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Universitat Politècnica de Catalunya
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It is proved that there exist graphs of bounded degree with arbitrarily large queue-number. In particular, for all ∆ ≥ 3

and for all sufficiently large n, there is a simple ∆-regular n-vertex graph with queue-number at least c

√
∆n

1/2−1/∆

for some absolute constant c.
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1 Introduction

We consider graphs possibly with loops but with no parallel edges. A graph without loops is simple. Let

G be a graph with vertex set V (G) and edge set E(G). If S ⊆ E(G) then G[S] denotes the spanning

subgraph of G with edge set S. We say G is ordered if V (G) = {1, 2, . . . , |V (G)|}. Let G be an ordered

graph. Let ℓ(e) and r(e) denote the endpoints of each edge e ∈ E(G) such that ℓ(e) ≤ r(e). Two edges

e and f are nested and f is nested inside e if ℓ(e) < ℓ(f) and r(f) < r(e). An ordered graph is a

queue if no two edges are nested. Observe that the left and right endpoints of the edges in a queue are in

first-in-first-out order—hence the name ‘queue’. An ordered graph G is a k-queue if there is a partition

{E1, E2, . . . , Ek} of E(G) such that each G[Ei] is a queue.

Let G be an (unordered) graph. A k-queue layout of G is a k-queue that is isomorphic to G. The

queue-number of G is the minimum integer k such that G has a k-queue layout. Queue layouts and queue-

number were introduced by Heath et al. [15, 16] in 1992, and have applications in sorting permutations

[12, 17, 23, 25, 29], parallel process scheduling [3], matrix computations [24], and graph drawing [4, 6].

Other aspects of queue layouts have been studied in [7, 8, 10, 14, 26, 27, 30].
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Prior to this work it was unknown whether graphs of bounded degree have bounded queue-number. The

main contribution of this note is to prove that there exist graphs of bounded degree with arbitrarily large

queue-number.

Theorem 1 For all ∆ ≥ 3 and for all sufficiently large n > n(∆), there is a simple ∆-regular n-vertex

graph with queue-number at least c
√

∆n1/2−1/∆ for some absolute constant c.

The best known upper bound on the queue-number of a graph with maximum degree ∆ is e(∆n/2)1/2

due to Dujmović and Wood [8] (where e is the base of the natural logarithm). Observe that for large ∆,

the lower bound in Theorem 1 tends toward this upper bound. Although for specific values of ∆ a gap

remains. For example, for ∆ = 3 we have an existential lower bound of Ω(n1/6) and a universal upper

bound of O(n1/2).
Closely related to a queue layout is the notion of a track layout. Informally speaking, a track layout

of a graph consists of a proper vertex colouring, and a total order of each colour class, such that between

each pair of colour classes, no two edges cross (with respect to the orders of the colour classes that

contain the endpoints of the edges). The track-number of a graph G, denoted by tn(G), is the minimum

number of colours in a track layout of G; see [4–7, 9–11, 13]. Dujmović et al. [6] proved that qn(G) ≤
tn(G)− 1. Thus a lower bound on the queue-number also provides a lower bound on the track-number(i).

In particular, Theorem 1 implies:

Theorem 2 For all ∆ ≥ 3 and for all sufficiently large n > n(∆), there is a simple ∆-regular n-vertex

graph with track-number at least c
√

∆n1/2−1/∆ for some absolute constant c.

Note that there is also a O(n1/2) upper bound on the track-number of graphs with bounded degree.

The best result is tn(G) ≤ 5∆(G)
√

2n, which follows from the result by Dujmović and Wood [11] that

tn(G) ≤ 5d
√

2n for every d-degenerate(ii) graph G. Thus for large ∆, the lower bound in Theorem 2

tends toward this upper bound.

2 Proof of Theorem 1

The proof of Theorem 1 is modelled on a similar proof by Barát et al. [1]. Basically, we show that

there are more ∆-regular graphs than graphs with bounded queue-number. The following lower bound

on the number of ∆-regular graphs is a corollary of more precise bounds due to Bender and Canfield [2],

Wormald [31], and McKay [22]; see [1].

Lemma 1 ([2, 22, 31]) For all integers ∆ ≥ 1 and for sufficiently large n ≥ n(∆), the number of labelled

simple ∆-regular n-vertex graphs is at least

( n

3∆

)∆n/2

It remains to count the graphs with bounded queue-number. We will need the following lemma, which

was previously known only for loopless graphs.

Lemma 2 ([8]) Every n-vertex queue has at most 2n − 1 edges.

(i) A converse result in fact holds. Dujmović et al. [7] proved that track-number is bounded by a function of queue-number. In

particular, tn(G) ≤ 4 qn(G) · 4qn(G)(2 qn(G)−1)(4 qn(G)−1) for every graph G.
(ii) A graph G is d-degenerate if every subgraph of G has a vertex of degree at most d.
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Proof: If v + w = x + y for two distinct edges vw and xy, then vw and xy are nested. No two edges are

nested in a queue. The result follows since 2 ≤ v + w ≤ 2n. ✷

Let g(n) be the number of queues on n vertices. For our purposes it suffices to show that g(n) ≤
cn. While such a bound can be concluded from the work of Klazar [19], who described a generating

function for g(n) with rough asymptotic analysis, we include a different and simpler proof for the sake of

completeness. It is similar to a proof of a more general result by Klazar [20]; also see [21, 28] for other

related and more general results.

Lemma 3 g(n) ≤ cn for some absolute constant c.

Proof: Say G is an n-vertex queue. Let G′ be an ordered 2n-vertex graph obtained by the following

doubling operation. For every edge vw of G, add to G′ a non-empty set of edges between {2v − 1, 2v}
and {2w − 1, 2w}, no pair of which are nested. If v 6= w then there are 11 possible ways to do this, as

illustrated in Figure 1, and if v = w then there are 7 possible ways to do this, as illustrated in Figure 2.

Now G has at most 2n−1 edges by Lemma 2. Thus at most 112n−1 queues on 2n vertices can be obtained

from G by doubling. On the other hand, every 2n-vertex queue can be obtained from some n-vertex queue

by doubling. To see this, merge every second pair of vertices, introduce a loop between merged vertices

that are adjacent, and replace any resulting parallel edges by a single edge. No two edges are nested in the

obtained graph. Hence g(2n) ≤ 112n−1 · g(n). It follows that g(n) ≤ 112n. ✷

2v
−

1 2v

2w
−

1

2w

Fig. 1: The 11 possible ways to add a non-empty set of non-nested edges between {2v − 1, 2v} and {2w − 1, 2w}.

Fig. 2: The 7 possible ways to add a non-empty set of edges on 2v − 1 and 2v.

Lemma 3 implies:

Corollary 1 The number of k-queues on n vertices is at most ckn for some absolute constant c.
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It is easily seen that Lemma 1 and Corollary 1 imply a lower bound of c(∆/2 − 1) log n on the queue-

number of some ∆-regular n-vertex graph. To improve this logarithmic bound to polynomial, we now

give a more precise analysis of the number of k-queues that also accounts for the number of edges in the

graph. Let g(n, m) be the number of queues on n vertices and m edges.

Lemma 4

g(n, m) ≤
{

(

n
2m

)

· c2m , if m ≤ n
2

cn , if m > n
2 ,

for some absolute constant c.

Proof: By Lemma 3, we have the upper bound of cn regardless of m. Suppose that m ≤ n
2 . An m-edge

graph has at most 2m vertices of non-zero degree. Thus every n-vertex m-edge queue is obtained by first

choosing a set S of 2m vertices, and then choosing a queue with |S| vertices. The result follows. ✷

Let g(n, m, k) be the number of k-queues on n vertices and m edges.

Lemma 5 For all integers k such that 2m
n ≤ k ≤ m,

g(n, m, k) ≤
(

ckn

m

)2m

for some absolute constant c.

Proof: Fix non-negative integers m1 ≤ m2 ≤ · · · ≤ mk such that
∑

i mi = m. Let g(n;m1, m2, . . . ,mk)
be the number of k-queues G on n vertices such that there is a partition {E1, E2, . . . , Ek} of E(G), and

each G[Ei] is a queue with |Ei| = mi. Then

g(n;m1, m2, . . . ,mk) ≤
k
∏

i=1

g(n, mi).

Now m1 ≤ n
2 , as otherwise m > kn

2 ≥ m. Let j be the maximum index such that mj ≤ n
2 . By Lemma 4,

g(n;m1, m2, . . . ,mk) ≤
(

j
∏

i=1

(

n

2mi

)

c2mi

)

(cn)
k−j

.

Now
∑j

i=1 mi ≤ m − 1
2 (k − j)n. Thus

g(n;m1, m2, . . . ,mk) ≤
(

j
∏

i=1

(

n

2mi

)

)

(

c2m−(k−j)n
)(

c(k−j)n
)

≤ c2m
k
∏

i=1

(

n

2mi

)

.
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We can suppose that k divides 2m. It follows (see [1]) that

g(n;m1, m2, . . . ,mk) ≤ c2m

(

n

2m/k

)k

.

It is well known [18, Proposition 1.3] that
(

n
t

)

< (en/t)t. Thus with t = 2m/k we have

g(n;m1, m2, . . . ,mk) <

(

c e kn

2m

)2m

.

Clearly

g(n, m, k) ≤
∑

m1,...,mk

g(n;m1, m2, . . . ,mk),

where the sum is taken over all non-negative integers m1 ≤ m2 ≤ · · · ≤ mk such that
∑

i mi = m. The

number of such partitions [18, Proposition 1.4] is at most

(

k + m − 1

m

)

<

(

2m

m

)

< 22m.

Hence

g(n, m, k) ≤ 22m

(

c e kn

2m

)2m

.

✷

Every ordered graph on n vertices is isomorphic to at most n! labelled graphs on n vertices. Thus

Lemma 5 has the following corollary.

Corollary 2 For all integers k such that 2m
n ≤ k ≤ m, the number of labelled n-vertex m-edge graphs

with queue-number at most k is at most
(

ckn

m

)2m

n!,

for some absolute constant c. ✷

Proof of Theorem 1: Let k be the minimum integer such that every simple ∆-regular graph with n
vertices has queue-number at most k. Thus the number of labelled simple ∆-regular graphs on n vertices

is at most the number of labelled graphs with n vertices, 1
2∆n edges, and queue-number at most k. By

Lemma 1 and Corollary 2,

( n

3∆

)∆n/2

≤
(

ck

∆

)∆n

n! ≤
(

ck

∆

)∆n

nn.

Hence k ≥
√

∆n1/2−1/∆/(
√

3c). ✷
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[9] VIDA DUJMOVIĆ AND DAVID R. WOOD. Three-dimensional grid drawings with sub-quadratic
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