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We study the number of occurrences of any fixed vincular permutation pattern. We show that this statistics on

uniform random permutations is asymptotically normal and describe the speed of convergence. To prove this central

limit theorem, we use the method of dependency graphs. The main difficulty is then to estimate the variance of our

statistics. We need a lower bound on the variance, for which we introduce a recursive technique based on the law of

total variance.
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1 Introduction

Permutation patterns are well studied objects in combinatorics and, more recently, also in probability

theory. In combinatorics, most of the research is focused on pattern avoidance, i.e. finding the number of

permutations with no occurrences of a given pattern, see Bóna (2012); Kitaev (2011). Another problem is

the study of statistics and their distribution. Those objects are studied combinatorially, for instance with

multivariate generating functions as in Chatterjee and Diaconis (2017); Crane et al. (2016), but also in

probability theory. One statistics of interest is the number of occurrences of a given pattern in a random

permutation, where various distributions on permutations are considered. Often, people study the case of

uniform permutations, as in Bóna (2010); Fulman (2004); Janson et al. (2015). Among patterns, descents

and inversions are the most well-known, see Fulman (2004).

The problem we consider in this article is the following: for a fixed pattern π, what is the asymptotic

behaviour of the number of occurrences of π in a uniform random permutation σn of size n going to

infinity? We consider this problem when π is a so-called vincular pattern.

To explain the precise meaning of this problem, we begin by describing different types of permutation

patterns. When we study patterns, permutations are represented in one-line form, i.e. as a sequence. A

permutation of size n is a reordering of the monotone sequence 12 . . . n. The study of patterns is the study

of subsequences and their order. For example, consider the permutation

σ = 58213476
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and its subsequence 524. The unique permutation whose elements are listed in the same relative order

is 312. We say that the subsequence 524 is an occurrence of the classical pattern 312. Occurrences of

classical patterns can be any subsequences. Additional constraints on the subsequences lead to different

types of patterns: tight, very tight, vincular and bivincular patterns (terminology from Bóna (2012); Ki-

taev (2011)). To count as an occurrence of such a type of pattern, a subsequence must fulfil the constraints

listed below:

• Tight: all entries have adjacent positions.

• Very tight: all entries have adjacent positions and values.

• Vincular: some entries have adjacent positions or in other words appear in blocks.

• Bivincular: some entries have adjacent positions and some (maybe different) entries have adjacent

values.

In the literature, patterns are sometimes called consecutive instead of tight and generalized or dashed

instead of vincular. Note that vincular patterns generalize both classical and tight patterns.

As an example of a vincular pattern, consider 312 where the underlined symbols indicate that the last

two entries are required to be in adjacent positions. In the permutation σ above, the subsequence 524 is

therefore not an occurrence of this vincular pattern, but the following are: 513, 534, 813, 834, 847. The

number of occurrences of 312 in σ is 5. We say the pattern 312 has two blocks, the first is one isolated

entry and the second consists in two adjacent entries. Formally, we write a vincular pattern as a pair

(π,A), where π is a permutation giving the order constraint and A gives the required adjacencies.

Instead of counting occurrences of a pattern in a deterministic permutation σ as above, we look at

σn which is a uniform permutation of size n. Considering a random variable counting the number of

occurrences of a fixed pattern of size k in σn, we ask how it behaves asymptotically, as n goes to infinity.

Since there are different types of patterns, there is actually a whole family of such problems.

The following answers to these problems are known.

• In Fulman (2004), J. Fulman proves asymptotic normality for inversions and descents (classical and

tight patterns of size k = 2). In addition, he provides a rate of convergence.

• M. Bóna establishes in Bóna (2010) asymptotic normality for classical and tight patterns which are

monotone (increasing or decreasing).

• In Janson et al. (2015), asymptotic normality is shown for all classical patterns. In fact, the authors

also establish the joint convergence.

• In (Crane et al., 2016, Section 8), asymptotic normality and a rate of convergence are provided for

tight patterns of size k ≥ 3 in random permutations distributed with the so-called Mallows measure

of parameter q (for q = 1, this measure specializes to the uniform distribution which is of interest

in this article). These results are obtained under the assumption that the highest degree component

of the variance does not vanish. Proving this kind of variance estimate is often difficult, as we will

discuss later in the introduction.
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• L. Goldstein provides in (Goldstein, 2005, Example 3.2) a rate of convergence for tight patterns in

case of the uniform measure. As in Crane et al. (2016), this rate depends on the variance. In contrast

to Crane et al. (2016), the method used to obtain this rate applies to a larger family of statistics.

• Very tight patterns behave differently: for k = 2, they are asymptotically Poisson distributed, see

Corteel et al. (2006); Kaplansky (1945). It is easy to see that for k > 2, the probability to find such

a pattern tends to zero (see (Corteel et al., 2006, p. 3–4)).

• In Crane and DeSalvo (2017), Poisson limit theorems are also obtained for tight patterns in Mallows

permutations of size n, if the parameter of the Mallows distribution q(n) is a function of n of

a specific form or if q is fixed but the size of the pattern tends to infinity. This setting is quite

orthogonal to the one of other papers (including this one).

In the present article, we generalize the result of asymptotic normality to vincular patterns and we also

describe the speed of convergence. Our main result, proved in Section 3, is the following.

Let Z denote a standard normal random variable and dK denote the Kolmogorov distance which is

the maximum distance between distribution functions. Denoting X(π,A)(σn) the renormalized (mean 0,

variance 1) random variable which counts the number of occurrences of (π,A) in σn, it holds that for

some positive constant C,

dK

(

X(π,A)(σn), Z
)

≤ Cn−1/2.

This implies immediately that

X(π,A)(σn)
d→ Z,

where
d→ denotes convergence in distribution, hence proving asymptotic normality. In addition, the bound

on dK quantifies the accuracy of the approximation ofX(π,A)(σn) byZ . Note that this result encompasses

the results from Bóna (2010); Crane et al. (2016); Fulman (2004); Goldstein (2005); Janson et al. (2015)

previously mentioned except for the joint convergence in Janson et al. (2015) and the case of a general

parameter q 6= 1 in Crane et al. (2016).

Let us now discuss the method of proof. In the literature, the following methods have been used for

normal approximation:

• U -statistics in Janson et al. (2015). However, the number of occurrences of vincular patterns is not

a U -statistics (unlike for classical patterns).

• Exchangeable Stein pairs in Fulman (2004) for patterns of size k = 2. Here, we did not succeed in

finding such a pair for patterns of any size.

• Size-bias couplings in Goldstein (2005) for tight patterns. We are not aware of such a coupling for

vincular patterns.
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• Dependency graphs in Bóna (2010) and Crane et al. (2016). Such a graph captures the depen-

dencies in a family of random variables. This is useful for our problem since X(π,A)(σn) can be

decomposed as a sum of partially dependent random variables (see Equation (2), p. 7).

The last three methods are based on Stein’s method (except for dependency graphs in Bóna (2010)). This

method is used to prove convergence in distribution as well as to describe the approximation error, see

Section 2.7 for more details.

In Section 3, we present two approaches to bound the Kolmogorov distance both based on dependency

graphs: one using the Stein machinery following Chen and Röllin (2010); Ross (2011) and one using the

moment method following Féray et al. (2016); Janson (1988); Saulis and Statulevičius (1991). While their

application is easy, there is one difficulty: we need a lower bound on the variance of X(π,A)(σn) to prove

that dK(X(π,A)(σn), Z) goes to 0.

The method to find that lower bound is discussed in Section 4.2. First, we show that Var(X(π,A)(σn))
is a polynomial in n. Denoting j the number of blocks of the vincular pattern (π,A), the polynomiality

implies that

Var(X(π,A)(σn)) = Cn2j−1 +O(n2j−2), with C ≥ 0.

If we can show that C is different from 0, then 1
2Cn2j−1 is a sharp lower bound (for n big enough). The

most natural approach to prove that C is larger than 0 is to find a formula for C by expressing the variance

in terms of covariances (see Equation (8), p. 16). This is Bóna’s approach in Bóna (2010). Such a formula

for C is a signed sum of binomials, which in our case is hard to examine. Instead, we introduce a new

technique: a recurrence based on the law of total variance. It provides a lower bound for Var(X(π,A)(σn))
of the form C′n2j−3/2. Thanks to the polynomiality, this is enough to prove that C is larger than 0 (see

Section 4.2).

We conclude this introduction with further directions of research.

• In this article, we establish the asymptotic normality for vincular patterns. Moreover, the asymptotic

behaviour of very tight patterns is characterized in Corteel et al. (2006): as Poisson distributed

(k = 2) or rare (k > 2). Both these types are contained in the larger class of bivincular patterns.

One could try to classify such patterns in terms of their limiting distribution.

To study the asymptotically normal case, we suggest using so-called interaction graphs or weighted

dependency graphs introduced in Chatterjee and Diaconis (2017); Féray (2016). In Chatterjee and

Diaconis (2017), interaction graphs are used for a similar statistics, ”number of descents plus num-

ber of descents in the inverse” which also has constraints in positions and values. The classical

tool of dependency graphs does not apply anymore since constraints along these two directions im-

ply that the random variables in a natural sum decomposition are all pairwise dependent (unlike in

Equation (2), p. 7). Using the mentioned extensions of dependency graphs avoids this problem, but

the main difficulty will again be estimating the variance.

• In Janson et al. (2015), joint convergence is established for classical patterns and (Janson et al.,

2015, Theorem 4.5) describes how dependent the single limit random variables are (for patterns of

the same size). It would be interesting to study these questions for vincular patterns. Moreover, one

could try to examine the speed of convergence in the multivariate case.
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• The optimality of the bound on dK obtained in this article could be investigated. We believe it is

optimal since no better bounds are obtained in similar problems (e.g. subgraph counts in random

graphs), but we do not have concrete mathematical evidence for it.

The outline of this article is as follows. In Section 2, we give all the necessary background and set up

the notation. In Section 3, we show two approaches to prove the main result. Both approaches rely on a

lower bound on the variance, which is established in Section 4.

2 Background and notation

Throughout this article, we write a permutation σ in one-line notation, i.e. σ = σ1σ2 . . . σn. The length of

the sequence σ1σ2 . . . σn is the size of σ, denoted by |σ|. The set of all permutations of size n is denoted

by Sn. We use [n] to denote the set {1, 2, . . . , n} and
(

[n]
k

)

for the set of all subsets of [n] which are of

size k.

2.1 Vincular patterns

We refer to Bóna (2012) and Kitaev (2011), which discuss the notion of permutation patterns. In Bóna

(2012), the reader can find information about classical patterns while Kitaev (2011) discusses patterns in

more generality, e.g. also the case of vincular patterns. A classical pattern is defined as follows.

Definition 2.1. Let σ ∈ Sn and π ∈ Sk. An occurrence of the classical pattern π in σ is a subsequence

σi1σi2 . . . σik of length k of σ such that:

• πr < πs ⇐⇒ σir < σis , for all r, s ∈ [k].

We say that σ has an occurrence of the classical pattern π at positions i1, i2, . . . , ik.

Example 2.2. Let σ = 2374561. The subsequence σ2σ5σ7 = 351 is an occurrence of the classical

pattern π = 231.

In contrast to classical patterns, vincular patterns have additional constraints on the subsequences that

are allowed to be counted as an occurrence of the pattern. Certain parts of the pattern are required to be

adjacent or, in other words, to appear in blocks.

Definition 2.3. Let σ ∈ Sn, π ∈ Sk and let A ⊆ [k − 1]. An occurrence of the vincular pattern (π,A) in

σ is a subsequence σi1σi2 . . . σik of length k of σ such that:

• σi1σi2 . . . σik is an occurrence of π in the classical sense,

• ia+1 = ia + 1, for all a ∈ A.

We call A the set of adjacencies.

Example 2.4. Let σ = 2374561. The subsequence σ2σ3σ7 = 371 is an occurrence of the vincular

pattern (π,A) = (231, {1}). Note that the subsequence from the previous example, σ2σ5σ7 = 351, is not

an occurrence of (π,A) since 3 and 5 are not adjacent in σ.
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Remark 2.5. In (Kitaev, 2011, Definition 1.3.1), the definition of vincular patterns is even more general,

allowing also constraints on the beginning and on the end of a pattern occurrence. However, such con-

straints are rarely considered in the literature, and not included in the present work. The central limit

theorem would not hold if we constraint the first entry of the pattern occurrence to be at the beginning, as

can be seen in the pattern 12 with 1 forced to be the first entry of the permutation.

In this article, we will work with the above definition but sometimes, it is more convenient to see

adjacencies as blocks. By block, we mean a maximal subsequence of the pattern whose entries are required

to be adjacent. An equivalent way to encode the adjacency information of a vincular pattern is to give a

list of block sizes. For example, the vincular pattern (231, {1}) would be written as (231, (2, 1)), where

the list (2, 1) describes a first block of size 2 followed by a block of size 1. This idea appears also in

(Kitaev, 2011, Definition 7.1.2), where the list of block sizes is called the type of a vincular pattern.

Now, note that the block sizes add up to the size of the pattern, leading to the notion of composition.

The following definition can be found in (Flajolet and Sedgewick, 2009, p. 39).

Definition 2.6. A composition of an integer n is a sequence (x1, x2, . . . , xℓ) of integers, for some ℓ, such

that n = x1 + x2 + · · ·+ xℓ and xi ≥ 1 for all i.

For example, (2, 1) is a composition of 3. How one can go from one encoding of vincular patterns (by

adjacencies or block sizes) to the other is explained by a bijection between subsets of [k − 1] and compo-

sitions of k, where k = |π|. This bijection associates for instance the composition (4, 2, 2, 1) of size 9 to

{1, 2, 3, 5, 7} ⊆ [8]. The formal construction of the bijection is given below. It will help understanding

the rephrasing of the adjacency condition.

For A ⊆ [k − 1], consider j = k − |A| and {c1, c2, . . . , cj} = [k] \A with c1 < c2 < · · · < cj = k, and

construct iteratively:























b1 = c1,

b2 = c2 − c1,
...

bj = cj − cj−1.

(1)

Then, (b1, b2, . . . , bj) is a composition of k, since
∑j

i=1 bi = cj = k. On the other hand, if (b1, b2, . . . , bj)
is a composition of k, then the inverse construction is:

A = [k]\
{

∑

i=1,...,ℓ

bi

∣

∣

∣
ℓ ∈ [j]

}

,

which is a subset of [k − 1].

So, indeed, a vincular pattern (π,A) can be equivalently defined as (π, (b1, b2, . . . , bj)), where the

adjacency condition is rephrased by:

• ia+1 = ia + 1, for all a ∈ [k]\
{
∑

i=1,...,ℓ bi
∣

∣ ℓ ∈ [j]
}

,

or, in other words, the first b1 elements should be adjacent, the next b2 also, and so on. We say the

vincular pattern (π, (b1, b2, . . . , bj)) has j blocks, numbered from left to right, where b1, b2, . . . , bj are
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the respective block sizes. When we speak about a vincular pattern (π,A) with j blocks, it is the above

bijection which is underlying.

In the literature, vincular patterns are commonly represented as permutations where some adjacent parts

may be underlined, see (Kitaev, 2011, Definition 1.3.1). What is underlined are the non-trivial blocks of

the pattern, i.e. blocks of size at least 2. This representation is visual and we will use it when we work with

concrete examples. For example, we would write 231 for the vincular pattern (231, (2, 1)), or equivalently

for (231, {1}).

2.2 Vincular pattern statistics on uniform permutations

Let σn be a uniform random permutation of size n and let (π,A) be a vincular pattern of size k. The vincu-

lar pattern statistics for the pattern (π,A) on σn is a random variable counting the number of occurrences

of (π,A) in σn. We denote it by X(π,A)(σn).
Since it is a counting statistics, X(π,A)(σn) can be naturally decomposed as a sum of indicator random

variables. First, we introduce a notation to collect all sets of positions that are admissible for occurrences

of (π,A) in a permutation of size n:

I(n, k,A) :=
{

{i1, i2, . . . , ik} ∈
(

[n]

k

)

∣

∣

∣
ia+1 = ia + 1, for all a ∈ A, where i1 < i2 < · · · < ik

}

.

Now, the sum decomposition of X(π,A)(σn) is the following:

X(π,A)(σn) =
∑

I∈I(n,k,A)

Xπ
I (σn), (2)

where Xπ
I (σn) is 1 if σn has an occurrence of the (classical) pattern π at positions given by I and it is 0

otherwise.

In Bóna (2010), the reader can find this sum decomposition for other types of patterns. The difference

lies in the positions over which the summation runs. In our case, the total amount of admissible positions

is counted as follows.

Lemma 2.7. For n ≥ k − j, where j = k − |A|, it holds that:

|I(n, k,A)| =
(

n− k + j

j

)

.

Proof: As for patterns, a set of positions {i1, i2, . . . , ik} ∈ I(n, k,A), with i1 < i2 < · · · < ik, can be

split into j blocks using the adjacency information of A. These blocks are ordered and of prescribed size.

So, essentially, the set {i1, i2, . . . , ik} is determined by the set {i1, ic1+1, ic2+1, . . . , icj−1+1}, containing

only the first position for each block (see Eq. (1) for the description of ci). The trick is to count such sets,

but we have to be careful that between the first entries of the blocks there is enough space for the whole

blocks. To overcome this problem, we shift everything according to the block sizes, as it is illustrated in

Fig. 1. More precisely, we associate to {i1, i2, . . . , ik} a set of positions in
(

[n−k+j]
j

)

where each element

ict+1 is shifted to ict+1 − (ct − t). For example, to the set {3, 4, 5, 8, 9, 10, 11} ∈ I(11, 7, {1, 2, 4, 6})
corresponding to 3 ordered blocks of sizes 3, 2 and 2, we associate the set {3, 6, 7} ∈

(

[7]
3

)

, as shown in
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Figure 1: Illustration of the bijection.

Fig. 1. It is easy to see that this construction describes a bijection between I(n, k,A) and
(

[n−k+j]
j

)

, so

that we have:

|I(n, k,A)| =
∣

∣

∣

∣

(

[n− k + j]

j

)∣

∣

∣

∣

=

(

n− k + j

j

)

.

Remark 2.8. The restriction n ≥ k − j is necessary, since otherwise the binomial coefficient is not

defined, but for n < k, we simply have |I(n, k,A)| = 0.

2.3 Representation of uniform permutations

We start with the definition of reduction, which is given in (Janson et al., 2015, p. 1).

Definition 2.9. Let x1x2 . . . xn be a sequence of n distinct real numbers. The reduction of x1x2 . . . xn,

which is denoted by red(x1x2 . . . xn), is the unique permutation σ ∈ Sn such that order relations are

preserved, i.e. σi < σj if and only if xi < xj for all i, j ∈ [n].

As pointed out in (Janson et al., 2015, proof of Theorem 4.1), it is a standard trick to construct a

uniform permutation of size n as the reduction of n independent and identically distributed (i.i.d.) random

variables which are uniform in the interval [0, 1].

Lemma 2.10. Let U1, . . . , Un be i.i.d. random variables, uniform in [0, 1]. Then, red(U1 . . . Un) is a

uniform permutation of size n.

Since we could not find a reference where Lemma 2.10 is proved, we provide a short proof here.

Proof: First, the random variables U1, . . . , Un are almost surely all distinct. Now, let σ ∈ Sn be arbitrary.

Because the random variables Ui are i.i.d., we have for any π ∈ Sn,

P
(

red(U1 . . . Un) = σ
)

= P
(

red(Uπ1 . . . Uπn
) = σ

)

= P
(

red(U1 . . . Un)π = σ
)

= P
(

red(U1 . . . Un) = σπ−1
)

,

showing that red(U1 . . . Un) takes all values in Sn with the same probability. So, red(U1 . . . Un) is a

uniform permutation in Sn.

This representation of a uniform permutation is particularly adapted for our purpose since it relies on

independent random variables.
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2.4 Dependency graphs

The dependencies, and not only the pairwise dependencies, within a family of random variables can be

represented in a graph as follows, see Baldi and Rinott (1989); Bóna (2010); Féray et al. (2016); Rinott

(1994).

Definition 2.11. A graph G with vertex set V is called a dependency graph for a family of random

variables {Xv}v∈V if it satisfies the following property:

If V1 and V2 are disjoint subsets of V which are not connected by an edge in G, then the sets

of random variables {Xv}v∈V1 and {Xv}v∈V2 are independent.

A family of random variables may have several dependency graphs, capturing sometimes more, some-

times less dependency information. The least information is contained in the complete graph, which is

always a dependency graph. As pointed out in Féray et al. (2016), dependency graphs are often used

to work with sums of partly dependent random variables. For example, X(π,A)(σn) decomposed as in

Eq. (2) falls in this category. In Section 3, we will see two methods to show asymptotic normality of

X(π,A)(σn) using the concept of dependency graphs.

2.5 Law of total variance

The following decomposition formula for the variance can be found in (Weiss, 2005, p. 385–386).

Proposition 2.12. For two random variables Y and J , defined on the same probability space, the follow-

ing holds:

Var(Y ) = E[Var(Y |J)] + Var(E[Y |J ]).
This is called the law of total variance. It relates the variance of a random variable to its conditional

variance and its conditional expectation. The proof uses the tower property: E[E[Y |G]|H] = E[Y |H]
with H = {∅,Ω} and G = σ(J), the smallest σ-algebra such that J is measurable.

It is a natural question if a statement similar to Proposition 2.12 holds for the conditional variance. The

equivalent result is called the law of total conditional variance and its proof uses the tower property with

H = σ(J1) and G = σ(J1, J2).

Proposition 2.13. For three random variables Y , J1 and J2, defined on the same probability space, the

following holds:

Var(Y |J1) = E
[

Var(Y |J1, J2)
∣

∣J1
]

+Var
(

E[Y |J1, J2]
∣

∣J1
)

.

A similar expression can be found for Var(Y |J1, J2), the inner conditional variance term in the above

equation, and also for more conditioning random variables. Starting from Proposition 2.12 and iteratively

using these expressions for the inner conditional variance terms, we can obtain an expression for the

variance involving several random variables as conditions.

Proposition 2.14. For some random variables Y and J1, J2, . . . , Jm, all defined on the same probability

space, the following holds:

Var(Y ) = E[Var(Y |J1, . . . , Jm)] +
∑

i=0,...,m−1

E
[

Var
(

E[Y |J1, . . . , Ji+1]
∣

∣J1, . . . , Ji
)]

.

Observe that the summand for i = 0 simplifies to Var(E[Y |J1]).
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The only reference we could find for these formulas is (Bowsher and Swain, 2012, Eqs. 13 and 15),

but it is likely that they appeared independently in other sources. This general decomposition formula for

the variance will be very helpful in Section 4.2, where we need to find a lower bound for the variance of

X(π,A)(σn).

2.6 Asymptotic notation

Since we will speak about the asymptotic behaviour of functions, we recall some standard notation.

Definition 2.15. Let f, g : N → R be two functions. We say that:

• f is O(g), written f = O(g), if: ∃ C > 0, n0 such that ∀ n ≥ n0, |f(n)| ≤ C|g(n)|,

• f is of order g, written f ≍ g, if: f = O(g) and g = O(f),

• f is asymptotically equivalent to g, written f ∼ g, if: lim
n→∞

f(n)
g(n) = 1.

Remark 2.16. 1. If there exists C such that f ∼ Cnk, then f ≍ nk.

2. Let p be a polynomial in n. If p ≍ nk, then there exists C such that p ∼ Cnk.

2.7 Stein’s method for central limit theorems

Stein’s method is a technique invented by Charles Stein to bound the distance between two probability

distributions. It is used to prove central limit theorems as well as approximation by the Poisson, exponen-

tial and other distributions. The survey article Ross (2011) gives an overview of applications to different

distributions and discusses methods to further analyse the bounds. We recall that applications of Stein’s

method to permutation patterns can be found in Crane and DeSalvo (2017); Crane et al. (2016); Fulman

(2004); Goldstein (2005). To illustrate the main concept of Stein’s method for central limit theorems, we

follow (Ross, 2011, p. 6–9).

First, recall that the Kolmogorov distance is a probability metric defined as follows, see (Chen and

Röllin, 2010, p. 9), (Ross, 2011, p. 5).

Definition 2.17. For two R-valued random variables X and Y , let FX and FY be their distribution

functions. The Kolmogorov distance between X and Y is defined as:

dK(X,Y ) = sup
t∈R

|FX(t)− FY (t)|.

In particular, since convergence of the distribution functions in all continuity points implies convergence

in distribution (denoted
d→), we have the following.

Lemma 2.18. Let (Xn)n∈N be a sequence of R-valued random variables and let Y be some R-valued

random variable. Then:

dK(Xn, Y ) →
n→∞

0 =⇒ Xn
d→ Y.

In general, Stein’s method proves convergence in distribution using a functional equation. The next

lemma can be used to prove a central limit theorem (CLT), see (Ross, 2011, Lemma 2.1).
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Lemma 2.19 (Stein’s Lemma). Define the functional operator A by

Af(x) = f ′(x) − xf(x).

Then, for a real-valued random variable X , the following are equivalent.

1. X has the standard normal distribution.

2. For all absolutely continuous functions f : R → R such that E[|f ′(X)|] < ∞, it holds that

E[Af(X)] = 0.

The first direction (1) =⇒ (2) is simply integration by parts. More interesting is the second direction.

Let Z be a standard normal random variable, FZ its distribution function and Ia the indicator function

which is 1 if and only if condition a holds. In (Ross, 2011, Lemma 2.2) it is shown that for any t ∈ R,

there exists a unique bounded solution ft of the differential equation

f ′
t(x)− xft(x) = Ix≤t − FZ(t). (3)

Taking X to be any real-valued random variable, we obtain the equation

|E[f ′
t(X)−Xft(X)]| = |FX(t)− FZ(t)|. (4)

Hence, the maximum distance between the distribution functions of X and Z is given by

dK(X,Z) = sup
t∈R

|FX(t)− FZ(t)| = sup
t∈R

|E[f ′
t(X)−Xft(X)]|.

By Lemma 2.18, to prove the second direction (2) =⇒ (1), it is enough that (2) holds for all ft with

t ∈ R which are solutions to Eq. (3).

To prove a CLT, we prove that (Xn)n∈N almost satisfies the functional equation in Stein’s Lemma. We

use Eq. (4) to bound dK(Xn, Z) which also quantifies the rate of convergence. In practice, Stein’s method

is useful because there exist various techniques to estimate the quantity E[f ′
t(X)−Xft(X)]: dependency

graphs, exchangeable pairs, zero- and size-bias couplings. Theorem 3.5 used in Approach I relies on the

dependency graph method which is often useful if the random variable X is a sum of partially dependent

random variables like X(π,A)(σn). However, Stein’s method may also be used for random variables with

different structures.

We conclude this short summary of Stein’s method with two remarks.

Remark 2.20. 1. The Stein-Chen method is a version developed for Poisson approximation, see Bar-

bour et al. (1992); Crane and DeSalvo (2017).

2. It is sometimes easier to study other probability metrics than the Kolmogorov distance. For normal

approximation, often the Wasserstein distance is studied, see Rinott (1994). In Crane and DeSalvo

(2017), the total variation distance is studied for Poisson approximation.
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3 Central limit theorem

In this section, we prove a central limit theorem (CLT) for our random variable X(π,A)(σn), the vincular

pattern statistics on uniform permutations. Let (π,A) be a fixed vincular pattern and assume n ≥ |π| ≥ 2
(the other cases are trivial). We normalize X(π,A)(σn):

X(π,A)(σn) =
X(π,A)(σn)− en√

vn
,

where vn = Var(X(π,A)(σn)), en = E[X(π,A)(σn)]. The following theorem is the main result of this

article, where N (0, 1) denotes the standard normal distribution.

Theorem 3.1. Let Z ∼ N (0, 1), let (π,A) be a fixed vincular pattern and for any n, let σn be uniform in

Sn. Then, there exists C > 0, n0 such that for n ≥ n0:

dK

(

X(π,A)(σn), Z
)

≤ Cn−1/2.

Consequently, it holds that:

X(π,A)(σn)
d→ Z.

Remark 3.2. The second claim of Theorem 3.1 follows from the first claim and Lemma 2.18.

Note that Theorem 3.1 is not only a CLT result. It also contains information about the speed of conver-

gence, measured in the metric dK . We present two different approaches to prove Theorem 3.1. One works

with Stein’s method and the other one with cumulants, but both have in common that they use dependency

graphs. Before we start the two different proofs, we give a dependency graph for our problem.

3.1 Dependency graph for the X
π

I
(σn)’s

We need the following observation about the dependencies between the Xπ
I (σn)’s from the sum decom-

position of X(π,A)(σn) (see Eq. (2), p. 7). In (Crane and DeSalvo, 2017, Lemma 5.3), this is called the

property of dissociation.

Lemma 3.3. Let (π,A) be a vincular pattern with |π| = k and let F1,F2 ⊆ I(n, k,A). If F1 and

F2 are such that
⋃

I∈F1
I and

⋃

I∈F2
I are disjoint, then the corresponding families of indicators,

{Xπ
I (σn)}I∈F1 and {Xπ

I (σn)}I∈F2 , are independent.

Proof: Let U1, . . . , Un be independent and uniform in [0, 1]. By Lemma 2.10, we can represent a uniform

permutation as red(U1 . . . Un). Since pattern occurrence in non-intersecting subsequences depends on

disjoint subsets of the set {U1, . . . , Un}, the independence of these subsets proves the independence of

the corresponding families of indicators.

With the help of Lemma 3.3, we can now construct a dependency graph for the family of indicator

random variables {Xπ
I (σn)}I∈I(n,k,A), where k = |π|. We define its vertex set Vn and its edge set En as

follows:
{

Vn = I(n, k,A),
En = {{I1, I2} ⊆ I(n, k,A)| I1 6= I2, I1 ∩ I2 6= ∅}. (5)
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If F1 and F2 are disjoint subsets of I(n, k,A) that are not connected by an edge in the graph, then by

construction, Lemma 3.3 applies to F1 and F2, ensuring that {Xπ
I (σn)}I∈F1 and {Xπ

I (σn)}I∈F2 are

independent. Hence, the dependency graph condition is fulfilled.

An important parameter is the maximal degree of the dependency graph.

Lemma 3.4. For a fixed vincular pattern (π,A) with j blocks, let D − 1 be the maximal degree of the

dependency graph given by (5). Then:

D ≍ nj−1.

Proof: Let k = |π|. In the proof of Lemma 2.7, we have counted |I(n, k,A)|. It is of order nj . Now, for

any fixed vertex H ∈ I(n, k,A), consider the quantity |{I ∈ I(n, k,A)| I ∩H 6= ∅}|. It can be bounded

from above and from below as follows:

max
h∈H

|{I ∈ I(n, k,A)| h ∈ I}| ≤ |{I ∈ I(n, k,A)| I ∩H 6= ∅}|

≤
∑

h∈H

|{I ∈ I(n, k,A)| h ∈ I}|,

with

|{I ∈ I(n, k,A)| h ∈ I}| =
∑

ℓ∈[j]

|{I ∈ I(n, k,A)| h is in the ℓ-th block of I}|.

The quantity |{I ∈ I(n, k,A)| h is in the ℓ-th block of I}| is counted similarly to |I(n, k,A)|. The

constraint ”h is in the ℓ-th block of I” means that icℓ+1 may admit only a finite set of values (see proof

of Lemma 2.7, setting c0 = 0). Compared to |I(n, k,A)|, not j but only j − 1 blocks are free which

decreases the order from nj to nj−1. Since the number of terms in the two sums is independent of n, we

have:

D = max
H∈I(n,k,A)

|{I ∈ I(n, k,A)| I 6= H, I ∩H 6= ∅}|+ 1 ≍ nj−1.

The dependency graph we just constructed will be used in the next two sections to prove Theorem 3.1.

3.2 Approach I: Dependency graphs and Stein’s method

The following theorem can be obtained from results of Chen and Röllin (2010) and Ross (2011).

Theorem 3.5. Let Z ∼ N (0, 1). Let G be a dependency graph for {Xi}Ni=1 and D − 1 be the maximal

degree of G. Assume there is a constant B > 0 such that |Xi − E[Xi]| ≤ B for all i. Then, for

W = 1
σ

∑N
i=1(Xi − E[Xi]), where σ2 is the variance of the sum, it holds that:

dK(W,Z) ≤ 8B2D3/2N1/2

σ2
+

8B3D2N

σ3
.

In particular, if σ2 ≍ B2DN (or σ2 ≥ CB2DN for some constant C > 0), then:

dK(W,Z) = O
(

√

D

N

)

.
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Proof: Without loss of generality, we assume that E[Xi] = 0 for all i. Let

Ai = {i} ∪ {1 ≤ j ≤ N | vertices i and j are connected in G}.

Clearly, |Ai| ≤ D for all i. Using (Chen and Röllin, 2010, Construction 2B), we obtain a Stein coupling

for W so that with (Chen and Röllin, 2010, Corollary 2.6) (for α = NB
σ , β = DB

σ ), we have:

dK(W,Z) ≤ 2

σ2

√

√

√

√Var

( n
∑

i=1

∑

j∈Ai

XiXj

)

+
8B3D2N

σ3
. (6)

Under the assumption of a dependency graph, from the end of the proof of (Ross, 2011, Theorem 3.5), we

have that:

Var

( N
∑

i=1

∑

j∈Ai

XiXj

)

≤ 13D3
N
∑

i=1

E[X4
i ] ≤ 13B4D3N. (7)

The final bound follows from Eqs. (6) and (7).

We apply Theorem 3.5 to our problem.

Proof of Theorem 3.1 (variant I): Let (π,A) have j blocks and let k = |π|. Consider the family

of random variables {Xπ
I (σn)}I∈I(n,k,A) and the dependency graph constructed for it in (5). Denote

by N the size of the family and denote by D − 1 the maximal degree of the dependency graph. Set

vn = Var(X(π,A)(σn)). From Lemma 2.7 and Lemma 3.4, we have:

N ≍ nj , D ≍ nj−1.

We will see in Theorem 4.1 that we have:

vn ≍ n2j−1.

The proof being technical, it is postponed to Section 4. Clearly, it holds that vn ≍ DN . Moreover, for all

I ∈ I(n, k,A), we have:

|Xπ
I (σn)− E[Xπ

I (σn)]| ≤ 1.

Using Theorem 3.5 with B = 1, we obtain:

dK

(

X(π,A)(σn), Z
)

= O
(

√

nj−1

nj

)

= O(n−1/2).

Remark 3.6. Almost the same bound as in Theorem 3.5 (giving also a O(n−1/2) in our case) has been

obtained by Y. Rinott (Rinott, 1994, Theorem 2.2).

Remark 3.7. Using (Ross, 2011, Theorem 3.5), the same bound as in Theorem 3.1 can be obtained for

the Wasserstein distance dW , which is defined in (Ross, 2011, p. 5). The bound on dW would then give a

bound on dK , however not an equally good one as Theorem 3.1 (n−1/4 instead of n−1/2) .
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3.3 Approach II: Dependency graphs and cumulants

For any random variable X , denote by κ(r)(X) its r-th cumulant. As in (Saulis and Statulevičius, 1991,

p. 16), we say that X satisfies condition (Sγ,∆) for some γ ≥ 0, ∆ > 0 if:

|κ(r)(X)| ≤ (r!)1+γ

∆r−2
, for all r ≥ 3.

The following result can be found in (Saulis and Statulevičius, 1991, Corollary 2.1).

Theorem 3.8. Let Z ∼ N (0, 1). For any random variable X satisfying condition (Sγ,∆), it holds that:

dK(X,Z) ≤ 108
(

∆
√
2
6

)
1

1+2γ

.

To prove that condition (Sγ,∆) is satisfied by our random variable X(π,A)(σn), we use the following

result from (Féray et al., 2016, p. 71) giving a bound on cumulants of sums of random variables. A slightly

weaker version has been established by S. Janson (Janson, 1988, Lemma 4), see also (Féray et al., 2016,

p. 71).

Theorem 3.9. Let {Xv}v∈V be a family of random variables with dependency graph G. Denote by N
the number of vertices of G and by D − 1 the maximal degree of G. Assume that the Xv’s are uniformly

bounded by a constant B. Then, if X =
∑

v∈V Xv , for any integer r ≥ 1, one has:

|κ(r)(X)| ≤ 2r−1rr−2NDr−1Br.

With the help of Theorem 3.9, we apply Theorem 3.8 to our problem.

Proof of Theorem 3.1 (variant II): Let (π,A) have j blocks and let k = |π|. Consider the normalized

indicator random variables Xπ
I (σn):

Xπ
I (σn) =

Xπ
I (σn)− eI√

vn
,

where vn = Var(X(π,A)(σn)), eI = E[Xπ
I (σn)]. Clearly, X(π,A)(σn) is the sum of the Xπ

I (σn)’s. It

is easy to see that the dependency graph constructed in (5) is also a dependency graph for the family

{Xπ
I (σn)}I∈I(n,k,A). Denote by N its number of vertices and denote by D − 1 its maximal degree. By

Lemma 2.7 and Lemma 3.4, there exist C1, C2 > 0 such that:

N ≤ C1n
j , D ≤ C2n

j−1.

By Theorem 4.1 (whose proof is postponed), we have vn ≍ n2j−1. Since |Xπ
I (σn)−eI | ≤ 1, there exists

C3 > 0 such that for all I ∈ I(n, k,A):

|Xπ
I (σn)| ≤ C3n

1/2−j .
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We now use Theorem 3.9 to estimate the cumulants of X(π,A)(σn). We use the following simple inequal-

ity for factorials: rr ≤ r!er, valid for r ≥ 1. For any r ≥ 3, we obtain that there exists C > 0 such

that:
∣

∣

∣
κ(r)

(

X(π,A)(σn)
)
∣

∣

∣
≤ 2r−1rr−2(C1n

j)(C2n
j−1)r−1(C3n

1/2−j)r

≤ Crr!n−(r−2)/2

≤ r!

∆r−2
,

where ∆ = C−3n1/2. Here we used that r/(r − 2) ≤ 3 for all r ≥ 3. Since condition (Sγ,∆) is satisfied

with ∆ and γ = 0, by Theorem 3.8, we obtain:

dK

(

X(π,A)(σn), Z
)

= O(n−1/2).

4 Variance estimate

The main result of this section is the following theorem about the asymptotic behaviour of the variance

of X(π,A)(σn) (we still assume |π| ≥ 2). This result has been used in both proofs of Theorem 3.1 given

above.

Theorem 4.1. For a vincular pattern (π,A) with j blocks and for σn uniform in Sn, there exists C > 0
such that:

Var(X(π,A)(σn)) ∼ Cn2j−1.

The proof consists in two steps. First, we show in Section 4.1 that Var(X(π,A)(σn)) is a polynomial

in n of degree at most 2j − 1. This immediately implies that Cn2j−1 is an upper bound for the variance

(see Corollary 4.4). The second step is to find a lower bound of the same form (see Proposition 4.7). The

lower bound is more important for the CLT result, but it does not follow from the polynomiality. To find

it, we present in Section 4.2 a proof technique building a recurrence from the law of total variance.

4.1 Polynomiality and upper bound

Using the sum decomposition of X(π,A)(σn) (see Eq. (2), p. 7) and Lemma 3.3, we have:

Var(X(π,A)(σn)) =
∑

I,J∈I(n,k,A):
I∩J 6=∅

Cov(Xπ
I (σn), X

π
J (σn)). (8)

By Lemma 3.3, the covariances are 0 for any I, J ∈ I(n, k,A) that do not intersect, explaining the

summation index in the above formula.

We use this expression to prove that Var(X(π,A)(σn)) is a polynomial in n.

Lemma 4.2. Let (π,A) be a fixed vincular pattern of size k with j blocks and, for n ≥ 1, let σn be

uniform in Sn. Then, for n ≥ 2(k − j), Var(X(π,A)(σn)) is a polynomial in n whose degree is at most

2j − 1.
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Proof: The proof idea is to split the sum in Eq. (8) according to I, J that have the same covariances,

and then to count the number of pairs (I, J) in each of these covariance-groups. We will see that the

cardinalities of all those groups are polynomials in n and that the number of groups and the covariance

values do not depend on n. Then, this implies that also Var(X(π,A)(σn)) is a polynomial in n.

Let I, J ∈ I(n, k,A), I = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik and J = {j1, j2, . . . , jk} with

j1 < j2 < · · · < jk. To split the sum, we consider I ∪ J = {u1, u2, . . . , ut} with u1 < u2 < · · · < ut

and k ≤ t ≤ 2k. Note that t = 2k if and only if I ∩J = ∅. Depending on the intersections between I and

J , I ∪ J looks different, see Fig. 2. Each us in I ∪ J comes either from I , or from J , or from I ∩ J here

I

J

I ∪ J

Figure 2: Block structure of I ∪ J .

shown in orange. The following function fI,J : [t] → {I, J, (I, J)} gives to each position s the origin of

us:

fI,J(s) =







I if us ∈ I but us /∈ J
J if us ∈ J but us /∈ I
(I, J) if us ∈ I ∩ J

.

Since σn is uniform, Cov(Xπ
I (σn), X

π
J (σn)) depends on I, J only through the positions of the inter-

sections of I and J . In the example of Fig. 2, I and J intersect at one position only: position 3 in

I and 2 in J . In particular, when two functions fI,J and fI′,J′ are the same, then the covariances

Cov(Xπ
I (σn), X

π
J (σn)) and Cov(Xπ

I′(σn), X
π
J′(σn)) are the same. We split the sum:

∑

I,J∈I(n,k,A):
I∩J 6=∅

Cov(Xπ
I (σn), X

π
J (σn)) =

2k−1
∑

t=k

∑

f :[t]→{I,J,(I,J)}

∑

I,J∈I(n,k,A):
|I∪J|=t, fI,J=f

Cov(Xπ
I (σn), X

π
J (σn)).

Each pair (t, f) defines a covariance-group. The number of such pairs and the covariance associated to a

pair (t, f) are independent of n. To count the size of the groups, we consider the blocks of I∪J . Similarly

to patterns, I and J come in blocks. The inherited block structure of I ∪ J has three different types of

blocks: blocks from I , blocks from J and merged blocks, coming both from I and J . In Fig. 2, the block

of size 3 in I ∪J is a merged block. Instead of blocks, it is equivalent to describe the adjacencies of I ∪J .

As the blocks, they are inherited from I , or from J , or both from I and J . Neighbouring (as in Fig. 2)

or shared adjacencies from I and J take care of the block merges. If us ∈ I , then define rI(s) as the

index ℓ such that us = iℓ and similarly for rJ . For a function f : [t] → {I, J, (I, J)}, we define the set
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Af ⊆ [t− 1] by:

s ∈ Af ⇐⇒
{

f(s) ∈ {I, (I, J)} and rI(s) ∈ A,

or f(s) ∈ {J, (I, J)} and rJ (s) ∈ A.

If I, J ∈ I(n, k,A) with |I ∪ J | = t and fI,J = f , then Af is the set of adjacencies of I ∪ J . More

precisely, then I ∪ J ∈ I(n, t, Af ). But not every f can occur this way since it has to respect the block

structure of I and J given by A. For example, f(s) = I or f(s) = (I, J) with rI(s) ∈ A but f(s+1) = J
for some s, is not valid. For a fixed pair (t, f), one of the two following cases occurs:

• There are no I, J ∈ I(n, k,A) with fI,J = f .

• The map

{

{(I, J) ∈ I(n, k,A)2| fI,J = f} → I(n, t, Af ),
(I, J) 7→ I ∪ J,

is a bijection.

Indeed, if K ∈ I(n, t, Af ), then (I, J) can be reconstructed from K = I ∪ J and f = fI,J . By

construction of Af , I and J will be in I(n, k,A).

So, the cardinalities of the covariance-groups are either 0 or given by the cardinality of the corresponding

I(n, t, Af ). By Lemma 2.7, for n ≥ t− (t− |Af |) = |Af |, we have:

|I(n, t, Af )| =
(

n− t+ (t− |Af |)
t− |Af |

)

=

(

n− |Af |
t− |Af |

)

.

This is a polynomial in n, since t and |Af | do not depend on n. The maximal value |Af | can take is

2(k − j). So, for n ≥ 2(k − j), Var(X(π,A)(σn)) is the sum of polynomials in n, which is again a

polynomial in n. Its maximal degree is the maximal value for t − |Af | (the number of blocks of I ∪ J)

which is 2j − 1.

Remark 4.3. This polynomiality result can be used to compute expressions of the variance for small

patterns by polynomial interpolation (whence the desire to be precise on the range of values of n for

which the polynomiality holds).

From Lemma 4.2, we directly obtain an upper bound for Var(X(π,A)(σn)).

Corollary 4.4. Let (π,A) be a fixed vincular pattern of size k with j blocks and let σn be uniform in Sn.

Then, there exists C > 0, n0 such that for n ≥ n0:

Var(X(π,A)(σn)) ≤ Cn2j−1.

4.2 Lower bound

Our proof technique for finding a sharp lower bound on Var(X(π,A)(σn)) uses a recurrence that we obtain

from the law of total variance. Working directly with the variance decomposition (see Eq. (8)) would be

more difficult since covariances can be negative whereas the law of total variance involves only non-

negative terms. We first discuss what conditioning we want to use in the law of total variance. Then, we

show how to obtain the recurrence relation. And finally, we deduce a recursive estimation from which we

then derive the lower bound.
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For the rest of this section, let (π,A) be a fixed vincular pattern of size k with j blocks. Let U1, U2, . . .
be independent and uniform in [0, 1]. For any n, set σn = red(U1 . . . Un). By Lemma 2.10, σn is

uniform in Sn. Moreover, for any n, we define vn = Var(X(π,A)(σn)). For simplicity, we also set

Y = X(π,A)(σn).
We apply the general law of total variance (see Proposition 2.14) on Y where we shall condition on

the last few entries of σn. The number of these entries is the size of the last block of the pattern (π,A),
denoted bj . More precisely, we condition on Un, Un−1, . . . , Un−bj+1. We obtain the following expression

for vn:

vn = Var(Y ) = E[Var(Y |Un, . . . , Un−bj+1)]

+
∑

i=0,...,bj−1

E
[

Var
(

E[Y |Un, . . . , Un−i]
∣

∣Un, . . . , Un−i+1

)]

. (9)

We now turn to the recurrence where we will see why this conditioning is a good choice. We split Y in

two parts as follows: Y = B + C with

B =
∑

I∈I(n,k,A): n/∈I

Xπ
I (σn), C =

∑

I∈I(n,k,A): n∈I

Xπ
I (σn).

Observe that B = X(π,A)(σn−1), since σn is uniform in Sn and σn−1 is uniform in Sn−1. Applying

Proposition 2.14 on B, with the conditions Un−1, . . . , Un−bj+1, we have:

vn−1 = Var(B) = E[Var(B|Un−1, . . . , Un−bj+1)]

+
∑

i=0,...,bj−2

E
[

Var
(

E[B|Un−1, . . . , Un−i−1]
∣

∣Un−1, . . . , Un−i

)]

. (10)

In the expression for vn, Eq. (9), we want to recover vn−1 from E[Var(Y |Un, . . . , Un−bj+1)]. Since

Y = B + C and since B is independent of Un, we have:

E[Var(Y |Un, . . . , Un−bj+1)] = E[Var(B|Un−1, . . . , Un−bj+1)]

+ E[Var(C|Un, . . . , Un−bj+1)]

+ 2E[Cov(B,C|Un, . . . , Un−bj+1)].

(11)

Because E[Var(B|Un−1, . . . , Un−bj+1)] also appears in the expression for vn−1, using Eqs. (9), (10)

and (11), we obtain the following recurrence relation:

vn − vn−1 = 2E[Cov(B,C|Un, . . . , Un−bj+1)]

+ E[Var(C|Un, . . . , Un−bj+1)]

+
(

∑

i=0,...,bj−2

E
[

Var
(

E[Y |Un, . . . , Un−i]
∣

∣Un, . . . , Un−i+1

)]

−
∑

i=0,...,bj−2

E
[

Var
(

E[B|Un−1, . . . , Un−i−1]
∣

∣Un−1, . . . , Un−i

)]

)

+ E
[

Var
(

E[Y |Un, . . . , Un−bj+1]
∣

∣Un, . . . , Un−bj+2

)]

.

(12)
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The right-hand side of Eq. (12) is grouped in four terms. To find a lower bound with the help of this

recurrence relation, we examine all these terms. We will need the following result which can be proved

very similarly to Lemma 3.3.

Lemma 4.5. Let (π,A) be a vincular pattern of size k with j blocks and a last block of size bj . Let

U1, . . . , Un be independent and uniform in [0, 1] and let σn = red(U1 . . . Un). Then, for I, J ∈ I(n, k,A)
with I ∩ J ⊆ {n− bj + 1, . . . , n}, conditionally on Un−bj+1, . . . , Un, the random variables X

(π,A)
I (σn)

and X
(π,A)
J (σn) are independent.

Lemma 4.5 is the reason why we want to condition on the last bj entries of σn. Moreover, we need the

following definition in order to work with sorted sequences.

Definition 4.6. Let x1x2 . . . xn be a sequence of n distinct real numbers. Then, sort(x1 . . . xn) is the

sorted sequence which contains x1, x2, . . . , xn but in increasing order.

We now examine separately the four terms of the recurrence relation (see Eq. (12)). We want to find

lower bounds for each of them. The following computations hold for n large enough.

First term First, we have:

Var(C|Un, . . . , Un−bj+1) =
∑

I,J∈I(n,k,A): n∈I∩J

Cov(Xπ
I (σn), X

π
J (σn)|Un, . . . , Un−bj+1).

The constraint n ∈ I ∩ J means that I and J intersect at least in the whole last block. By Lemma 4.5,

for the above covariances to be non-zero, I and J must intersect at least in one more block. Similar

arguments as in the proof of Lemma 3.4 show that the number of non-zero covariances is O(n2j−3).
Since the covariances are bounded by 1, this implies:

Var(C|Un, . . . , Un−bj+1) = O(n2j−3).

Note that the constant in the O-term does not depend on Un, . . . , Un−bj+1, which is important when we

take the expectation. Then, by the Cauchy-Schwarz inequality, it holds that:

|Cov(B,C|Un, . . . , Un−bj+1)| ≤ Var(B|Un, . . . , Un−bj+1)
1/2O(nj−3/2).

And by the Jensen inequality:

E[|Cov(B,C|Un, . . . , Un−bj+1)|] ≤ E[Var(B|Un, . . . , Un−bj+1)]
1/2O(nj−3/2).

Equation (10) implies that E[Var(B|Un, . . . , Un−bj+1)] ≤ vn−1, so that:

E[|Cov(B,C|Un, . . . , Un−bj+1)|] ≤ v
1/2
n−1O(nj−3/2).

Finally, there exists C1 > 0 such that:

2E[Cov(B,C|Un, . . . , Un−bj+1)] ≥ −C1n
j−3/2v

1/2
n−1. (13)

Second term We will simply use the trivial inequality

E[Var(C|Un, . . . , Un−bj+1)] ≥ 0. (14)
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Third term For 0 ≤ m ≤ bj − 1, define

Am =
∑

I∈I(n,k,A):
n,...,n−m+1/∈I,n−m∈I

Xπ
I (σn),

Abj =
∑

I∈I(n,k,A):
n,...,n−bj+1/∈I

Xπ
I (σn).

Clearly, Y = A0 + A1 + · · · + Abj , while C = A0 and B = A1 + A2 + · · · + Abj . Note that for

0 ≤ m ≤ bj , Am is independent of Un, . . . , Un−m+1. For any 0 ≤ i ≤ bj − 1, we have:

E[Y |Un, . . . , Un−i] =

i
∑

m=0

E[Am|Un−m, . . . , Un−i] +

bj
∑

m=i+1

E[Am].

Taking the variance, the second sum will not contribute since it is deterministic. For the first sum, i.e. the

case 0 ≤ m ≤ i, we compute E[Am|Un−m, . . . , Un−i]. Before giving the general formula, we consider a

simple example.

We explain how to obtain a formula for the random variable E[A0|Un, Un−1]. Consider the pattern

π = 54231. Then, A0 is the sum of the indicators Xπ
I (σn) for I ∈ I(n, 5, {3, 4}) such that n ∈ I .

This implies automatically that n − 2, n − 1 ∈ I due to the adjacencies of the given pattern. Assume

I = {i5, i4, n− 2, n− 1, n} with i5 < i4 < n− 2. Then, we have:

P
(

Xπ
I (σn) = 1

∣

∣Un, Un−1

)

= P
(

red(Ui5Ui4Un−2Un−1Un) = 54231
∣

∣Un, Un−1

)

= P(Un−1 > Un−2 > Un|Un, Un−1)P(Ui5 > Ui4 > Un−1|Un−1)IUn−1>Un

= (Un−1 − Un)
(1− Un−1)

2

2!
IUn−1>Un

,

where Ix is the indicator function which is 1 if and only if condition x holds. We used that the Ui’s are

independent and uniform in [0, 1]. Since there are
(

n−3
2

)

choices for i5 and i4, we have:

E[A0|Un, Un−1] =
∑

I∈I(n,5,{3,4}): n∈I

P
(

Xπ
I (σn) = 1

∣

∣Un, Un−1

)

=

(

n− 3

2

)

(

(Un−1 − Un)
(1 − Un−1)

2

2!
IUn−1>Un

)

.

This is the explicit formula for the random variable E[A0|Un, Un−1].

For the general formula, let a1 . . . a1+i−m = sort(πk−(i−m) . . . πk) (fixed, since π is) and define

ℓ1, . . . , ℓ1+i−m such that Uℓ1 . . . Uℓ1+i−m
= sort(Un−i . . . Un−m) (not fixed). Then:

E[Am|Un−m, . . . , Un−i] = Bm(n)× S(Un−m, . . . , Un−i),
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where

Bm(n) =

(

n−m− k + j − 1

j − 1

)

,

S(Un−m, . . . , Un−i) =
Ua1−1
ℓ1

(Uℓ2 − Uℓ1)
a2−a1−1 · · · (1 − Uℓ1+i−m

)k−a1+i−m

(a1 − 1)!(a2 − a1 − 1)! · · · (k − a1+i−m)!
I red(Un−i...Un−m)
=red(πk−(i−m)...πk)

.

The binomial coefficient counts the number of I ∈ I(n, k,A) fulfilling the constraints for Am: this set

is in bijection with I(n − bj − m, k − bj, A ∩ [k − bj ]) so that its cardinality is given by Lemma 2.7.

For each such I , the probability that the corresponding values in σn are in the good order is given by the

fraction. The indicator takes care of the order of the given Ui’s.

We need these computations to compare the expectations (of Y and of B) appearing in the third term

in Eq. (12). For Y , we have:

E
[

Var
(

E[Y |Un, . . . , Un−i]
∣

∣Un, . . . , Un−i+1

)]

= E

[

Var

( i
∑

m=0

Bm(n)S(Un−m, . . . , Un−i)

∣

∣

∣

∣

Un, . . . , Un−i+1

)]

= n2j−2
E

[

Var

( i
∑

m=0

1

(j − 1)!
S(Un−m, . . . , Un−i)

∣

∣

∣

∣

Un, . . . , Un−i+1

)]

+O(n2j−3).

(15)

And for B, we obtain:

E
[

Var
(

E[B|Un−1, . . . , Un−i−1]
∣

∣Un−1, . . . , Un−i

)]

= E

[

Var

( i+1
∑

m=1

Bm(n)S(Un−m, . . . , Un−i−1)

∣

∣

∣

∣

Un−1, . . . , Un−i

)]

= n2j−2
E

[

Var

( i+1
∑

m=1

1

(j − 1)!
S(Un−m, . . . , Un−i−1)

∣

∣

∣

∣

Un−1, . . . , Un−i

)]

+O(n2j−3)

= n2j−2
E

[

Var

( i
∑

m=0

1

(j − 1)!
S(Un−m, . . . , Un−i)

∣

∣

∣

∣

Un, . . . , Un−i+1

)]

+O(n2j−3),

where the last step uses that the Ui’s are independent and identically distributed (i.i.d.) so that we can

replace (Un−1, . . . , Un−i−1) by (Un, . . . , Un−i). In particular:

∑

i=0,...,bj−2

E
[

Var
(

E[Y |Un, . . . , Un−i]
∣

∣Un, . . . , Un−i+1

)]

−
∑

i=0,...,bj−2

E
[

Var
(

E[B|Un−1, . . . , Un−i−1]
∣

∣Un−1, . . . , Un−i

)]

= O(n2j−3).

(16)
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Fourth term From Eq. (15), we have:

E
[

Var
(

E[Y |Un, . . . , Un−bj+1]
∣

∣Un, . . . , Un−bj+2

)]

= n2j−2
E[f(Un, . . . , Un−bj+2)] +O(n2j−3),

where

f(Un, . . . , Un−bj+2) = Var

( bj−1
∑

m=0

1

(j − 1)!
S(Un−m, . . . , Un−bj+1)

∣

∣

∣

∣

Un, . . . , Un−bj+2

)

.

Note that with positive probability, red(Un−bj+2 . . . Un) = red(πk−bj+2 . . . πk). On this event, as a

function of Un−bj+1, the random variable
∑

m=0,...,bj−1 S(Un−m, . . . , Un−bj+1) is not a.s. constant

(in particular, Ired(Un−bj+1...Un)=red(πk−bj+1...πk) takes value 1 or 0 with positive probability each). So,

with positive probability, f(Un, . . . , Un−bj+2) is non-zero which implies E[f(Un, . . . , Un−bj+2)] > 0.

Furthermore, since the Ui’s are i.i.d., E[f(Un, . . . , Un−bj+2)] does not depend on n. Hence, there exists

C2 > 0 such that:

E
[

Var
(

E[Y |Un, . . . , Un−bj+1]
∣

∣Un, . . . , Un−bj+2

)]

≥ C2n
2j−2. (17)

Conclusion Putting Eqs. (13), (14), (16) and (17) together, we obtain for some C3 > 0:

vn ≥ vn−1

(

1− C1n
j−3/2v

−1/2
n−1

)

+ C2n
2j−2 +O(n2j−3)

≥ vn−1

(

1− C1n
j−3/2v

−1/2
n−1

)

+ C3n
2j−2.

(18)

Using first Eq. (9) and then Eq. (15) (where i = 0 gives E[Var(E[Y |Un])] = Var(E[Y |Un])), we

directly obtain:

vn ≥ Var(E[Y |Un]) = n2j−2 Var

(

1

(j − 1)!
S(Un)

)

+O(n2j−3),

where

S(Un) =
Uπk−1
n (1− Un)

k−πk

(πk − 1)!(k − πk)!
.

Because we assume k ≥ 2, S(Un) is not a.s. constant. Moreover, its variance does not depend on n, so

that there exists C4 > 0 such that:

vn ≥ C4n
2j−2. (19)

Using Eq. (19) for vn−1, we can refine Eq. (18) for some C5 > 0:

vn ≥ vn−1

(

1− C5n
−1/2

)

+ C3n
2j−2. (20)

Equation (20) is the recursive estimation that we now use to obtain a lower bound for the variance

vn = Var(X(π,A)(σn)) which is sharper than the one given by Eq. (19).
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Proposition 4.7. Let (π,A) be a fixed vincular pattern of size k with j blocks and let σn be uniform in

Sn. Then, there exists C > 0, n0 such that for n ≥ n0:

Var(X(π,A)(σn)) ≥ Cn2j−1.

Proof: For any n, let vn = Var(X(π,A)(σn)). Let n1 be large enough such that 1 − C5√
n1

≥ 0 and such

that Eq. (20) holds for n ≥ n1. By Eq. (20), we recursively obtain:

vn ≥
n
∑

ℓ=n1

C3ℓ
2j−2

n
∏

m=ℓ+1

(

1− C5√
m

)

.

Since 1− x ≥ e−2x ≥ 1− 2x for x ≤ 1, we have for ℓ big enough:

n
∏

m=ℓ+1

(

1− C5√
m

)

≥
n
∏

m=ℓ+1

e
−2

C5√
m = e

−2
∑n

m=ℓ+1
C5√
m ≥ 1− 2

n
∑

m=ℓ+1

C5√
m
.

Hence, there exists C6 > 0 such that for n big enough:

vn ≥
n
∑

ℓ=n−C6
√
n

C3ℓ
2j−2

(

1− 2C5

n
∑

m=ℓ+1

1√
m

)

≥
n
∑

ℓ=n−C6
√
n

C3ℓ
2j−2

(

1− 2C5
C6

√
n

√

n− C6
√
n

)

≥
n
∑

ℓ=n−C6
√
n

C3ℓ
2j−2(1− 4C5C6)

≥ C3(1 − 4C5C6)C6

√
n
(n

2

)2j−2

≥ C7n
2j−3/2,

for some C7 > 0. Because vn is a polynomial in n for n ≥ 2(k− j) (see Lemma 4.2), there exists C > 0
and n0 > 0 such that for n ≥ n0, vn ≥ Cn2j−1.
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ported the development of this work.
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