number of words w ∈ [k]n such

that
←−
des{t+1,...,k}(w) = s (

←−
ris[k−t](w) = s) is equal to

n−s
∑

m=0

m
∑

a=0

a
∑

b=0

(−1)n−a−s

(

m

a

)(

a

b

)(

(k − t)a

n− b

)(

n−m

s

)

tb. (4.12)

Reordering the summands, we see that (4.12) is equal to

n−s
∑

b=0

tb
n−s
∑

a=b

(−1)n−a−s

(

a

b

)(

(k − t)a

n− b

) n−s
∑

m=a

(

m

a

)(

n−m

s

)

. (4.13)

However it is easy to see that

n−s
∑

m=a

(

m

a

)(

n−m

s

)

=

(

n + 1

a + 1 + s

)

. (4.14)

because the LHS of (4.14) is the result of classifying the ways to pick a+1+ s points from [n+1] by the

value m+1 of the (a+1)-st point reading from left to right. Thus we have obtain the following theorem.

Theorem 4.2 If t ≤ k, then the number of words w ∈ [k]n such that
←−
des{t+1,...,k}(w) = s (

←−
ris[k−t](w) =

s) is equal to
n−s
∑

b=0

tb
n−s
∑

a=b

(−1)n−a−s

(

a

b

)(

(k − t)a

n− b

)(

n + 1

a + s + 1

)

. (4.15)

In some special cases, we can give direct combinatorial proofs of Theorems 4.1 and 4.2. For example,

in the special case of Theorem 4.2 where t = k − 1, one can use the Pfaff-Saalschütz Theorem to show

that
(

b

s

)(

n− b

s

)

=
n−s
∑

a=b

(−1)n−s−a

(

a

b

)(

a

n− b

)(

n + 1

a + s + 1

)

. (4.16)

so that (4.15) reduces to
n−s
∑

b=0

(k − 1)b

(

b

s

)(

n− b

s

)

. (4.17)

It is easy to see that (4.17) is the result of classifying the words such that
←−
des{k}(w) = s by the number of

letters which are not equal to k in the word. That is, if there are b such letters, then we can pick a word of

length b in the alphabet {1, . . . , k− 1} in (k− 1)b ways. Next we insert a k directly in front of s different

letters in u in
(

b
s

)

ways to create s descents that start with k. Finally we can place the remaining n− b− s

k’s either in a block with one of the k’s that start a descent or at the end of u. The number of ways to place

the remaining k’s is the number of non-negative integer valued solutions to x1 + · · ·+ xs+1 = n− b− s

or, equivalently, the number of positive integer valued solutions to y1 + · · ·+ ys+1 = n− b + 1 which is

clearly
(

n−b
s

)

. We can give a similar combinatorial proof of Theorem 4.1 in the special case when t = 2.
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5 Classifying descents and rises by their equivalence classes

mod s for s ≥ 2.

In this section we study the set partition N = N1 ∪ N2 ∪ · · · ∪ Ns where s > 2 and Ni = {j | j = i

mod s} for i = 1, . . . , s. In this case, we shall denote Ni = sN + i for i = 1, . . . , s− 1 and Ns = sN.

Recall that we can rewrite (2.7) as

Ak =
1 +

∑k
j=1 λj

∏k
i=j+1 µi

1−
∑k

j=1 νj

∏k
i=j+1 µi

(5.1)

where λj =
qj(1−yj)

1−qj(zj−yj)
, µi = 1−qi(zi−xi)

1−qi(zi−yi)
, and νj =

qjyj

1−qj(zj−yj)
.

We let A
(s)
k denote Ak under the substitution λsi+j = λj , µsi+j = µj , and νsi+j = νj for all i and

j = 1, . . . , s. Then it is easy to see that for k ≥ 1,

A
(s)
sk =

1 +
(

∑s
j=1 λj

∏s
i=j+1 µi

)(

∑k−1
r=0(µ1µ2 · · ·µs)

r
)

1−
(

∑s
j=1 νj

∏s
i=j+1 µi

)(

∑k−1
r=0(µ1µ2 · · ·µs)r

)

=
1 +

(

∑s
j=1 λj

∏s
i=j+1 µi

)(

(µ1µ2···µs)k−1
(µ1µ2···µs)−1

)

1−
(

∑s
j=1 νj

∏s
i=j+1 µi

)(

(µ1µ2···µs)k−1
(µ1µ2···µs)−1

) .

Similarly for 1 ≤ t ≤ s− 1,

A
(s)
sk+t = (5.2)

1 + (
∑t

j=1 λj

∏t
i=j+1 µi)

(

∑k
r=0(µ1 · · ·µs)

r
)

+ (µ1µ2 · · ·µt)(
∑s

j=t+1 λj

∏s
i=j+1 µi)

(

∑k−1
r=0(µ1 · · ·µs)

r
)

1− (
∑t

j=1 νj

∏t
i=j+1 µi)

(

∑k
r=0(µ1 · · ·µs)r

)

− (µ1µ2 · · ·µt)(
∑s

j=t+1 νj

∏s
i=j+1 µi)

(

∑k−1
r=0(µ1 · · ·µs)r

)

1 + (
∑t

j=1 λj

∏t
i=j+1 µi)

(

(µ1µ2···µs)k+1−1
(µ1µ2···µs)−1

)

+ (µ1µ2 · · ·µt)(
∑s

j=t+1 λj

∏s
i=j+1 µi)

(

(µ1µ2···µs)k−1
(µ1µ2···µs)−1

)

1− (
∑t

j=1 νj

∏t
i=j+1 µi)

(

(µ1µ2···µs)k+1−1
(µ1µ2···µs)−1

)

− (µ1µ2 · · ·µt)(
∑s

j=t+1 νj

∏s
i=j+1 µi)

(

(µ1µ2···µs)k−1
(µ1µ2···µs)−1

) .

5.1 The case where k is equal to 0 mod s.

First we shall consider formulas for the number of words in [sk]n with p descents whose first element

is congruent to r mod s where 1 ≤ r ≤ s. Note that if we consider the complement map compsk :
[sk]n → [sk]n given by comp(π1 · · ·πn) = (sk + 1 − π1) · · · (sk + 1 − πn), then it is easy to see that
←−
dessN+r(π) =

←−
rissN+s+1−r(compsk(π)) for r = 1, . . . , s. Thus the problem of counting the number of

words in [sk]n with p descents whose first element is congruent to r mod s is the same as counting the

number of words in [sk]n with p rises whose first element is congruent to s + 1− r mod s

Now consider the case where zi = yi = 1 and qi = q for i = 1, . . . , s and xi = 1 for i 6= r. In this

case,

A
(s)
sk =

∑

n≥0

qn
∑

π∈[sk]n

x
←−
dessN+r(π)
r .
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Substituting into our formulas for A
(s)
sk , we see that in this case λi = 0 and νi = q for i = 1, . . . , s and

µi = 1 for i 6= r and µr = 1 + q(xr − 1). Thus under this substitution, (5.2) becomes

A
(s)
sk =

1

1− ((r − 1)qµr + (s− r + 1)q)
µk

r−1
q(xr−1)

=
1

1− 1
(xr−1) (s + (r − 1)q(xr − 1))(µk

r − 1)

=
∞
∑

j=0

1

(xr − 1)j
(s + (r − 1)q(xr − 1))j(µk

r − 1)j

=

∞
∑

j=0

1

(xr − 1)j

j
∑

i1,i2=0

(

j

i1

)

sj−i1(r − 1)i1qi1(xr − 1)i1

(

j

i2

)

(−1)j−i2µki2
r

=

∞
∑

j=0

1

(xr − 1)j

j
∑

i1,i2=0

(

j

i1

)

sj−i1(r − 1)i1qi1(xr − 1)i1

(

j

i2

)

(−1)j−i2

(

ki2
∑

t=0

(

ki2

t

)

qt(xr − 1)t

)

.

Taking the coefficient of qn in (5.3), we see that n = t + i1 so that

A
(s)
sk =

∑

n≥0

qn

∞
∑

j=0

j
∑

i1,i2=0

(−1)j−i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)

(xr − 1)n−j . (5.3)

Thus we must have

∑

π∈[sk]n

x
←−
dessN+r(π)
r =

∞
∑

j=0

j
∑

i1,i2=0

(−1)j−i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)

(xr − 1)n−j (5.4)

for all n. However, if we replace xr by z + 1 in (5.4), we see that the polynomial
∑

π∈[sk]n

(z + 1)
←−
dessN+r(π)

has the Laurent expansion

∞
∑

j=0

j
∑

i1,i2=0

(−1)j−i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)

zn−j .

It follows that it must be the case that

∞
∑

j=n+1

j
∑

i1,i2=0

(−1)j−i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)

zn−j = 0

so that

A
(s)
sk =

∑

n≥0

qn

n
∑

j=0

j
∑

i1,i2=0

(−1)j−i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)

(xr − 1)n−j . (5.5)

Thus we have the following theorem by taking the coefficient of xp
r on both sides of (5.5).
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Theorem 5.1 The number of words π ∈ [sk]n with
←−
dessN+r(π) = p (

←−
rissN+s+1−r(π) = p) is

n−p
∑

j=0

j
∑

i1,i2=0

(−1)n+p+i2sj−i1(r − 1)i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)(

n− j

p

)

. (5.6)

In the case s = 2, our formulas simplify somewhat. For example, putting s = 2 and r = 2 in

Theorem 5.1, we obtain the following.

Corollary 5.2 The number of n-letter words π on [2k] having
←−
desE(π) = p (resp.

←−
risO(π) = p) is given

by

n−s
∑

j=0

j
∑

i1,i2=0

(−1)n+p+i22j−i1

(

j

i1

)(

j

i2

)(

ki2

n− i1

)(

n− j

p

)

.

Similarly, putting s = 2 and r = 1 in Theorem 5.1, we obtain the following.

Corollary 5.3 The number of n-letter words π on [2k] having
←−
desO(π) = p (resp.

←−
risE(π) = p) is given

by

n−p
∑

j=0

j
∑

i=0

(−1)n+p+i2j

(

j

i

)(

ki

n

)(

n− j

p

)

.

5.2 The cases where k is equal to t mod s for t = 1, . . . , s− 1.

Fix t where 1 ≤ t ≤ s − 1. First we shall consider formulas for the number of words in [sk + t]n

with p descents whose first element is congruent to r mod s where 1 ≤ r ≤ s. We shall see that

we have to divide this problem into two cases depending on whether r ≤ t or r > t. Note that if

we consider the complement map compsk+t : [sk + t]n → [sk + t]n given by comp(π1 · · ·πn) =

(sk + t+1−π1) · · · (sk + t+1−πn), then it is easy to see that
←−
dessN+r(π) =

←−
rissN+t+1−r(compsk(π))

for r = 1, . . . , t and
←−
dessN+r(π) =

←−
rissN+s+r−t−1(compsk(π)) for r = t + 1, . . . , s.

First consider the case where yi = zi = 1 for i = 1, . . . , s and xi = 1 for i 6= r where r > t. In this

case,

A
(s)
sk+t =

∑

n≥0

qn
∑

π∈[sk+t]n

x
←−
dessN+r(π)
r .

Substituting into our formulas for A
(s)
sk+t, we see that in this case λi = 0 and νi = q for i = 1, . . . , s and
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µi = 1 for i 6= r and µr = 1 + q(xr − 1). Thus under this substitution, (5.2) becomes

A
(s)
sk+t =

1

1− qt µk+1
r −1

q(xr−1) − ((r − 1− t)qµr + (s− r + 1)q)
µk

r−1
q(xr−1)

=
1

1− 1
(xr−1) [t(µ

k+1
r − 1) + (s− t + (r − 1− t)q(xr − 1))(µk

r − 1)]

=
1

1− 1
(xr−1) [µ

k
r [s + (r − 1)q(xr − 1)]− [s + (r − 1− t)q(xr − 1)]]

=
∞
∑

m=0

1

(xr − 1)m
[µk

r [s + (r − 1)q(xr − 1)]− [s + (r − 1− t)q(xr − 1)]]m

=

∞
∑

m=0

m
∑

j=0

(−1)m−j

(xr − 1)m

(

m

j

)

(s + (r − 1− t)q(xr − 1))m−j(s + (r − 1)q(xr − 1))jµkj
r .

Using the expansions

(s + (r − 1− t)q(xr − 1))m−j =

m−j
∑

i1=0

(

m− j

i1

)

sm−j−i1(r − 1− t)i1qi1(xr − 1)i1 ,

(s + (r − 1)q(xr − 1))j =

j
∑

i2=0

(

j

i2

)

sj−i2(r − 1)i2qi2(xr − 1)i2 , and

µkj
r =

kj
∑

i3=0

(

kj

i3

)

qi3(xr − 1)i3 ,

and setting i1 + i2 + i3 = n, we see that (5.7) becomes

A
(s)
sk+t = (5.7)

∑

n≥0

qn

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(r − 1− t)i1(r − 1)i2 ×

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)

(xr − 1)n−m.

Thus we must have
∑

π∈[skt]n

x
←−
dessN+r(π)
r = (5.8)

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(r − 1− t)i1(r − 1)i2 ×

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)

(xr − 1)n−m.
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for all n. However, if we replace xr by z + 1 in (5.8), we see that the polynomial

∑

π∈[sk+t]n

(z + 1)
←−
dessN+r(π)

has the Laurent expansion

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(r − 1− t)i1(r − 1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)

zn−m.

It follows that

∞
∑

m=n+1

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m − jsm−i1−i2(r − 1− t)i1(r − 1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)

zn−m = 0

so that

A
(s)
sk+t = (5.9)

n
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(r − 1− t)i1(r − 1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)

(xr − 1)n−m.

Thus we have the following theorem by taking the coefficient of xp
r on both sides of (5.9).

Theorem 5.4 If t = 1, . . . , s − 1 and t < r ≤ s, then the number of words π ∈ [sk + t]n with
←−
dessN+r(π) = p (

←−
rissN+s+r−t−1(π) = p) is

n−p
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)n+p+jsm−i1−i2(r−1−t)i1(r−1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj

n− i1 − i2

)(

n−m

p

)

.

(5.10)

In the case s = 2, our formulas simplify somewhat. For example, putting s = 2, r = 2 and t = 1 in

Theorem 5.4, we obtain the following.

Corollary 5.5 The number of n-letter words π over [2k + 1] having
←−
desE(π) = p (resp.

←−
risE(π) = p) is

given by
n−p
∑

m=0

m
∑

j=0

j
∑

i=0

(−1)n+p+j2m−i

(

m

j

)(

j

i

)(

kj

n− i

)(

n−m

p

)

.

Next consider the case where yi = zi = 1 for i = 1, . . . , s and xi = 1 for i 6= r where r ≤ t. In this

case,

A
(s)
sk+t =

∑

n≥0

qn
∑

π∈[sk+t]n

x
←−
dessN+r(π)
r .
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Substituting into our formulas for A
(s)
sk+t, we see that in this case λi = 0 and νi = q for i = 1, . . . , s and

µi = 1 for i 6= r and µr = 1 + q(xr − 1). Thus, under this substitution, (5.2) becomes

A
(s)
sk+t =

1

1− ((r − 1)qµr) + q(t− r + 1)) µ
k+1
r −1

q(xr−1) − (s− t)qµr
µk

r−1
q(xr−1)

=
1

1− 1
(xr−1) [(t + (r − 1)q(xr − 1))(µk+1

r − 1) + (s− t)µr(µk
r − 1)]

=
1

1− 1
(xr−1) [µ

k+1
r [s + (r − 1)q(xr − 1)]− [s + (s− t + r − 1)q(xr − 1)]]

=
∞
∑

m=0

1

(xr − 1)m
[µk+1

r [s + (r − 1)q(xr − 1)]− [s + (s− t + r − 1)q(xr − 1)]]m

=
∞
∑

m=0

m
∑

j=0

(−1)m−j

(xr − 1)m

(

m

j

)

(s + (s− t + r − 1)q(xr − 1))m−j(s + (r − 1)q(xr − 1))jµkj+j
r .

Using the expansions

(s + (s− t + r − 1)q(xr − 1))m−j =

m−j
∑

i1=0

(

m− j

i1

)

sm−j−i1(s− t + r − 1)i1qi1(xr − 1)i1 ,

(s + (r − 1)µj
r =

j
∑

i2=0

(

j

i2

)

sj−i2(r − 1)i2qi2(xr − 1)i2 , and

µkj+j
r =

kj+j
∑

i3=0

(

kj + j

i3

)

qi3(xr − 1)i3 ,

and setting i1 + i2 + i3 = n, we see that (5.11) becomes

A
(s)
sk+t = (5.11)

∑

n≥0

qn

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(s− t + r − 1)i1(r − 1)i2 ×

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)

(xr − 1)n−m.

Thus we must have
∑

π∈[skt]n

x
←−
dessN+r(π)
r = (5.12)

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(s− t + r − 1)i1(r − 1)i2 ×

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)

(xr − 1)n−m.
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for all n. However, if we replace xr by z + 1 in (5.12), we that the polynomial

∑

π∈[sk+t]n

(z + 1)
←−
dessN+r(π)

has the Laurent expansion

∞
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(s−t+r−1)i1(r−1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)

zn−m.

It follows that it must be the case that

∞
∑

m=n+1

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(s− t + r − 1)i1(r − 1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)

zn−m = 0

so that

A
(s)
sk+t =

n
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)m−jsm−i1−i2(s− t + r − 1)i1(r − 1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)

(xr − 1)n−m.

Thus we have the following theorem by taking the coefficient of xp
r on both sides of (5.9).

Theorem 5.6 If k ≥ 0, s ≥ 2, t = 1, . . . , s− 1, and t < r ≤ s, then the number of words π ∈ [sk + t]n

with
←−
dessN+r(π) = p (

←−
rissN+s+r−t−1(π) = p ) is

n−p
∑

m=0

m
∑

j=0

m−j
∑

i1=0

j
∑

i2=0

(−1)n+p+jsm−i1−i2(s−t+r−1)i1(r−1)i2

(

m

j

)(

m− j

i1

)(

j

i2

)(

kj + j

n− i1 − i2

)(

n−m

p

)

.

In the case s = 2, our formulas simplify somewhat. For example, putting s = 2, r = 1 and t = 1 in

Theorem 5.4, we obtain the following.

Corollary 5.7 The number of n-letter words π over [2k + 1] having
←−
desO(π) = p (resp.

←−
risO(π) = p) is

given by
n−p
∑

m=0

m
∑

j=0

m−j
∑

i=0

(−1)n+p+j2m−i

(

m

j

)(

m− j

i

)(

kj + j

n− i

)(

n−m

p

)

.

6 Concluding remarks

A particular case of the results obtained by Burstein and Mansour in [4] is the distribution of descents

(resp. levels, rises), which can be viewed as occurrences of so called generalized patterns 21 (resp. 11,

12) in words. To get these distributions from our results, we proceed as follows (we explain only the case

of descents; rises and levels can be considered similarly). Set x1 = x2 = x, y1 = y2 = z1 = z2 = 1,

and q1 = q2 = q in A
(2)
2k and A

(2)
2k+1 to get the distribution in [4, Theorem 2.2] for ℓ = 2 (the case of
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descents/rises). Thus, our results refine and generalize the known distributions of descents, levels, and

rises in words.

It is interesting to compare our formulas with formulas of Hall and Remmel [7]. For example, suppose

that X = E and Y = N and ρ = (ρ1, . . . , ρ2k) is a composition of n. Then Theorem 1.1 tells that the

number of words π of [2k]n such that
←−
desE(π) = p is

(

a

ρ2, ρ4, . . . , ρ2k

) p
∑

r=0

(−1)p−r

(

a + r

r

)(

n + 1

p− r

) k
∏

i=1

(

ρ2i + r + (ρ2i+1 + ρ2i+3 + · · ·+ ρ2k−1)

ρ2i

)

,

(6.1)

where a = ρ2 + ρ4 + · · · + ρ2k. This shows that once we are given the distribution of the letters for

words in [2k]n, we can find an expression for the number of words π such that
←−
desE(π) = p with a single

alternating sum of products of binomial coefficients. This contrasts with Corollary 5.2 where we require

a triple alternating sum of products of binomial coefficients to get an expression for the number of words

of [2k]n such that
←−
desE(π) = p. Of course, we can get a similar expression for the number of words

of [2k]n such that
←−
desE(π) = p by summing the formula in (6.1) over all

(

n+k−1
k−1

)

compositions of n

into k parts but that has the disadvantage of having the outside sum have a large range as n and k get

large. Nevertheless, we note that for (6.1) Hall and Remmel have a direct combinatorial proof via a sign-

reversing involution. It is therefore natural to ask whether one can find similar proofs for our formulas in

Sections 3 and 4.

There are several ways in which one could extend our research. For example, one can study our refined

statistics (
←−−
DesX(π),

←−
RisX(π), LevX(π)) on the set of all words avoiding a fixed pattern or a set of patterns

(see [1, 2, 3, 4] for definitions of “patterns in words” and results on them). More generally, instead of

considering the set of all words, one can consider a subset of it defined in some way, and then to study the

refined statistics on the subset. Also, instead of considering refined descents, levels, and rises (patterns of

length 2), one can consider patterns of length 3 and more in which the equivalence class of the first letter

is fixed, or, more generally, in which the equivalence classes of more than one letter (possibly all letters)

are fixed. Once such a pattern (or set of patterns) is given, the questions on avoidance (or the distribution

of occurrences) of the pattern in words over [k] can be raised.
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